Lecture 9: Components of
Phase Locked Loop (PLL)

CSCE 6730
Advanced VLS| Systems

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed from various books,
websites, authors pages, and other sources for academic purpose only. The
instructor does not claim any originality.

- —— , .w- T "{‘..
Advance d VLSI Systems e

UNIVERSITY @F NORTE W i S
Diiscover the power of o S ;




Lecture Outline

* Overall view of a Phase Locked Loop
 Components of a PLL
* High Level System Design

« Component - wise Design and
Optimization

* Mixed-Signal System Analysis
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Phase Locked Loop

The first phase locked loop was proposed by a French scientist de
Bellescize in 1932

Basic idea of working: reduction of phase difference between a locally
generated signal and a reference signal by using feedback

A Phase Locked Loop (PLL) circuit synchronizes to an input waveform within
a selected frequency range, returning an output voltage proportional to
variations in the input frequency

Used to generate stable output frequency signals from a fixed low-frequency
signal

Two types: Analog and Digital

— Analog PLLs are extensively used in communication systems as they maintain a
linear relationship between the input and the output

— Digital PLLs are suitable for synchronization of digital signals, clock recovery from
encoded digital data streams and other digital applications




Phase Locked Loop (contd..)

 Three fundamental purposes of a PLL
— Demodulator: matched filter operating as a coherent detector

— Tracker of a carrier or synchronizing signal: narrow-band filter for
removing noise from the signal and regenerating a clean replica of the
signal

— Frequency synthesizer: oscillator is locked to a multiple of an accurate
reference frequency

 The components of a Phase Locked Loop are:
— Phase Detector
— Charge Pump
— Loop Filter
— Voltage Controlled Oscillator
— Frequency Divider
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Phase Locked Loop (contd..)
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High Level System Design

* Behavioral-modeling languages like Verilog-AMS and Verilog-A are very
important tools for a top-down design methodology for circuit designers

* Provide validation of the overall system
« Better performance at a higher speed
« Verilog-A: C like behavioral description language for circuit designing

* Non-ideal characteristic behavior description
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Voltage Controlled Oscillator

« Oscillators are used to create a periodic logic or analog signal with a stable
and predictable frequency

« Types of oscillators:

— LC oscillators - oscillates by charging and discharging a capacitor
through an inductor

— Crystal oscillators
— Ring oscillators

« VCO is an electronic oscillator specifically designed to be controlled in
oscillation frequency by a voltage input

 Current starved VCO is used
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High Level System Design of a Voltage
Controlled Oscillator

 INSTANCE parameters
— Amplitude of the output signal
— Centre frequency of oscillation
— Oscillator conversion gain

* VCOg,, = (f - ) / Vi, ; where f= instantaneous frequency, f.= centre
frequency of oscillation, V, = input voltage
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Figure: Simulation results of the Verilog-A code for Voltage Controlled Oscillator
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Current Starved Voltage Controlled Oscillator

* Current Starved VCO comprises of
— Odd numbered chain of inverters
— Two input stage transistors => limit current flow to the inverter

* Frequency of oscillation (f,) depends on
— Number of inverters (N)
— Size of the transistor (W/L)

— Current flowing through the inverter (I.,) which is dependent on the input
voltage (V)

— So, f,= I, / (N*Cio1"Vye); Where C;oris the total capacitance of the
inverter transistors
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Transistor Level Diagram of a VCO

Input Stage

Ring Oscillator
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VCO Equations

1 I inv

Frequency of { —= — - = — ,
Oscillation N (TTG'T] (f"» ¥ GTGT ¥ 15,5[]

- Fi
(Cror * Via)

where TT OT — I
iy

and Cror= Co+( = (-furmp L+ Wy La) 4 %(-?r:rr mp Ly+ Wy L),

-
'[:ITGT — 5 {:-1'.:,.1- Ifﬂig. L p T II'-H L'ﬂ J

UNT Advanced VLSI Systems

UNIVERSITY ©F NORTH TEXAS
Diiscover the power of ideas




Analog Design and Simulation Results
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Fig: Transistor level circuit diagram of the VCO
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Experimental Results: Power Analysis on

VCO

@ Average power and Leakage power are calculated
@ Calculator option in Cadence Spectre was used

Transistor type Transistors | Average Power | Leakage Power | Percentage
mn uW in nW

PMOS (M0) 12.26 0.0331 0.00027

NMOS [M5) 4,69 4.82 0.103

Current Starved | PMOS (M75, M76, M77, M78, M7 0.215 0,345 0.150

NMOS (M80, M81, M82, M&3, Ms4) 0.255 30.41 0.0193

Inverter | PMOS (M4, M85, M&6, M7, Ms8) 0.912 207.07 0.715

NMOS (M92, M91, MO0, M&O, M62) 0.842 05.87 0,530

Total 28,02 338.54 0.36

Table: Gate leakage and dynamic current for individual transistors in the VCO for an input voltage of 0.7V
B
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Design of Experiments

* Full factorial method
— Change in output studied with change in input
— Two values for each input; one is considered as ‘+1’ and the other as ‘-1’
— Taguchi L8 design matrix
— Eight different combinations => eight experiments
— Output responses are tabulated

— Average values of output responses and then A (effect) values are
calculated and then the average value over each column of ‘+’ and ‘-’ is
computed

— Pareto diagrams: factors affecting the output response is known

— Prediction equations corresponding to that particular output response is
written using:
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Design of Experiments: Results

* Inputs: * Outputs:
— Gate oxide thickness — Frequency of operation
— WI/L ratios for current starved — Average power
NMOS, current starved PMOS, — Leakage power

input NMOS, and input PMOS

Table: DOE, Experimental results

Run | Tos | B =(£E—) 39 =(%—) 33 =(£E—]I 134 =(%—]I Frequency | Correlation | Average Leakage
for PMOS | for NMOS | for PMOS | for NMOS T ose Coefficient Power Power
CSs Cs Input Input (MH =) R (%) Pow (W | Prege (pW)

1| 1.4 5 1.72 10 3.44 T87.01 09.21 46 342.66
2 1.4 5 3.44 5 1.72 025.04 09.28 20.64 408.83
3| L4 10 1.72 10 1.72 &13.78 099,06 32.05 A70.58
41 14 10 3.44 5 .44 902,46 08.01 38.29 497.63
[ LT 5 1.72 5 .44 630.65 90,85 32.90 310.35
6 L7 5 3.44 10 1.72 692,12 99.82 2057 326.29
T LY 10 1.72 5 1.72 672.32 90.77 26.25 33714
B LT 10 3.44 10 3.44 TT7.18 00.81 45.66 417.31
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Design of Experiments: Pareto Diagrams

Paresto Dbiegram for Freguanacy Farste Diagram for swearsge poer
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Fig: Pareto diagram for frequency Fig: Pareto diagram for average power
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Fig: Pareto diagram for leakage power starved transistors.
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Design of Experiments: Prediction
Equations and Optimization

« Prediction equations for the outputs considered:
— FA=786.43 - 93.36T,, + 60.3 3,
— PA»=35.05+5.73,+ 3.3 B3,
- P"=376.35-28.58 T, +29.323,+36.17 3,

* Optimization of frequency of operation:
— To maximize the frequency of oscillation, T, must be -1 while 8, must be

« Optimization of leakage power:
— T..and 3, must be -1 and 3, must be +1
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Frequency Divider

* In any flip-flop, when a continuous train of pulse waveforms at fixed
frequency is fed to it as an input signal, an output signal of approximately
half the frequency of the input signal can be obtained

« Design and Working
— JK flip-flop: realized using two 3-input and two 2-input NAND gates
— Principle: count two pulses and then reset

NAND 3
- NAND 2
1> V2 Ou ~So
Clk [ >—=
V1
K V2 Out Vi Dut}: bar
NAND'3 NAND 2

Fig: Circuit diagram of a J-K flip-flop
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Analog Design and Simulation Results
of a Frequency Divider
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Fig: Transistor level circuit diagram of a
frequency divider
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Fig: Simulation results of the VCO and frequency divider for
an input voltage of 0.7V
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Comparative Simulation Results of Analog
VCO with Verilog-A modeled VCO
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Phase Frequency Detector

« Compares the phase of the local oscillator to that of the reference signal

« Directs the charge pump to supply charge amounts in proportion to the
phase error detected

« Detects the phase or frequency differences and produces the resultant error
voltage (output is proportional to the difference in phase or frequency)

« Types of phase detectors:
— XOR gate
— Four-quadrant multiplier, also known as a mixer
— Bang-bang charge pump phase detector
— Proportional phase detector

« A PFD is realized using two D flip-flops and one 2-input NAND gate
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High Level System Design of a Phase
Frequency Detector

 INSTANCE parameters
— output voltage for high
— output voltage for low
— Vs = Voltages above this voltage at input are considered high
— Rise time, Fall time, and Delay time

« Reference signal is “behind” the input signal => Inc_out is low & Dec_out is
high and vice versa
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Figure: Simulation results of the Verilog- A code for Phase Frequency Detector
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Simulation Results of the Analog
Design for a Phase Frequency Detector
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Fig: Circuit diagram of a D flip-flop D
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Fig: Circuit diagram of a PFD
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Simulation Results of the Analog
Design for a Phase Frequency Detector
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Fig: Simulation results of the PFD
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Comparative Simulation Results of Analog
PFD with Verilog-A modeled PFD

Transient Response
Transient Response
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Fig: Comparative view of the simulation results of the  Fig: Comparative view of the simulation results of the
Dec_out signal for a PFD for the analog and Verilog-A Inc_out signal for a PFD for the analog and Verilog-A
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Charge Pump

« Stabilizes spurious fluctuation of currents and switching time, to minimize the
spurs in the VCO input

« Manipulates the amount of charge on the filter's capacitors depending upon
the signals from the UP and DOWN outputs of the PFD

« Principle: two current sources and two switches controlled by the PFD outputs

« UP is High & DOWN is Low => V_, increases => sources current on to the
capacitor

« UP is Low & DOWN is High =>V_, decreases => sinks current on the
capacitor

e UPisLow & DOWN is Low =>V_ . is constantand |_ . is zero

out out

 Power analysis proves that the designed charge pump acts as a power source
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Analog Design and Simulation Results
of the Charge Pump
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Fig: Transistor level circuit diagram of the charge Fig: Simulation results of the charge pump at an input
pump voltage of 0.7V
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Power Analysis on a Charge Pump

 Average power and gate leakage power are calculated
« Gate leakage is a major component of leakage

« Scaling in gate oxide thickness results in an alarming increase in gate
leakage current due to tunneling through the thin gate oxide.

« Average power calculated for the whole device = 104.732 yW

Table: Power analysis on a 45 nm charge pump
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Transistor | Type | Total Avg Power in pW | Gate Leakage Power in nll’
MO PMOS 26.98 0.0562
M1 PMOS 1.55 0.1052
M2 PMOS 2.56 6.91
M3 PMOS 0.0919 8.35
M4 NMOS 0.0926 10.97
M5 NMOS (0.842 7.89
MG NMOS 0.704 14.67
M7 NMOS 7.66 12.18
MBS NMOS 64.24 9.17

Total 104.72 70.301
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Transistor Wise Power Analysis According
to Region of Operation on a Charge Pump
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Regions of operation
— Triode

— Saturation

— Sub-threshold

Sub-threshold leakage power is a
vital component in the total power
consumption as scaling of device
dimensions and threshold voltage
results in increased sub-threshold

leakage

Ciih thrachAalA NA\WIAYr Wino
DUMVTUITTOI IVIU MUVVTI vwao

negligible when compared to the
total power

Total power consumed (transistor
wise calculations) is 91.74 yW

Table: Power Analysis for transistor MO according to

each region of operation in a charge pump

Region for | Drain to | Drain to | Gate to | Gate Gate | Drain to
Source | Source | Source | Current | Leakage | Source
MO | Voltage | Current | Voltage Power Power
Vis (V| Tas (A) | Ve (V)| 1, (A) | By (W) | Pas (W)
Triode 0,022 | 8.089u (0.7 20960 | 14.6Tn | 01784z
Saturation 0 (0 (0 (0 (0 0
Subthreshold 0 0 0 (0 (0 0
Total 14.6Tn | 0.178u
Total 0,192
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Low Pass Filter

 Low pass RC filter passes frequency signals within the range of the VCO

* Principle: Cutoff frequency of the filter is approximately equal to the
maximum frequency of the VCO => the filter will reject signals at
frequencies above the maximum frequency of the VCO

 RC filter acts as a AC voltage divider circuit that discriminates against high
frequencies, as the capacitive reactance decreases with frequency

 Low-pass filter smoothes out the abrupt control inputs from the charge
pump
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High Level System Design of a Low
Pass Filter

 INSTANCE parameters

— bandwidth of the filter
foutorr = 1/ (2m*R*C); where R=1K and f_,,+~788MHz
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Figure: Simulation results of the Verilog-A code for
a low pass filter for an input voltage of 0.7V
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Figure: Simulation results of the Verilog-A code for
a low pass filter on a dB scale.




Analog Design and Simulation Results
of the Low Pass Filter
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Figure: Circuit diagram of a low pass RC filter
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Figure: Simulation results for the low pass RC filter
on a dB scale.
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Figure: Simulation results for the low pass RC filter




Comparative Simulation Results of Analog
Low Pass Filter with Verilog-A modeled Low
Pass Filter
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Fig: Comparative view of the simulation results of the Fig: Comparative view of the simulation results of the
low pass filter for the analog and Verilog-A system low pass filter for the analog and Verilog-A system
design approaches design approaches on a dB scale
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Mixed Signal Analysis

Analog circuits
— Signals are continuously varying voltages, currents or frequencies =>
provide accuracy
— Voltage scaling and library design are the two problems related to the
analog circuits
Digital circuits
— Signals are two-level discrete voltages that are either low or high =>
provide speed
— Digital library can be easily built as any digital circuit would be a
combination of different logic functions like NAND, NOR and data storage
elements like flip-flops

Issues with Analog Circuits
— Decrease in supply voltage leads to lower performance

— Gate leakage

Mixed signal circuits
— High accuracy and speed along with low cost and low power consumption
— provide improved system reliability and flexibility

— System performance is usually limited by the a2d or d2a interfaces as the
speed of the data conversion has to be accounted
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Mixed Signal Analysis on VCO and
Frequency Divider

« VCO - Analog design => Transistor level
 Frequency divider — Digital design => Behavioral Verilog code
* Frequency of operation:
— For VCO, oo = 717.96 MHz
— For analog frequency divider, f, = 358.98 MHz
— For digital frequency divider, f; = 394.03 MHz
« Difference in frequency is due to:
— Regular capacitive loading
— Gate tunneling or leakage

« The difference in frequencies can be removed by adding a capacitor C ,p, of
’) /10 'F|: r\'F \nlhlr\h 2 fE ic Aiia tn nate fhiinnalinAa and N AQ fE e Airia +tA ~ranarnitiva
Hnoul il 4 11 10 UUU WV UGLU LUIIIIUIIIIU aliu v.-TJv 11 1o UUT WU vadpavitvo

Ioadlng

« Optimized Values of the Output Metric:
— FA=786.43 MHz
— PA=61.354 yW
— P_A=647.38 pW
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Mixed Signal Analysis: Experimental Results
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Figure: Block diagram of the VCO along with an analog frequency divider and a digital frequency divider
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Figure: Output waveforms of the VCO, digital frequency divider and analog frequency divider
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