Lecture 8: Gate Leakage

CSCE 6730
Advanced VLS| Systems

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.
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Scaling Trends and Effects:
Summary
* Scaling improves
_ITransistor Density of chip

_IFunctionality on a chip
_1Speed, Frequency, and Performance

* Scaling and power dissipation

_IActive power remains almost constant

_1Components of leakage power increase iIn
number and in magnitude.

JGate leakage (tunneling) predominates
for sub 65-nm technology.
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Energy-Band Diagram Showing Tunneling
(Direct Tunneling Occurs when: Vay < @5y )
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Flat-band Condition Direct Tunneling for positive bias

NOTE: For short channel MOS FN tunneling is negligible.
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E. Kougianos and S. P. Mohanty, "Metrics to Quantify
Steady and Transient Gate Leakage in Nanoscale
Transistors: NMOS Vs PMOS Perspective", in Proceedings
of the 20th IEEE International Conference on VLSI Design

(VLSID), pp. 195-200, 2007.
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Outline

. Both ON and OFF state gate leakage are

significant.

. During transition of states there is transient effect

IS gate tunneling current.

. Three metrics: oy lopr @nd Ctunne”ng

Ciunneling: Manifests to intra-device loading effect of

the tunneling current.
NMOS Vs PMOS in terms of three metrics.

. Study process/supply variation on three metrics.




Salient Point

The metric, effective tunneling capacitance
essentially quantifies the intra-device loading effect
of the tunneling current and also gives a qualitative
idea of the driving capacity of a Nano-CMOS
transistor.
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Gate Capacitance of a Transistor
(Intrinsic)

N
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Gate Capacitance of a Transistor
(Tunneling: Proposed)

We propose that transient in gate tunneling current due to
state transitions are manifested as capacitances.
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Analysis
N a
Nano-CMOS Transistor
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Outline: Nano-CMOS Transistor

* Dynamics of gate oxide tunneling in a transistor
« SPICE model for gate leakage
* ON, OFF, and transition states of a transistor

« (Gate leakage in ON, OFF, and transition states
of a transistor
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Gate Leakage Components
(BSIM4 Model)

* |y lgq: tunneling through overlap of gate and diffusions
*  lgesr lgeq' tunneling from the gate to the diffusions via channel
ob- tunneling from the gate to the bulk via the channel
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ON State: NMOS Transistor

G
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ON State: PMOS Transistor
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OFF State: NMOS Transistor
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OFF State: PMOS Transistor
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Transition State: NMOS Transistor
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Transition State: PMOS Transistor
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NMOS Gate Leakage Current
(For a Switching Cycle)
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PMOS Gate Leakage Current
(For a Switching Cycle)
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NMOS Vs PMOS: 3 Mechanisms of Tunneling

Three major mechanisms for direct tunneling:

1.electron tunneling from conduction band (ECB)
2.electron tunneling from valence band (EVB) +Vg ‘ e |o
3.hole tunneling from valance band (HVB) My T—-( X

ECB
For NMOS: //—\EC
*ECB controls gate-to-channel tunneling in inversion Jeve c
*EVB controls gate-to-body tunneling in depletion-inversion e v
*ECB controls gate-to-body tunneling in accumulation

For PMOS: _‘__J

EC

ate

p-substr

yqilico

*HVB controls the gate-to-channel tunneling in inversion

*EVB controls gate-to-body tunneling in depletion-inversion |E,, > (r—> ;
*ECB controls gate-to-body tunneling in accumulation O

n+

PMOS < NMOS: @4 for HVB (4.5 eV) is higher than ®,
for ECB (3.1 eV), the tunneling current associated with
HVB is less than that with ECB.
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Three Metrics
for
Tunneling Current
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Gate Leakage: Observation

The behavior of the device in terms of gate
tunneling leakage must be characterized not only

during the steady states but also during transient
states.
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Gate Leakage: Metrics

» Gate leakage happens in ON state: I,
» Gate leakage happens in OFF state: |5

. .~ tun
 Gate leakage happens during transition:C
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Gate Leakage for a Transistor

Calculated by evaluating both the source and
drain components

Fora MOS, |y, = lgs +lyg Hlyes Flgeq lgp
Values of individual components depends on
states: ON, OFF, or transition
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Gate Leakage Current
(For a Switching Cycle)
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Inverter: Gate Leakage Paths
(Putting NMOS and PMOS together)

Negligible
Channel and :l-r Voo :I— Voo
|
|

ON OFF

-@4____-_
Vout=Vhigh | Vin=Vhigh I Vout = Viow

Vin= V

low

e I
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Low Input - High Input
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Inverter: Gate Leakage Current
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Transient Gate Leakage: ¢

n eff
eff
5 components
tun tun tun tun tun
CQS gd C gcs gcd gb

We propose to quantify as:

wn  lon — loFF
eff dVg
dt
— lon — lorr t, (for equal rise/fall time)
Vb
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Effect of
Process and Design
Parameter Variation
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lon / lope Versus T_.: NMOS
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lon / loee Versus T,,: PMOS
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lon / loep Versus T.,: Inverter
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« Versus T_.: NMOS
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tun

o« Versus T, Inverter
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Statistical Analysis
of the Metrics
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Monte Carlo Simulations:
(Modeling Variations)

* Monte Carlo (N=1000) results.

— 10% variation in gate oxide and supply assumed.

t
Loy L opr Ceff
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Monte Carlo Simulations:
(Modeling Variations)

 All three metrics follow lognormal distribution.

* This Is expected since gate T, and V, are
assumed normally distributed and |, depends
exponentially on both.

« Small parameter variation (10%) leads to large
deviance in the metrics (2-3 sigma).

UNT Advanced VLSI Systems

UNIVERSITY ©OF NORITH TEXAS
Drscover the power of ideas

1



Gate Leakage in Nano-CMOS

« Both ON and OFF states contribute to gate
oxide leakage.

 Transient effect is significant and can be
captured via effective tunneling capacitance.

* lgy @nd lgee metrics to quantify gate leakage
current during steady state.

- Ceff = Effective tunneling capacitance at the
iInput of a logic gate.
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S. P. Mohanty and E. Kougianos, "Steady and Transient
State Analysis of Gate Leakage Current in Nanoscale
CMOS Logic Gates", in Proceedings of the 24th IEEE
International Conference on Computer Design (ICCD), pp.
210-215, 2006.
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. New metrics: |
. C,,». Manifests to intra-device loading effect of the

. NOR Vs NAND in terms of |
. Study process/design variation on |,,, and C
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Outline

. Both ON and OFF state gate leakage are

significant.

. During transition of states there is transient effect

Is gate tunneling current.
and C

tun tun

tun-
tunneling current

and C

tun tun

tun




Salient Point

A new metric, the effective tunneling capacitance
essentially quantifies the intra-device loading effect
of the tunneling current and also gives a qualitative
idea of the driving capacity of the logic gate.

How to quantify it at transistor and logic-gate
level??
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Transistor - Logic Gate

« How do we quantify the same metrics at logic
level??

« State dependent or state independent??
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Analysis
IN
Logic Gates
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Gate Leakage in 2-input NAND

(State Specific)
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Gate Leakage in 2-input NAND

(State Specific)
| ox. Logic(State) — Z lox, i
MQOS i

Four different states for 2-input NAND:
lox, Logic (State )

— Y N

oo | o1 | 10 | 11
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Gate Leakage in 2-input NAND
(State Independent)

l., = State Independent average gate leakage
current of a logic gate

1
lun =—(loo+ lor+ 10+ l11)

A

This is a measure of gate leakage of a logic gate
during its steady state.
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Gate Leakage in 2-input NAND
(Transient Study)

Best Case
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Voltage
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Gate Leakage in 2-input NOR
(Transient Study)
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Gate Leakage in Logic Gate
(Transient Study)

C.., = Effective tunneling capacitance at the input

of a logic gate

tun

We propose to quantify as:
| logic | log ic
C tun _ max min

(dV inj
dt
| logic | log ic

max min_ ¢t (for equal rise/fall time)

Vb
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Effect of Process
and
Design Parameter
Variation
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Gate Leakage in 2-input Logic Gates
(T,, Variation)
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Gate Leakage in 2-input Logic Gates
(Vpp Variation)

10-008 . , : . 16016
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l.,, (logscale) versus Vg, C,,n (logscale) versus Vg
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Observations
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Gate Leakage in 2-input Logic Gates

« Both ON and OFF states contribute to gate
leakage

 Transient effect is significant and can be
captured via effective tunneling capacitance

- |, = State Independent average gate leakage
current of a logic gate

« C,,, = Effective tunneling capacitance at the

input of a logic gate
* |, Is larger for NOR
 C,,,Is larger for NAND

tun
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Usefulness of the Proposed Metrics

 The metrics allow designers to account for gate
tunneling effect in nano-CMOS based circuit

designs.
* Iy and Iy - additive to static power
consumption.

- Ceff . — additive to intrinsic gate capacitance
Clogic = Ceﬁctun + Cintrinsic
« All three needs to be taken into account for

effective total (switching, subthreshold, gate
leakage) power optimization
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Estimation of Gate Leakage
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Gate Leakage Estimation

* What we have observed?
— Gate leakage is input state dependent

— Gate leakage is dependent on position of ON/OFF
transistors

— Gate leakage is sensitive to process variation

» Gate leakage estimation methods for logic level
description of the circuit:

— Pattern dependent estimation (R. M. Rao ISLPED
2003)

— Pattern independent probabilistic estimation (R. M.
Rao ISLPED 2003)
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Estimation: Pattern Dependent

« For an given input vector switch-level simulation is
performed

« State of internal nodes is determined for the input vector

« Unit width gate leakage of a device is determined for
different states

* The total gate leakage is computed by scaling the width
of each device by unit-width leakage in that state and
adding the individual leakages:

lox = Z|\/|os lox mos(8(1)) * Wios

Source: R. M. Rao ISLPED2003
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Estimation: Pattern Independent

* Probability analysis in conjunction with state-
dependent gate leakage estimation is used.

 The average gate leakage of the circuit is the
probabilistic mean of the gate leakage of the

circuit:
ox ,avg E(ZMOS OX, MOS( (l)) . WI\/IOS)

= 2os Whos ™ ( Zj lox Mos(8())) ™ P()) )
where P(j) is the probability of occurrence of
state |.

Source: R. M. Rao ISLPER2QA
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Estimation: Heuristic and Look-up Tables

* Interaction between gate leakage and subthreshold
leakage are used to develop heuristic based estimation
techniques for state-dependent total leakage current.

 Heuristics based on lookup tables are available to
quickly estimate the state-dependent total leakage
current for arbitrary circuit topologies.

Source: Lee ISQED2003, TVLSI2003
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Estimation: Loading Effect on leakage

NPUT: 1. Represent circuit as graph: vertex
Graph G representing the circuat, .
omput pattern L - logic gate and edge - net
of different zate type, size, loading . . .
S T— 2. Sort vertices in topological order
opologically sort the nodes i 5 . . .
tntilize Tsubth = 0, gate =0, Totot=0 and initialize leakage values to zero
v . .
Propagte lgic value om primary npus 3. Propagate input vector and assign a
to primary outputs, tor mput pattern .
N logic state to each gate
@r each gate g; in topologzical order .
_ _ 4. Calculate total input and output
Calculate total input loading current (I, ) .
Iy = Tl e loading current due to gate leakage
Calculate total output loading current (O,) 5. Calculate the leakage of the
> R iIndividual logic gates
¥
swoth, = £1,. 0, aate, = 01, 0 e, = £, 0, || 6. Compute the leakage of the total
. , circuit by adding leakage of
]subth+=Isuhthjj;Igaie += Igate; Ibibt += I:ltbtlj; . L.
7 individual gates.
[ IsuhgfngI:.ET;mm I Source: Mukhopadhyay DATE2005 and TCAD 2005 (to appear)
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Optimization of Gate Leakage
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Techniques for Gate Leakage Reduction

Research in Gate leakage is catching up and
have not matured Ilike that of dynamic or
subthreshold power. Few methods:

mDual Tgyy (Sultania DAC 2004, Sirisantana
IEEE DTC Jan-Feb 2004)

mDual K (Mukherjee ICCD 2005)

mPin and Transistor Reordering (Sultania ICCD
2004, Lee DAC 2003)
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Dual T,y Technique: Basis

« Gate oxide tunneling current |
experimentally derived factors):

OXIde (Vdd /Tgate)2 exp (_ K TgateNdd)

oxide (k iS d

* Options for reduction of tunneling current:
— Decreasing of supply voltage V4, (will play its role)

— Increasing gate SiO, thickness T,
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Dual T,y Technique: Basis

Larger I
gate . Smaller delay

Smaller |, ,

te s
gate HIgh Toae™ | arger delay

Low T
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Dual T,y Technique: Approach

* Our approach — scale channel length (L) as well
as T, T,, Is almost linearly scaled with L ¢

0) &
Aspect Ratio = . = constant

Advantages:
* Reduces DIBL effect
 Constant Input Gate Capacitance for a given W ¢

. = constant
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Dual T,y Technique: Algorithm

Critical path using STA

Assign all
transistors to T, ;

Compute cost =

¢

no transistor chosen
or Delay constraint
met, then EXIT, h Choose transistor with
most negative cos
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always negative)

Source: Sultania DAC2004 .




Dual T,y Technique: Results

* |terative algorithm that
— Generates delay/leakage tradeoffs
— Meets delay constraint

 For same delay an average leakage reduction of
83% compared to the case where all transistors
aresetto T, ..

 Minor changes Iin design rules and an extra
fabrication step is required, extra mask required.

Source: Sultania DAC 2004
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Dual K Technique: Basis

Larger ljate - . Smaller |
93t Smaller delay High K

gate

Low K gate~ Larger delay
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Dual K Technique: Basis

o -

Smalle
gaté > Larger

gate )

Larger | .., r
LOW T g gate ngh T delay

gate . Smaller delay
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Dual K Technique: Basis
(Four Combinations of K

s

& T

gate)

gate

(1) K, T, (2) K,T, Tunneling
Current 4
:HH i&i Delay T
3) K, T, (4) K, T,
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Dual K Technique: Basis
(Example: Four Types of Logic Gates)

Assumption: all transistors of a logic gate are of

same K. and equal T

gate gate-

S M
L L

(1) KT, QKT, GOKT, @)K,
‘gNT Advanced VLSI Systems oed] _.- i F
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Dual K Technique: Basis

Use of multiple dielectrics (denoted as K,,.) of
multiple thickness (denoted as T ) will reduce
the gate tunneling current significantly while
maintaining the performance.

Source: Mukherjee ICCD 2005

| ® ..._l.:_i.-.-..;; : '.’-
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Dual K Technique: New Dielectrics

» Silicon Oxynitride (SIO,N,) (K=5.7 for SiON)
» Silicon Nitride (Si;N,) (K=7)
* Oxides of :

— Aluminum (Al),  Titanium (Ti), Zirconium  (Zr),
Hafnium (Hf), Lanthanum (La), Yttrium (YY),
Praseodymium (Pr),

— their mixed oxides with SiO, and Al,O,

* NOTE: |, is still dependenton T
of dielectric material.

qate Irr€spective
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Dual K Technique: Strategy

* Observation: Tunneling current of logic gates
Increases and propagation delay decreases In
the order K,T,, K, T,, K;T,, and K, T, (where, K,
<K,and T, <T,).

» Strategy: Assign a higher order K and T to a
logic gate under consideration
— To reduce tunneling current
— Provided increase in path-delay does not violate the
target delay

Source: Mukherjee ICCD 2005
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Dual K Technique: Algorithm

Step 1: Represent the network as a directed
acyclic graph G(V, E).

Step 2: Initialize each vertex v € G(V, E) with the
values of tunneling current and delay for K,T,
assignment.

Step 3: Find the set of all paths P{H } for all vertex
in the set of prlmary inputs (I1 nIeadlng to the
primary outputs I1

Step 4: Compute the delay D, for each path p e
P} Source: Mukherjee ICCD 2005
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Dual K Technique: Algorithm

Step 5: Find the critical path delay D for K,T,
assignment.

Step 6: Mark the critical path(s) Psp, where P.; is
subset P{IT; }.

Step 7: Assign target delay Dy = Dp.

Step 8: Traverse each node in the network and
attempt to assign K-T in the order K,T,, K
KiT,, and K;T, to reduce tunnellng w%ule
malntalnlng performance

Source: Mukherjee ICCD 2005
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Dual K Technique: Characterization
(How to Model High-K"?)

 The effect of varying dielectric material was
modeled by calculating an equivalent oxide
thickness (T, ) according to the formula:

T*ox = (Kgate / Kox) T

gate

* Here, Ky, Is the dielectric constant of the gate
dielectric material other than SiO,, (of thickness
Taate): While K, is the dielectric constant of SiO,.

UNT Advanced VLSI Systems
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Dual K Technique: Characterization

 The effect of varying oxide thickness T, was
incorporated by varying TOXE in SPICE model.

* Length of the device is proportionately changed
to minimize the iImpact of higher dielectric
thickness on the device performance :

L* = (Tox  Tox) L

* Length and width of the transistors are chosen to
maintain (W:L) ratio of (4:1) for NMOS and (8:1)
for PMOS.
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Dual K Technique: Characterization

1e-05
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NOT -
i NAND2 e
1606 | -"-".'-.""-hg‘ NORZ
AND2 -
OR2
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1e-08 |

1e-08
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I Vs Thickness I Vs Dielectric Constant

gate gate
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-
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AND2
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: Source: Mukherjee ICCD 2005g
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Dual K Technique: Experimental Setup

« DKDT algorithm integrated with SIS, and tested
on the ISCAS'85 benchmarks.

* Used K, = 3.9 (for Si0O,), K, =5.7 (for SION), T, =
1.4nm, and T, = 1.7nm for our experiments.

T, is chosen as the default value from the
BSIM4.4.0 model card and value of T, is intuitively
chosen

Source: Mukherjee ICCD 2005
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Dual K Technique: Experimental Results

Tunneling Current and % Reduction

~~
<E1 40 100
_ 30| T 98
E 30 A -+ 96 O\o
- 94
O 25 i A KT
- 92 o
3 20 1T | 90 Q_ |:|DKDT
@ C  —A—%Reduction
15 1
= 88 O
10 |07 e
= 86 o
e p 1L |37
= o0 LN BN BN CHCHCH N 82
S5 T O O P D QO © © D A
TS R -G SR S SR C R N e
C OO PP

Benchmark CIrgliiSe: Mukherjee 1cCD 2005
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Pin Reordering with Dual-Tox

A key difference between the state dependence of |, and |
|, Primarily depends on the number of OFF in stack
 |_... depends strongly on the position of ON/OFF transistors

gate

gate
o T T T s o e T s s T s e Bl
Py _|!JT1 Py —|IJT1 Py —||JT3 Py —||J T
Prob.(1) = 0.1 ] Prob (1) =0.4 ] Prob. (1) = 0.1 M Prob (1) = 0.4 7
- S [ I—
P, {1 Ty Py i T P2—|| T3 Py i Ty
Prob.(1) = 22_||_ ’ Frob.(1) =0.3 M Frob. (1) =0.2 M Frob.(1)= 0.3 M
H - I =
Ps —i_ Ta > —| I Ta P3 — T e | A
pmb(1):o3_|'_ Prob.(1) =0.2 || Prob.(1) = 0.3 V] Prob.(1) =02 T
Py —|I_ Iy I —|I_ Ty P4 —|I_ Ty Py —|I_ Ty
Prob.(1) = 0.4 ! Prob.(1) =0.1 ! Prob.(1) = 0.4 I‘ | Prob.(1) = 0.1 ! |
7 og=0-10.20.350.4<0.1 I, = 0.4x0.3x0.2x01x0.1 T ntenug =0.1x0.2x0.3x0.4x10 [Foate qog = 0.4x0.3x0.2x0.1x10
+ 0.2x0.3x0.4x10 4+ 0.3x0.2=x0.1x10 4+ 0.2x0.3x0.1x10 4+ 0.3=0.2x0.1>10
+ 0.3x0.4x10 +02><D lxlD + 0.3x0.4x<0.1 + 0.2x0.1x0.1
+ O0d=0.1 + 0101 + 0.d=01 4+ 0101
= 1480 nA = 0.270 nA = 0.316 nA = 0.096 nA

no transistor/ best possible best possible best possible transistor

pin reordering pin reordering § transistor reordering and pin reordering
» Results improve by 5-10% compared to dual-Tox approach.

Source: Sultania ICCD,
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