Lecture 3: General Purpose
Processor Design

CSCE 6651
Advanced VLSI Systems

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed
from various books, websites, authors pages, and other
sources for academic purpose only. The instructor does
not claim any originality.

UNT

UNIVERSITY OF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

iscover the po

Lecture Outline

e General Purpose Processor

 Program Execution

e Construction of a Simple MIPS Processor
» Single Cycle Processor

e Multicycle Processor

* Pipelined Processor

UNT

UNIVERSITY GF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

Levels of Representation

temp = v[k];
High Level Language v[k] = V[k+1];
Program Vk+1] = temp:
Compiler w$15. O($2)
Assembly Language Iw $16, 4($2)
Program SW $16, O($2)
Assembler SW $15, 4($2)

|
l Machine Interpretation

ﬁ —] — —
Control Signal | ALUOP[0:3] <= InstReg[9:11] & MASK
||| Specification

UNT

UNIVERSITY GF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

Execution Cycle

Instruction Obtain instruction from program storage
Fetch
Instruction _ . . : : .
Determine required actions and instruction size
Decode
Operand _
Fetch Locate and obtain operand data
Execute
Compute result value or status
Result
Store Deposit results in storage for later use
Next
Instruction Determine successor instruction
]

UNT

DNIVERSTIY OF WORIHL TEXAS CSCE 6651: Advanced VLS| Systems

r);‘\.Ll_I\I_'T l1lt.' POwWer Of 1

The Processor: Datapath & Control

* Let us look at an implementation of the MIPS

« Simplified to contain only:
— memory-reference instructions: Iw, sw

— arithmetic-logical instructions: add, sub, and, or,
slt

— control flow Instructions: beq, J

Generic Implementation:

— use the program counter (PC) to supply instruction
address

— get the Instruction from memory

— read registers

— use the instruction to decide exactly what to do

UNT

UNIVERSITY OF NORTH TEXAS CSCE 6651: Advanced VLS| Systems

1

More Implementation Detalls

o Abstract / Simplified View:

L Data

——)
Register #
PC t==»{ Address Instruction | Registers AL Address
Instruction Register #
memory e Data |
Register # memory —
»| Data

e Two types of functional units:
— elements that operate on data values (combinational)
— elements that contain state (sequential)

UNT

DNIVERSTIY OF WORIHL TEXAS CSCE 6651: Advanced VLSI Systems

r);‘\LU\U Lhe power Ol 1;1

Register File: Read Operation

« Built using D flip-flops (Combinational in nature)

Read register
number 1

Register O >
Register 1 -¢

—» Read data 1

Registern — 1 —
Registern |—e

9
Yy vV VY VY Yy

number 2

» Read data 2

M
u
X
_/
Read register I
M
u
X
_/

UNT

DNy SIS I OF NORLLL LEAS CSCE 6651: Advanced VLS| Systems

r);‘\LU\U Lhe power Ol 1;1

Register File: Write Operation

e We still use the real clock to determine when to

write
Write

Register 0

.—
: n-to-1 . — C
Register number > . :
g decoder | - Register 1

o—

)¢
Registern — 1
® » D

e
Register data ® » D

UNT

DNy SIS I OF NORLLL LEAS CSCE 6651: Advanced VLS| Systems

r);‘\LU\U Lhe power Ol 1;1

Register n

Register File: Block Diagram

e Three Address

Read register ports
number 1 Read « One Data Input

_ data 1 Port
Read register « Two Data Output

number 2 Ports
Register file « One Write Control

Wri_te Signal
register
Read

Write data 2
data Write

UNT

HNIYERSTIY OF NORIHL TRXAS CSCE 6651: Advanced VLSI Systems

r);‘\LU\U Lhe power Ol 1;1

Functional Units - |

a: Instruction Memory

After an Instruction address Is put, the instruction
residing at the address appears at the output port

b: Program Counter -- A simple up counter

c: Adder -- A 2's complement adder
' Instruction
address —
| [P C
INStruCtion fr—> >Add Sum
Instruction
memory —
a. Instruction memory b. Program counter c. Adder

UNT

DNIVERSTIY OF WORIHL TEXAS CSCE 6651: Advanced VLSI Systems

r);‘\LU\U Lhe power Ol 1;1

Functional Units - ||

a. Register File
It's construction, read, and write operations as discussed previously
b: ALU (Arithmetic & Logic Unit)

Recall the ALU design we have discussed in last two classes
Note the “Zero” output

-5 ALU control
s, | Read
register 1 N
Read| —_—
Register ° | Read data 1
numbers ~| register 2 Zero—»
Registers > Data ALU ALUL
o | Write result
L register Read
e —
,| Write data 2 o
RegWrite
UNT a. Register File b. ALU
UNIVERSITY OF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

Functional Units -1

a. Data Memory Unit

Similar to Instruction Memory Unit, only that it can written into as well
Two input ports for address and data, one output port (for data read out)
Two control signals: for Read and Write operations

b: Sign Extension Unit
Extends 16-bit input operand to 32 bits

MemW rite
| Address Read |y
data 16 _ 32
\ Sign
Data extend
»| Write
data memory
II\/IemRead
a. Data memory unit b. Sign-extension unit

UNIVERSITY GF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

Datapath for Instruction Fetch (Piece)

 Fetching Instructions and Incrementing the program counter by 4

Read

address

A I I W T

PC

INStruction fr———————————-

Instruction
memory

UNT

UNIVERSITY GF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

Datapath for R-type Instructions (Piece Il)

« Datapath for R-type Instructions

ALU operation
Read 3 * P
register 1
Read e Zero
Instruction register 2

~ Reaqgisters >ALU ALU
\r/(\elg'tseter result

|
Write ala
data

RegWrite

UNT

UNIVERSITY GF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

Datapath for Load/Store (Piece lll)

 Datapath for load or store
(1) Register Access; (2) Memory Address calculation; (3) Read/Write
(4) Write into Register file (if the instruction is a load)

Read 3\| ALU operation
register 1 Read emWrite
Read data 1 :
Instruction register 2 Zerol—>
. Registers ALU ALU
Write result » Address I?jead
register Read ata
: data 2
\o/l\gtlée / Data
Write memory
RegWrite > data
16 _
. >ign MemRead
v | extend

UNT

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

CSCE 6651: Advanced VLSI Systems

Datapath for Branch

(Plece V)

o Unit “Shift left 2" adds “00” at the low-order end of the sign-extended offset

« Control logic is used to decide whether the increme

nted PC or branch target

should replace the PC based on the “Zero” output of the ALU

PC + 4 from instruction datapath =

> Add Sum Branch target

ALU operation

To branch

>ALU Zero :
control logic

—)
Read
Instruction register 1 Read _
Read data 1
register 2
Registers
Write
register Read R
Write data 2
data
RegWrite
16 _ 32
Ny | Sign
N lextend
UNIVERSITY @F NORTH TEXAS CSCE 6651: Advanced VLSI

Driscover the power of ideas

Systems

Datapath Construction Strategy

« Now, we have “pieces” of datapath that are capable of performing
distinct functions

« We want to “stitch” them together to yield a final datapath that can
execute all the instructions (Iw, sw, add, sub, and, or, slt, beq,))

« We will use multiplexors (or muxes for short) for stitching the
datapath

UNT

UNIVERSITY GF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

Datapath Construction (Merge Pieces Il & 1l1)

Read 3 4 ALU operation
register 1 Read
Read data 1 _
Instruction register 2 Zero
. Regqisters ALU Al U
- Write result
register Read
Write data 2
/ data
i | RegWrite
Plece I
+ Read 3 ALU operation
| register 1 dReald . MemWrite
. ata
PleCe I I I Instruction rReZ?sdterZ Zero|—»

. Registers ALU ALU Read
write result »| Address data
register Read ‘/

fi data 2 -

\ ' \é\;t;e _‘ mZ;tzry
RegWrite > \é\gti;e
16 o\ 32 ,
M| SiOn MemRead
N | extend

UNT

L'Nl"'.-"_l_'.l‘iSl 'Y ©OF NORTH TEXAS

Driscover the power of ideas

CSCE 6651: Advanced VLSI Systems

And you will get..

— o .. N _ - - Y I |

 Rule: Whenever we have more than one i p feeding a functional unit,
introduce a multiplexor (this gives rise to a control signal, more later..)
Registers
) Read J
register 1
Read
Read
— register 2 data 1
Write Read Read /L
N . Address e d
register data 2 data M
. u . m)
"’erte Data U
data :
Write memory f*u :
data -
\\ p| extend \

UNT

UNIVERSITY GF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

Diiscover the power of ideas

Datapath Construction ... contd (merge Piece |)

« Just tack the Instruction Fetch and PC increment logic at the front!

gAdd

4
| Read Registers
register 1
| PChée| Read
address Read dReald
. register 2 ata
Instruction i
register data 2 M data
: u
Instruction . Write X Data
_| Write Memory
I data

\
| extend

UNT

UNIVERSITY OF NORIEL TEXAS CSCE 6651: Advanced VLSI Systems

Diiscover the power of ideas

Datapath Construction (Finally, merge Piece V)

PCSrﬁL
p—) >
SAdd l > M1
X
A
4 / >Addresu - v
»
Registers :
Read ’ 3| ALU operation MemWrite
' ALUSIrc |
N[=Ye1® N Rée(;ad register 1 Read o
address Read data 1 MemtoReg
register 2
Instruction _
Write Read|_o. L Address Readl,
. register data 2 M data| |m
Instruction Wit)Lé U
memory —p| VVIIE Data X
data : ,| Write Memory i
ReanteI data
1\6 Sign 32
™ extend MemRead

UNT

UNIVERSITY OF NORIEL TEXAS CSCE 6651: Advanced VLSI Systems

Diiscover the power of ideas

Final Datapath

PCSr
> g
>Add l > !
X
AL
4 0
— >Add result
RegWrite N
I
Instruction [25—21] Read
Read “|register1 Read MemWrite
PC - ->
17T | address Instruction [20— 16] Read data 1 ALUSTC | MemtoReg
Instruction »| register 2 Zero
[31-0] 1w Read N ALU ALU read
M rite data 2 g result Address 1
. U register M data M
Instruction Instruction [15-11] | x | [\write u u
N - X
memory ® *| 0] | data Redisters | S |1 X
Write ~ Data 0
RegDst »ldata Memory
. 16 [g 32
Instruction [15—0] \ Ign
extend
Y\ MemRead

« Data flows through various
“paths” under the influence
of control signals

e There are seven control ALUOp
signals (of type Read, Write,
or Mux Select)

UNT

WNIVERSTIY OF NORIH TEXAS CSCE 6651: Advanced VLSI Systems

r);‘\.Ll_I\I_'T l1lt.' POwWerT Ol 1‘;1|_';H

Instruction [5—0]

Defining the Control..

» Selecting the operations to perform (ALU, read/write, etc.)
» Controlling the flow of data (multiplexor inputs)

* Information comes from the 32 bits of the instruction
 Example:

add $8, $17, $18 Instruction Format:

000000 |10001 10010 01000 00000 {100000

op rs rt rd shamt funct

» ALU's operation based on instruction type and function code

« We will design two control units:

(1) ALU Control to generate appropriate function select signals for the ALU
(2) Main Control to generate signals for functional units other than the ALU

UNT

UNIVERSITY GF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

ALU Control - Truth Table & Implementation

Describe it using a truth table (can turn into gates):

ALUODp Funct field Operation
ALUOpPI1|ALUOpPO|F5[F4|F3|F2[F1[|FO
0 0 X | X[X | X [X | X 010
X 1 X | X [X | X [X | X 110
1 X X1 X]10]1]0[O0[]O 010
1 X X |1 X]10]1]0 110 110
1 X X |1 X 10 1 1010 000
1 X X |1 X 10 110 1 001
1 X X1 X110 110 111
ALUOp
v ALU control block
'ALUOpO
ALUOp1
F3 1 Operation2
=P Operation
F2 ¢ Operationl ’
F (5-0) l :) >
™ F1
— \ Operation0
FO -

UNT

UNIVERSITY OF NORIEL TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

Designing the Main Control

» 0
M
> u
X
> ALU
>Add result L
>Add
4 —>
Instruction [31—-26]
» Control
Instruction [25-21] Read
| Read | register 1
PCT*"| address eg Read >
Instruction [20- 16] | Read data 1
i "| register 2
Instr[gcltlo(;] »{0 ~ Registers Reqg A AU ALY Read
_ M White data 2 " resuit -» Address cadl (1
Instruction u register M data M
_ u
memory Instruction [15-11] | X Write X y
> 1 " g Data X
ata —\1 memory 0
.| Wite
"| data
Instruction [15-0] {6 .| Sign %2
N lextend | M ALU
control
Instruction [5—-0]

UNT

UNIVERSITY OF NORIEL TEXAS CSCE 6651: Advanced VLSI Systems

Diiscover the power of ideas

Control Signals and their Effects

Signal Name|Effect When deasserted Effect when asserted
RegDst The register destination number for the Write | The register destination number for the Write
register comes from the rt field (bits 20-16) register comes from the rd field (bits 15-11)

RegWrite [NONE The register on the Write register input is
written with the value on the Write data input
ALUSrc The second ALU operand comes from the The second ALU operand is the sign-extended
second register file output (Read data 2) lower 16 hits of the instruction
PCSrc The PC is replaced by the output of the adder that| The PC is replaced by the output of the adder
computes the value of PC + 4. that computes the branch target
MemRead None Data Memory contents designated by the address
Input are put on the Read data output
MemWrite None Data memory contents designated by the address

Input are replaced by the value on the Write data input
MemtoReg The value fed to the register Write datainput ~ The value fed to the register Write data input comes
comes from the ALU from the data memory.

UNT

UNIVERSITY OF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

|)im_;_|1. et e L

Main Control: Truth Table & Implementation

Memto- | Reg | Mem | Mem
Instruction | RegDst | ALUSrc Req Write | Read [Write [Branch | ALUOp1 | ALUpO
R-format 1 0 0 1 0 0 0 1 0
Iw 0 1 1 1 1 0 0 0 0
SW X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1
Inputs
Op5 o ® —
Op4 * * ®
Op3 * ?
Op2 T. T. ® ®
Opl T P P T
OpoO
00 g 000 | o]O) (e]e]e) J)g
U L L [; Outputs
R-formatT lw sw beq RegD st
) ALUSTC
[
l ¢ MemtoReg
) RegWrite
I MemRead
[MemW rite
[Branch
l ALUOp1
UNT '
UNIVERSITY OF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

Our Simple Control Structure
« All of the logic Is combinational

« We walit for everything to settle down, and the
right thing to be done
— ALU might not produce “right answer” right away
— we use write signals along with clock to determine

when to write

 Cycle time determined by length of the longest
path

»{ Combinational logic

Clock cycle —

We are ignoring some details like setup and hold times

UNT

DNIVERSTIY OF WORIHL TEXAS CSCE 6651: Advanced VLSI Systems

We designed a Single Cycle Implementation

« Calculate cycle time assuming negligible delays except:
— memory (2ns), ALU and adders (2ns), register file access (1ns)

PCSr

> \ > 1

>Add l > i

B AL 5

0

4 w—p Add result
RegWrite >
|
Instruction [25—21] | Read
Read “|register1 Read MemWhite
PC - >
17" address Instruction [20—16] Read data 1 ALUSrC ‘ MemtoReg
Instruction _I 1 | redister Read
1_ .
[31-0] M Write data 2 1 Address Read 1
: _ U register M dat M
Instruction Instruction [15-11] [x | | \write v u
memory ¢ > 0| Pldata Redisters L ’(() X
Write Data 0
RegDst »ldata MEmMory
: 16 [g 32
Instruction [15—0] \ 1gn
f v\ extend MemRead
Instruction [5—0]
ALUOp

UNT

UNIVERSITY OF NORIEL TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

How does the single cycle datapath works?

« Let us understand this by highlighting the portions of the datapath
when an R-type instruction is executed

« For an R-type instruction we go through the following phases:
Phase 1: Instruction Fetch
Phase 2: Register File Read
Phase 3: ALU execution
Phase 4: Write the Result into the Register File
« NOTE: All the four phases are completed in only ONE clock cycle
and hence it is a “single cycle implementation”

UNT

UNIVERSITY GF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

R-type Instruction — Phase 1 (Instruction Fetch)

0
. M
> u
X
AL
>Add result L
4
Instruction [31—26]
» Control
Instruction [25-21] | Read
Read v ister 1
] address _ regster Read ,
Instruction [20-16] | Read data 1
- | register 2
INETLO& 0 ~ Registers Regq (0 >ALU AL Read
, M Wite data 2 g resut | Address Sadl (1
Instruction u register M ceta M
memory Instruction [15-11] | X White)li u
»| 1 b Data X
data »>{1 ry 0
»| Wite
data
Instruction [15-0] {6 | sign 2
* lextend ALU
control
Instruction [5-0]

UNT

UNIVERSITY OF NORIEL TEXAS CSCE 6651: Advanced VLSI Systems

Diiscover the power of ideas

R-type Instruction — Phase 2 (Register Read)

0
. M
> u
X
AL
>Add result L
4
Instruction [31—26]
Control
Instruction [25-21] Read
Read i
m address register 1 Read
Instruction [20- 16] Read data 1
. register 2
IrBtr[lé?-th(r)]] L’ 0 ~ Registers Regq A >ALU AL Read
, M Wite data 2 resut | Address Sadl (1
Instruction u register M ceta M
menory X u
1) —| Wite X Deta X
data > 1 ry 0
»| Wite
cata
16 _ 32
" | Son
¥ | extend ALU

control
Instruction [5-0]

UNT

UNIVERSITY OF NORIEL TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

R-type Instruction — Phase 3 (ALU execution)

0
. M
> u
X
Al
>Add result L
4
Instruction [31—26]
Control
Instruction [25-21] Read
- =6 Read register 1
address Read
Instruction [20-16] Read data 1
. | register 2
. M Wiite data 2 result »| Address —>(1
Instruction u register M data M
menory nstruction [15-11] | X | | \wite . u
/[eme Y, nmnDataw 0
,| Wite
data
nstruction [15-0]) L | s [
® lextend ALU

UNT

control
Instruction [5-0]
UNIVERSITY @F NORTH TEXAS

VERSIIY OF NORIEL 1 CSCE 6651: Advanced VLSI Systems
1sCover the PLWWEEO 1deas

R-type Instruction — Phase 4 (Write the Result)

0
. M
> u
X
ALl
>Add result L
4
Instruction [31—26]
Control
Instruction [25-21] Read
;Rc?dardess register 1 Read
Instruction [20—16] Read data 1
: register 2
Im?ﬁtlo& |]—> 0 ~ Registers Regq A >ALU AL Read
. M \ite data 2 resuit -»| Address —(1
Instruction u register M data M
memory u
i(Wite X Data)lﬂ
data > 1 0
o| Wite Y
data
16 _ 32
" | Son
¥ | extend ALU

control
Instruction [5-0]

UNT

UNIVERSITY OF NORIEL TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

How do we handle jump?

Instruction [25-0] \ @\

Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

N

Add

Read
address

Instruction
[31-0]

Instruction
memory

UNT

UNIVERSITY @F NORTH TEXAS

Diiscover the power of ideas

RN

ALU
BAdd result

/

Jump
Instruction [31—26]
» Control
Instruction [25—21] | Read
register 1 Read
Instruction [20—16] Read data 1
I “| register 2
0 ~ Registers Read
M White data 2
u register
Instruction [15—-11] | X Write
"1 "| data
) 16 .
Instruction [15-0] \ | Sign
N “lextend

Instruction [5-0]

Al

\FF

Y A
result

v

l—\xczo

o xcZ =

(- xc=z9°)

\

32

A

Address

Write
data

Read|
data

Data
memory

CSCE 6651: Advanced VLSI Systems

OXCZH

Where we are headed

e Single Cycle Problems:

— what If we had a more complicated instruction like
floating point?

— wasteful of area

 One Solution:
— use a “smaller” cycle time
— have different instructions take different numbers of
cycles

— a “multicycle” datapath:

UNT

DNIVERSTIY OF WORIHL TEXAS CSCE 6651: Advanced VLSI Systems

r);‘\LU\U Lhe power Ol 1;1

Single Cycle Implementation: Summary

UNT

DNy SIS I OF NORLLL LEAS CSCE 6651: Advanced VLSI Systems

e POWeET Ol 1;1

r)iﬁu_l\ et T

All instructions are executed in only clock cycle
We built a single cycle datapath from scratch

We designed appropriate controller to generate correct correct
signals

All instructions are not born equal; that some require more work,
some less => disadvantage of single cycle implementation is that the
slowest instruction determines the clock cycle width

In reality, no body implements single cycle approach

Suggestion: STARE, STARE, STARE at the single cycle datapath
to familiarize yourself

Given the single cycle datapath, you should be able to “highlight”

active portions of the datapath for any given instruction (just as we
did for an R-type instruction in the class)

Single Cycle Implementation - Recap

e Single Cycle Problems:

— what If we had a more complicated instruction like
floating point?

— wasteful of area
— Cycle width determined by the slowest instruction

e One Solution:
— use a “smaller” cycle time

— have different instructions take different numbers of
cycles

— a “multicycle” datapath:

UNT

UNIVERSITY OF NORTH TEXAS CSCE 6651: Advanced VLS| Systems

1

Multicycle Approach — High Level View

R Instrl_J;:ttion |
I r
| egiste »| Data
—| PC > Address
—) A
| | Register #
truct '
Memory b (r)l# dﬁg Registers)
Memory Register #
B data — B
—>| Data register Register # [

UNT

DNIVERSTIY OF WORIHL TEXAS CSCE 6651: Advanced VLSI Systems

r);‘\LU\U Lhe power Ol 1;1

Slngle Cycle, I\/Iultlple Cycle, vs. Plpellne
o | | | |

Slnggle Cycle Implementzgi}{)%lga 1 1 glycle

Load I Store : Waste

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cyclé 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 SCyCIeE 10

73 I O O Y Y O Y Yy O

Multgple Cycle Implementation: : E
: Load Store ! R-type
Ifetchl Regﬂ Exec I Mem I Wr I Ifetchl Regﬂ Exec I Mem I Ifetch

Pipeline Implementation:

Load Ifetchl Regu Exec I Mem I Wr

Store Ifetchl Regu Exec I Mem I Wr

UNT R-type Ifetchl Regu Exec I Mem I Wr

DNIVERSTIY OF WORIHL TEXAS CSCE 6651: Advanced VLSI Systems

Basic ldea

IF: Instruction fetch ID: Instruction decode/ EX: Execute/ MEM: Memory access | WB: Write back
register file read address calculation

|—\><C§o

e S

R Add
4 >Add result

Shift
left 2

Read
PC Address register 1 Read \
data 1 "
| Read
register 2 Zero -
Instruction ~ Registers Read ALU ALy
»| Wiite data 2 0 result »| Address Fég?g >(1
Instryction register M . M
merrory Wite)lé o u
menmo
Write
data
16 . 32
A\ Sign \\

\'@

UNT

UNIVERSITY OF NORIEL TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

Corrected Datapath

xcZ O

— IFID ID/EX EX'VEM MEMMWB

— 2 N
1 > >

mAm

4 result -
Shift
left 2

s _,| Read
PCr==—>| Address B register 1 Read K \
2 datal " i
7 ,| Read R
Instrdction = | register 2 Zero » >
merory) _ Registers Read| 00 AU AL o
| VMite data2 [’ result > —| Address o1
register M data M
u
Wit X / rmﬁrsry .
| data 1 ;
.| Wite
" "| data
A | Sign ‘
V| extend

UNT

UNIVERSITY OF NORIEL TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

PCSrc

Datapath with Control

PC

UNT

UNIVERSITY @F NORTH TEXAS

Driscover the power of ideas

—(0 X
M
’lﬂ e LEX/MEM
1 — —
L Contral M WB -
| L _»_I\/VV_/B
\ IF/ID EX M E
>Add > -
. Add .
* / 2 >Add result "
% Shift Branch
& left 2 o
ALUSrc ;
5 —| Read E .
Address 5 register 1 Read g g
= Read daal[> 2
' £ *| register 2 Zero N - s
Instruction = register 2 g
o | Write data 2 result > » Address a . 1
register M . I L
. u Data 4
| Write X / memory u
data 11 ;
> —»| Wite
data
Instruction
32 6 .
— AN o > MemRead
N lextend)
Instruction
[20-16] . N
M
Instruction u
[15-17] . ‘ 1x
- N RegDst - [|

CSCE 6651: Advanced VLSI Systems

Pipelining Summary

 Pipelining doesn’t help latency of single task, it helps throughput of
entire workload

 Multiple tasks operating simultaneously using different resources
 Potential speedup = Number pipe stages

 Pipeline rate limited by slowest pipeline stage

« Unbalanced lengths of pipe stages reduces speedup

« Timeto “fill” pipeline and time to “drain” it reduces speedup

« Three types of pipeline hazards: structural, data, and control/branch
« Stalling helps any kind of hazard

 Data hazard solutions: Stalling, Data forwarding, Hazard detection

« Control or Branch Hazard solutions: Stalling, Branch Prediction,
Delayed Branching

UNT

UNIVERSITY GF NORTH TEXAS CSCE 6651: Advanced VLSI Systems

Driscover the power of ideas

