Lecture 7: Transient Power
Reduction

CSCE 6730
Advanced VLS| Systems

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included In slides are
borrowed from various books, websites, authors
pages, and other sources for academic purpose
only. The instructor does not claim any originality.
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Outline of the Talk

« Different power parameters
e Cycle power profile function
e Heuristic to minimize CPF

e EXxperimental results
 Related research

e Conclusions

Source: S. P. Mohanty and N. Ranganathan, "A Framework for Energy and Transient
Power Reduction during Behavioral Synthesis", IEEE Transactions on Very Large
Scale Integration Systems (TVLSI), Vol. 12, No. 6, June 2004, pp. 562-572.
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Different Power and Energy Parameters

*Peak power

*Cycle difference power
*Peak power differential
*Average Power

*Total Energy
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Peak Power

The peak power iIs the maximum power
consumption of the IC at any instance during
Its execution.

For a DFG, let P, denote power consumption in
any control step c, then we define peak (cycle)
power as :

Poeak = maximum( P, ), over all control
steps

peak
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Average Power and Total Energy

Average power (P) = Average of (cycle
power consumption i.e. P_) over all control

steps
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DFG for all operations and control steps
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Cycle Difference Power and Peak
Power Differential

Let, DP, = absolute ( P — P.) denote the cycle
difference power. This characterizes the power

fluctuation for each cycle of DFG.

Peak power differential is defined as :
DP oo = maximum ( DP, )
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Transient Power ?

Both the peak power and peak power
differential drive the transient characteristic of
a CMOS circult.
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We Aim At

Simultaneous reduction of :
*Peak power

*Cycle difference power
*Peak power differential
*Average power

*Total energy
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Our Approach

Define a new parameter (CPF) that captures all
power parameters

Minimize the new parameter in using multiple
supply voltage and dynamic frequency
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Normalized Average Power (P,q/m)

Normalized average power (Pom)

= Average of cycle power consumption over all
control steps / maximum power consumption in
any control step
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Normalized Average Cycle Difference
Power (DP,,,m)

Normalized average cycle difference power (DP, )

= average cycle difference power over all control
steps / maximum cycle difference power for any
control step

= Average (DP,) / Maximum (DP )

= DP / DP s
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Normalized cycle power function (CPF)

Normalized cycle power profile function is defined as :

CPFnorm =PF* I:)norm + (1'P:) *DP

norm

Where, PF = power profile factor used to make CPF,,,,
either cycle power dominating (average and peak) or

difference power dominating (cycle difference and peak
differential)

P..rm = NOrmalized average power

DP_ .., = normalized average cycle difference power
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Normalized CPF .............

Is a function of five different parameters :
 Average power power (P)

* Peak power (Pyeq)

 Average cycle difference power (DP)
« Peak differential power (DP¢,)
 Power profile factor (PF)
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Each Power is Determined by :

* ;.= switching activity of resource I active
In control step c

* (.= load capacitance of resource I active
In control step ¢

* V.= operating voltage of resource I active
In control step c

« f.=1frequency of control step c
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CPF Minimization

Minimization of the normalized cycle power
profile function using multiple supply voltages
and dynamic clocking frequency can
minimize all the powers and energy
parameters.
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CPF-Scheduler

Input: Unscheduled data flow graph, resource constraint,
number of allowable voltage levels, number of
allowable frequencies, load capacitance of each
resource, delay of each functional unit at different
voltage levels, operating frequencies and voltages

Output: Scheduled data flow graph, base frequency,
cycle frequency index, operating voltage for each

operation
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CPF-Scheduling Algorithm Flow

Step 1: Get the ASAP and ALAP schedule.

Step 2: Modify the ASAP and ALAP schedules using the
number of resources without operating voltage constraint.

Step 3: Total No. of control steps = Maximum (ASAP steps,
ALAP steps).

Step 4: Find the vertices having zero and non-zero mobillity.

Step 5: Use the CPF-Scheduler-Heuristic to assign time
stamp, voltage level and cycle frequency such that
CPF, . IS minimum.

Step 6: Find cycle frequency index for each cycle.
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CPF-Scheduler Heuristic

(01) initialize CurrentSchedule as ASAPSchedule ;

(02) while( all mobile vertices are not time stamped ) do

(03) for the CurrentSchedule

(04) If (v; i1s a multiplication ) then find the lowest available voltage for multipliers;
(05) If (v; Is add/sub) then find the highest available operating voltage for ALUs;
(06) find CurrentCPF
(07) for each mobile vertex v;

(08) c, = CurrentSchedule[v;]; ¢, = ALAPSchedule[v;];

orm fOr CurrentSchedule; Maximum = - oo ;

(09) forc=c,toc, instepsof 1

(10) find a TempSchedule by adjusting CurrentSchedule in which v; is scheduled in c ;

(11) find next higher operating voltage for multiplication vertex (next lower for ALU
operation) for the TempSchedule ;

(12) find TempCPF, ., for TempSchedule ; DiffCPF = CurrentCPF, - TempCPF .,

(13) if ( DIffCPF > Maximum ) then Maximum = DIiffCPF ; CurrentVertex = v, ;

CurrentCycle = ¢ ; Current\Voltage = Operating voltage of v;
(14) adjust CurrentSchedule to accommodate v; in c operating at voltage assigned above ;
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CPF-Scheduler Heuristic :
Explanations

e The heuristic Is used to find proper time stamp, operating
voltage for mobile vertices such that the CPF, .. IS minimum
for whole DFG.

* Initially assumes the modified ASAP schedule (with relaxed
voltage resource constrained) as the current schedule.

norm

e The CurrentCPF, ., value for the current schedule is calculated.
) for each

e The heuristic finds CPF, ., values (TempCPF, )
allowable control step of each mobile vertices and for each
available operating voltages.

* The heuristic fixes the time step, operating voltage and hence
cycle frequency for which CPF, ., IS minimum.
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Experimental Results : Resource
Constraints Used

Multipliers ALUs Serial
3.3V 5.0V 3.3V 5.0V No

1 0 0 1 1

2 0 0 1 2

2 0 0 2 3

2 0 1 1 4

1 1 1 1 5
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Notations Used to Describe the

Results
AP, =(P,s-Ppp)/P,s = peak power reduction
* ADP = ((PpS'PmS) ) (PpD'PpD)) / (PpS'PmS) —
peak differential reduction
 AP= (P4s-Pp)/Ps = average power reduction
 AE = (Es-Ep)/Eg = reduction In total energy

Where,

subscript S : single voltage and single freq operation
subscript D : multiple voltage and dynamic freq
Subscript m : minimum power
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% Reductions for Different Benchmarks

RCs AP, ADP AP AE

ARF 1 63 68 71 47
(1) 3 70 72 69 47

BPF 1 73 79 66 46
(2) 3 73 87 71 46

DCT 1 63 68 50 41
(3) 3 61 72 67 a1

EWF 1 73 79 41 44
(4) 3 69 72 55 44

FIR 1 70 75 58 46
(5) 3 77 84 54 46

HAL 1 73 94 73 51
(6) 3 76 97 70 51
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Average Reductions for Benchmarks
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Power Profiles for Benchmarks
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(a = 0.5, PF = 0.5, RC1)
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Power Profiles .......
(a = 0.5, PF = 0.4, RC2)
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Power Profiles .......
(a = 0.3, PF = 0.8, RC3)
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Power Profiles .......
(a = 0.4, PF = 0.2, RC4)
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Power Profiles .......
(a = 0.4, PF = 0.7, RC5)
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CPF Vs PF plot
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Reductions Using Different Algorithms
(Only peak power reduction avg data given)

CPF Shiue[15] | Martin[7] | Raghunathan [13]
ARF 68 50 -
BPF /1 - -
DCT 64 50 71 28
EWF 12 0 -
FIR /1 63 45 23
HAL 73 28 -
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Related Research ...
(Peak power reduction at behavioral level)

®* Martin & Knight [7], 1996 — simultaneous
assignment and scheduling

®* Raghunathan and et al. [13], 2001 — also address
peak power differential

® Shiue [15], 2000 — ILP formulation to reduce peak
power under latency constraints

* And many other works
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Related Research ... : Martin and Knight [7]

*Peak power reduction is achieved through simultaneous
assignment and scheduling

® Use minimization at one level of abstraction to achieve
optimization at other level ( specifically, simultaneous
use of SPICE and behavioral synthesis tool )
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*Peak power reduction : 40-60%,

* Average power penalty : 0.3-2.7%
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Related Research ... : rRaghunathan [13]

*Simultaneous minimization of peak power and
peak power differential

® Use data-monitor operations

*Peak power reduction : 17-32%

*Peak power differential reduction : 25-58%

*Judicious use of transient power metric needed for
minimization of area and performance overhead
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Related Research ... : shiue[15]

*|LP based scheduling and modified force-directed
scheduling

*Peak power minimization under latency constraints
*Single supply voltage, multicycling and pipelining

*Peak power reduction : 0-75 %
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Conclusions

*This work Is a unified framework for simultaneous
power and energy reduction

*The CPF parameter defined and used in this work
facilitates such simultaneous reduction

® CPF-Scheduler algorithm developed that takes
resources constraints, minimizes CPF

*The average time penalty Is estimated to be 40%

*Future works needs to be done using better
optimization technique




