
IVAMS 3.0: HIERARCHICAL-MACHINE-LEARNING-
METAMODEL-INTEGRATED INTELLIGENT VERILOG-AMS FOR

ULTRA-FAST, ACCURATE MIXED-SIGNAL DESIGN
OPTIMIZATION

A PREPRINT

Saraju P. Mohanty
Department of Computer Science and Engineering

University of North Texas
saraju.mohanty@unt.edu

Elias Kougianos
Department of Electrical Engineering

University of North Texas
elias.kougianos@unt.edu

June 1, 2025

ABSTRACT

Analog/Mixed-Signal (AMS) circuits and systems continually present significant challenges to de-
signers with the increase of design complexity and aggressive technology scaling. This is due to the
large number of design factors and parameters that must be taken into account as well as the process
variations which are prominent in nano-CMOS circuits. Design optimization techniques that account
for process variations while presenting an accurate and fast design flow which can perform design
optimization in reasonable time are still lacking. Even with techniques such as metamodeling that
aid the design phase, there is still the need to improve them for accuracy and time cost. As a trade-off
of the accuracy and speed, this paper presents a process-variation aware design flow for ultra-fast
variability-aware optimization of nano-CMOS based physical design of analog circuits. It combines
a Kriging bootstrapped Artificial Neural Network (ANN) metamodel with a Particle Swarm Opti-
mization (PSO) based algorithm in the design optimization flow. The Kriging bootstrapped ANN
metamodel provides a trade-off between analog-quality accuracy and scalability and can be effec-
tively used for large and complex AMS circuits while capturing the correlation in process variations.
Kriging captures correlated process variations of the circuits and accurately trains the ANN to gen-
erate the metamodels. The proposed technique uses Kriging to bootstrap target samples used for
the ANN training. This introduces Kriging characteristics, which account for correlation effects be-
tween design parameters, to the ANN. The effectiveness of the design flow is demonstrated using
a 180nm CMOS based PLL as a case study with as many as 21 design parameters. It is observed
that the bootstrapped Kriging metamodeling is 24× faster than simple ANN metamodeling. The
layout optimization for such a complex circuit can be performed effectively in a short time using
this approach. The optimization flow could achieve significant reductions in the mean and standard
deviation of the PLL characteristics. Thus, the proposed research is a major contribution to design
for cost.

Keywords Metamodeling, Machine Learning, Geostatistics, Kriging, Bootstrap Techniques, Artificial Neural
Networks (ANN), Phase-Locked Lopp (PLL), Nano-CMOS, Process Variation, Mixed-Signal Circuit, Particle Swarm
Optimization

1 Introduction

The development and improvement of metamodeling, (or surrogate) techniques have been gradually increasing in
recent years. Significant research has been published on various metamodeling techniques for nano-CMOS appli-
cations [1, 2]. The goal has been to develop accurate metamodels with lower computational time costs. Extensive
research work exploring polynomial, artificial neural network (ANN) and Kriging techniques have been presented

https://orcid.org/0000-0003-2959-6541
https://orcid.org/0000-0002-1616-7628

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

in [3, 4]. ANNs are appealing because of their high accuracy and relative time efficiency. However, with the ag-
gressive scaling of integrated circuit design, the number of design and process parameters that must be taken into
consideration for design space exploration also increases.

The design of Analog/Mixed signal (AMS) systems continues to present significant challenges. Especially in design
optimization, considerable time must be spent on exploring the design space to achieve optimal designs that are robust
and tolerant to the effects of process variation. This required design time is however infeasible in the face of current
time-to-market constraints. For example the simulation of a PLL with full parasitics can take several days or weeks of
SPICE runs for a complete space exploration. Metamodeling design techniques are used to aid the design process by
reducing the design time while maintaining accuracy. There still is a need to improve the metamodels currently used
to increase time efficiency and accuracy.

In order to obtain an optimal design, a designer can optimize the actual circuit model (a SPICE netlist). This optimiza-
tion on the actual circuit (Fig. 1(a)) is very slow and may be even impossible for complex and nanoscale circuits with
large numbers of transistors and interconnects. For fast, yet accurate design optimization of analog circuits this paper
proposes the approach demonstrated in Fig. 1(b). In this approach, metamodels of the circuit model are first gener-
ated. The circuit optimization is then performed on the metamodels instead of the actual circuit. This makes the design
exploration fast and accurate. It may be noted that metamodeling is not macromodeling. Macromodels are reduced
complexity models but they rely on the same type of modeling and simulator as the original models (e.g., SPICE).
In the metamodeling approach, the underlying system is completely decoupled from the simulator and the resulting
metamodel (i.e., mathematical model of the circuit) is more general, flexible and easier to simulate and optimize than
macromodels. Macromodels are typically simplified versions of the circuit which are used in the same simulation tool
and are hard to create. A metamodel has the following attributes:

1. It is a mathematical representation of the circuit output.

2. It is a prediction equation.

3. Metamodels can be used in a variety of tools, such as MATLAB®, and are language independent.

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. XX, NO. Y, MONTH 2011 2

Sampling (LHS), Middle Latin Hypercube Sampling
(MLHS), and Design of Experiments (DOE), and are
applied to nano-CMOS circuits.

3) The use of these sampling techniques in metamodeling
is demonstrated for a 45 nm CMOS ring oscillator and
a 180 nm CMOS LC-VCO. The ring oscillator is char-
acterized for frequency, power and jitter, while the LC-
VCO is characterized for frequency, power and phase
noise. Full RCLK (resistance, capacitance, self and
mutual inductance) parasitic extractions are performed
and compared to the schematics for both oscillators. The
metamodels are generated on the parasitic netlist.

4) Metamodels of different order are generated for sam-
pling methods investigation and are compared for speed
and accuracy.

III. R ELATED PRIOR RESEARCH

Fast design exploration approaches can be essentially bro-
ken down into tree distinct groups: macromodeling, meta-
modeling and accurate. Fig. 1 shows a taxonomy diagram of
previous published works in each one of these groups.

Fig. 1. Techniques for fast design exploration.

An automated creation technique for surrogate multivariate
mathematical models by using CAD-Model construction for
microwave components is proposed and tested in [6]. The
technique uses mathematical formulas for the model estima-
tion and optimization and does not use sampling techniques.
IP reuse for SoC interaction and microprocessor design is
covered in [7]. This approach uses metamodeling and surro-
gate techniques for digital VLSI but not for analog or mixed-
signal circuits. Adaptive or sequential metamodeling has been
implemented for grid computing in [8]. In [9] surrogate
modeling for expensive circuit-level simulation is proposed
for support vector machine (SVM)-based machine learning. A
surrogate modeling approach is also used for statistical wire-
length estimation in [10].

Jitter, power and frequency analysis is characterized for the
design of ring oscillators in [11], [12], [13]. Characterization
in these works is performed on the actual circuit, and does not
deal with metamodeling. Macromodeling, which is a different
approach to model circuits is discussed in [14], [15], [16],
[17]. Design space exploration approaches from high-level
descriptions of analog circuits are given in [18]. The use
of neural networks in the automatic synthesis of op-amps is

explored in [19]. RF-specific transistor sizing with explicit
parasitic estimates is given in [20]. A layout-aware modeling
approach for analog synthesis is given in [21] and [22].
Posynomial modeling for gate sizing is considered in [23],
[24].

IV. T HE PROPOSEDMETAMODEL BASED SIMULATION

AND OPTIMIZATION FLOW

In order to obtain an optimal design, a designer can optimize
the actual circuit model (a SPICE netlist). This optimization
on the actual circuit (Fig. 2(a)) is very slow and may be
even impossible for complex and nanoscale circuits with large
numbers of transistors and interconnects. For fast, yet accurate
design optimization of analog circuits this paper proposes
the approach demonstrated in Fig. 2(b). In this approach,
metamodels of the circuit model are first generated. The circuit
optimization is then performed on the metamodels instead of
the actual circuit. This makes the design exploration fast and
accurate. It may be noted thatmetamodeling is not macromod-
eling [18], [19]. Macromodels are reduced complexity models
but they rely on the same type of modeling and simulator
as the original models (e.g., SPICE). In themetamodeling
approach, the underlying system is completely decoupled from
the simulator and the resulting metamodel (i.e., mathematical
model of the circuit) is more general, flexible and easier to
simulate and optimize than macromodels. Macromodels are
typically simplified versions of the circuit which are used in
the same simulation tool and are hard to create. A metamodel
has the following attributes:

1) It is a mathematical representation of the circuit output.
2) It is a prediction equation.
3) Metamodels can be used in a variety of tools, such as

MATLAB, and are language independent.

Exhaustive

Optimization

Baseline

Design

Optimized

Design

(a) Traditional (slow) approach

Accurate
Metamodeling

Baseline
Design

(b) Proposed metamodeling-based (fast) approach

Fig. 2. Fast design space exploration of analog circuits through accurate
metamodeling.Comparing different statistical sampling techniques and met-
models is the scope of this paper.

The proposed design flow is shown in Fig. 3. In this flow,
first the logical design is performed and tuned to meet the
required specifications. At this point the initial physicaldesign
is implemented (this is the 1st manual layout step). The phys-
ical design is then subjected to Design Rule Check (DRC),
Layout vs. Schematic (LVS) and parasitic (RCLK) extraction.
If the specifications are not met, the parasitic netlist is then
parameterized with design variables that can be consideredin
the circuit. This netlist is then used by our automated process
to create a metamodel by applying sampling techniques as
described in this paper. Once the metamodel is created, it can

(a) Traditional (slow) approach

Accurate
Metamodeling

Baseline
Design

(b) Proposed metamodeling-based (fast) approach

Figure 1: Fast design space exploration of analog circuits through accurate metamodeling.

Kriging based techniques for generating metamodels [5–8] take into account the correlation between process and
circuit parameters and also incorporate a stochastic component that mitigates the deterministic nature of computer
simulations, hence producing a more accurate statistical representation of the modeled circuit. The disadvantage of
Kriging is that each point is predicted with a set of unique weights leading to time inefficient metamodel generations
on large design spaces. ANN generated metamodels on the other hand are more time efficient for simulations. In
this paper we propose a metamodeling based design approach that combines the benefits of Kriging with the accuracy
and time efficiency of ANN models to produce accurate metamodels which are also more effectively process aware.
Kriging is used to bootstrap the design samples used for training the ANN models, thus introducing a process aware
component into the training set. We show that the Kriging trained ANN models are more process aware accurate than
the bare ANN models.

We also present a process aware design flow that incorporates into different levels of the design process techniques to
account for the effects of process variation. It combines a Kriging bootstrapped ANN metamodeling technique with a
Particle Swarm Optimization (PSO) algorithm [9, 10] in the design optimization flow. The effectiveness of the design
flow is shown using a PLL as a case study. PSO techniques are part of genetic, evolutionary, and population based
algorithms. In using PSO to train ANN models, the PSO aims to optimize the set of design parameters that are fed into
the training of the ANN models. This modification hence improves the selection of parameters from the training set,
thus resulting in a faster and more efficient training of the ANN models. While the case-study has been presented with

2

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

PSO optimization in the current paper, the use of other similar optimization algorithms is possible. While PSO and
Neural Network (NN) metamodels have demonstrated increased accuracy [11], certain design factors such as device
parameter variations continue to pose a significant concern to circuit performance estimation. Analog circuits are
particularly sensitive and hence prone to these effects [12].

Finally, this work should be placed within the general framework of Digital Twins (DT) in the context of the semi-
conductor space [13]. DTs are models that encompass the entire life cycle of an electronic product, such as, but not
limited to, integrated circuits (IC). Our work is specific to IC design and as such could form a component of a DT but
would not supersede it.

This paper is organized as follows: Section 2 highlights the novel contribution of this work. Section 3 contains a brief
discussion on current related research. The proposed design optimization flow methodology is presented in section
4. The Kriging-bootstrapped metamodeling process is described in Section 6. Section 7 discusses the optimization
algorithm used. Experimental results are presented in section 10. Finally, in section 11 a summary conclusion and
future research ideas are presented.

2 Novel Contributions of the Current Paper

The overall contribution of this paper is an ultra-fast, accurate statistical design exploration flow that combines Kriging
bootstrapped neural network metamodels and particle swarm optimization to advance the state-of-art in design for cost.
This is due to significant reduction in the design cycle time which leads to decrease in non-recurrent design cost of the
chip. This paper presents the following novel contributions to the state-of-the art of analog/mixed-signal CAD:

1. Fast and accurate physical design and optimization flow incorporating process awareness in analysis, charac-
terization and optimization of performance measures.

2. Process-variations aware accurate and scalable metamodeling using Kriging bootstrapped Neural Networks.
3. Adaptation of the PSO algorithm for nano-CMOS based process-variation aware optimization.
4. A case study exploration using a 180 nm CMOS based PLL design.

It may be noted that a generic overview of Kriging metamodeling is presented in [14]. A Kriging metamodel approach
for process variation analysis is presented in [15]. The current paper presents a natural progression of our research to
ultra-fast physical design optimization of large analog blocks through the use of Kriging metamodeling.

3 Related Prior Research

Related research in the context of this work includes the design and formulation of modeling and metamodeling
techniques to improve the accuracy of such models and simultaneously reduce design exploration time. Polynomial
regression methods which include response surface methodology (RSM) [16–18] are one of the most common and re-
liable methods explored. However, low order polynomial regression techniques are not very accurate for global design
space exploration [19, 20]. They assume a random error between design variables while in the presence of process
variations, these errors may be correlated, especially in deep nanometer process technology. Non-polynomial based
metamodels, particularly built from Neural Network training have also been reported to surpass polynomial regression
techniques [21–24]. NN techniques use a learning process to continuously train weights used in approximating these
models. The weight training process is critical in the development of NN models and research in exploring techniques
for optimizing this process is currently active. A technique popularly used is applying optimization algorithms to
optimize the weight training of NN models [11]. Use of Kriging training for the NN architecture provides a trade-off
between the accuracy of Kriging and scalability of the NN method [15]. In the current paper, we propose to infuse the
characteristics of Kriging based techniques by bootstrapping the sample data points which are then used for the NN
training process. We believe that the bootstrapped data points enhance the modeling of process variation effects.

Monte Carlo (MC) simulations methods have been a reliable and effective method for yield analysis of designs.
Multiple simulations of the modeled circuit are run while varying the design and process parameters (transistor length,
transistor width, supply voltage, thickness oxide, etc.) to reflect the effect of process variations. In [12] hierarchical
statistical analysis and regression based techniques have been explored for variation analysis. The proposed Kriging
bootstrapped NN model is analyzed for statistical variation using the MC method.

4 Process Variation Aware Ultra-Fast Design Optimization Flow for Mixed-Signal Circuits

We propose a novel design flow that integrates a Kriging bootstrapped metamodeling process with the PSO algorithm
for the design optimization of nano-CMOS circuits as, depicted in Fig. 2. The key idea is to generate a Kriging surface

3

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

using a small number of analog simulations with latin hypercube sampling (LHS) of the variables. An NN architecture
is then trained to create a metamodel of the baseline circuits. Statistical analysis and optimization is performed over
the metamodel instead of its SPICE netlist. The use of metamodels for design optimization iterations significantly
speeds up the design-optimization process and analog-level accuracy is maintained by the use of accurate metamodels
which are generated from the parasitic-aware netlist.

Kriging Correlation

Function

Output

Input

Hidden
Layer

(Gaussian Data Points)

µ,σ(L,W, Vdd, tox)fr
eq

u
en

cy

(Peformance Shift

Distribution)

fr
eq

u
en

cy

Lock_time
µ,σ(Power)fr

eq
u

en
cy1

2 3 4

5
6

(Baseline Layout)

(Data Samples)

(Particle Swarm Optimization)

Statistical

Analysis

FoM

optimization

(Kriging Surface)

Monte Carlo Analysis

LHS Sampling

from Spice Netlist

(ANN Training)

Figure 2: Proposed high level design flow with Hierarchical Machine Learning Modeling [25].

The overall flow of the design process shown in Fig. 3 highlights the major phases of the design flow. The first phase
labeled “A” consists of the baseline logical and physical design. In this phase, the baseline design is drawn both as a
circuit schematic and the associated layout. The baseline is simulated for functional verification of the performance
objectives. The functional verification also serves to characterize the circuit design objectives which are defined in
Section 8. The next phase involves the creation of the process variation aware metamodel of the circuit design. The
first step in this phase is the identification and parameterization of the variables used to create the metamodel from
the extracted parasitic netlist. Incorporating the process parameters early on in the design phase ensures a process
variation aware metamodel. An LHS of the circuit from the parasitic netlist is then used by Kriging techniques to
bootstrap the sample data points infusing process variation characteristics. We detail this process in Section 6. The
Kriging bootstrapped points are used for the NN Training. The final phase is the process aware design optimization.
The optimization algorithm is used together with the created metamodel and design objectives as an input to optimize
the design. The final design parameters are then used to update the physical design for an optimal design of the circuit.
The process aware design optimization phase is discussed in detail in Section 7.

The use of bootstrapping Kriging with ANN improves both the accuracy and speed of the design flow process. Boot-
strapping Kriging techniques ensure process aware accuracy while ANN metamodeling techniques have been shown to
be very fast. The overall design flow metamodel incorporates process variation awareness in the design metamodeling
phase and the design optimization phase.

5 Proposed Kriging Bootstrapped Artificial Neural Network (ANN) Metamodeling

In this section, we introduce and discuss the proposed Kriging bootstrapped Artificial Neural Network metamodeling
technique. First we briefly introduce traditional Kriging and Artificial Neural Network metamodeling and then discuss
our proposed modifications. Our proposed kriging bootstrapped ANN metamodeling technique is shown in Fig. 4.

4

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

START

Logical/Physical

Design

DRC/LVS Netlist Extraction

and Parameterization

Parameterized Design

Variables, L, W, Vdd, Tox

Design

Specification
Functional

Verification

Yes

No

Specifications

met?

Perform LHS

Sampling

N Kriging point estimation
N Kriging bootstrapped

Data Points

 N Sample

Data Points

ANN Training

DONE

Kriging bootstrapped

ANN Metamodel

Perform Design

Optimization using PSO

Yes

No Specifications

met?

DONE

Performance

Distribution Optimized [µpwr, σpwr]
fr

eq
u
en

cy

Lock_time
Powerfr

eq
u
en

cy

L,W, Vdd,

tox

fr
eq

u
en

cy

A

B

C

Figure 3: Proposed design optimization flow [25].

Sample NSample 3Sample 2Data 1

ff
ANN

Metamodel

Kriging

Metamodel

ff
Kriging/ANN

Metamodel

ANN Training

ANN Training

Sample NSample 3Sample 2Sample 1

Data n-1Data 3Data 2Data 1
Data n-1Data 3Data 2Data 1

...

 Kriging Data

 y(x0) = ∑λjBj(x) + z(x)

 y(x0) = ∑λjBj(x) + z(x)

Kriging Function
Generator

Figure 4: Proposed Kriging Bootstrapped ANN Metamodel Generation Flow [15].

5

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

5.1 Kriging Based Metamodeling

Kriging prediction techniques were originally applied in geostatistics but have since been explored for other applica-
tions such as circuit design [6–8]. Kriging metamodeling combines polynomial regression with a stochastic approach
to mitigate the deterministic nature of computer simulations. The Kriging equations can be expressed in the form of
the following:

y(x0) =

L∑
j=1

λjBj(x) + z(x), (1)

where y(x0), is a stochastic function which predicts the response y at the design point (x0). {Bj(x), j = 1, · · · , L}
is a specific set of basis functions over the design domain DN and λj are fitting coefficients (also known as weights)
to be determined based on the Kriging method applied. z(x) is a stochastic process with zero mean and is based on a
spatial correlation function.

In calculating the weights λj for estimating Kriging functions, the autocorrelation between the input parameters is
accounted for and characterized by the covariance function of the following form [26]:

r(s, t) = Corr(z(s), z(t)). (2)

This property of Kriging prediction is exploited to model the effects of process variation on circuit metamodels.
The correlations between the process variation of the design and process parameters are taken into consideration in
calculating the weights for the metamodel functions. The drawback of Kriging is that the weight for each predicted
point is unique and involves matrix calculations which could become time intensive for a large design space.

5.2 Artificial Neural Network Metamodeling

ANN models consist of simple computational elements with rich interconnections between the elements. They are
modeled after biological neural networks which operate in a parallel and distributed fashion. The neural networks
create models over a set of inputs by training the weights of the interconnections. Multilayer and radial neural networks
are few of the commonly employed neural networks. The multilayer network which is used in this work uses a
combination of non-linear activation functions in a hidden layer and a linear activation function in the output layer.
The linear layer of the function output can be expressed as follows:

vi =

s∑
i=1

wjixi + wj0 , (3)

where wji is the weight of the connection between the jth element in the hidden layer and the ith component in the
input layer xi and wj0 is a constant bias [27]. The input layer is represented using a sigmoid function such as the
following:

bj (νi) = tanh (λvj) . (4)

The neural network utilizes an algorithm (a training function) that updates the weights and biases of the interconnec-
tions to minimize the error between the predicted point and the actual response. For this work, the ANN metamodel
was created using a MATLAB®toolbox which implements the Levenberg-Marquardt optimization algorithm [28].

5.3 Kriging Bootstrapped ANN Metamodeling

Metamodeling techniques based on Kriging prediction have been explored in [7,17]. In estimating performance points,
Kriging prediction techniques take into account the correlation effects between design parameters. This characteristic
is very appealing and can be used to model the correlation effects between design parameters due to process variation
for design processes deep in the nanometer range. The drawback to Kriging based techniques is that the weights used
for each point prediction are unique and have to be calculated for each performance point to be estimated using linear
algebra calculations (mostly matrix inversion). This can lead to potential time consuming metamodel generation for
high dimensional designs and very large design spaces. Artificial Neural Network (ANN) training, which has also
been presented for NanoCMOS metamodeling in [27], has been shown to be robust and accurate for high dimensional
models [21]. While ANN also produces highly accurate models, it does not effectively model process variation effects
with correlations present.

Hence, the proposed metamodeling technique aims to combine Kriging and ANN to generate accurate models which
account for the effects of correlated process variation in a fast and efficient manner. Fig. 4 highlights the already
presented methods for ANN and Kriging metamodel generation. For each method sample data points are generated

6

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

using a Latin Hypercube Sampling (LHS) design and then are either fed into an ANN trainer or a Kriging function
generator. In the proposed metamodel generation method, the sample data points are fed into a Kriging generator
that produces an intermediate set of sample data points (bootstrapped) which are then fed into the ANN trainer. This
method feeds the ANN trainer Kriging generated sample data points which are process and correlation aware. We
demonstrate that using the Kriging generated sample data points will result in a more robust metamodel which is
process variation aware and also less time intensive.

The methodology for the generation of the proposed metamodel-based design flow is shown in Fig. 5. The first
step involves creating a SPICE netlist of the design. The functional simulation of the circuit schematic is performed to
ensure the SPICE model meets design specifications. The physical layout design is also constructed using Design Rule
Check (DRC) and Layout vs. Schematic (LVS) verification to ensure a match to the circuit schematic. The physical
layout design is used to generate a silicon-aware accurate model (netlist). The performance of the physical design is
often degraded due to the parasitic effects. A fully extracted parasitic netlist, including resistance (R), capacitance (C)
and self (L) and mutual inductance (K) is used to ensure silicon-level accuracy.

START

Circuit Schematic

Physical Design

DRC/LVS Netlist Extraction

and Parameterization

No

Yes

Parameterized Design

Variables, L, W, Vdd, Tox

Design

Specification
Functional

Verification

Yes

No

Specifications

met?

Specifications

met?

Perform LHS

Sampling

N Kriging point estimation
N Kriging bootstrapped

Data Points

 N Sample

Data Points

ANN Training

Test for Accuracy

Yes

No Specifications

met?

DONE

Kriging Trained

ANN Metamodel

Perform Design

Optimization using DSA

YesNo Specifications

met?
DONE

Figure 5: Proposed Metamodel Design Flow [15, 25].

The generation of the metamodel is based on the extracted parasitic RCLK netlist. In order to generate data sample
points, the extracted parasitic netlist is parameterized for the design and process variables and then simulated to
eliminate the strenuous task of physically varying the design parameters on the physical layout design. The Latin
Hypercube Sampling technique is used in the proposed method to vary the design and process parameters. LHS
methods generate N random sample points from a given design space. They divide the design space into equal
intervals and then randomly select design points from an interval in such a way that each interval appears once in a
row-column matrix of the design space. Several techniques may be used to select the data points including uniformly,
midpoints or randomly. We use Random LHS which has been reported to generate more accurate models [3]. The

7

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

LHS parameter points are used as inputs to the parameterized netlist to generate corresponding performance outputs
(data point) for each sample point.

The next step in the metamodeling process is the Kriging bootstrapping of the data points. The generated sample
points are fed into a Kriging metamodel generator. We implement the Kriging metamodel presented in our previous
work [reference removed] for this process. We generate N Kriging bootstrapped data points by using N − 1 points
and the Kriging method to estimate the N th point. N iterations of this process will generate N Kriging bootstrapped
data points which are then used for the ANN training.

The ANN training process is used to create metamodels for each performance objective (Figure-of-Merit or FoM)
characterized for the design. In this research, 4 metamodels were created for the Phase Locked Loop (PLL) circuit
described in Section 8.

The final step of the metamodel design flow is the verification and test of accuracy of the generated metamodel. The
statistical metric used to verify the accuracy is the Root of Mean Square Error (RMSE). The expression of the RMSE
is given as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(
Yi − Ŷi

)2

, (5)

where N is the number of sampled points, Yi is the “true” circuit response (SPICE simulation results) and Ŷi is the
metamodel predicted response. The RMSE measures the difference between the metamodel and the SPICE model
where a smaller value indicates a more accurate model.

6 The Proposed Process-Variation Aware Kriging Bootstrapped Metamodeling

The metamodeling technique incorporates Kriging to infuse process variation characteristics to the sampled data.
Kriging by itself has been successfully used for metamodel generation with high accuracy [17]. The property of
Kriging which makes it very appealing and lends to its high accuracy is its ability to take into account the correlation
between the input parameters in performance point prediction. This can be effectively utilized to model the correlation
between the process parameters which also serves as input in the sample data point bootstrapping.

In Kriging, the weights are chosen to minimize the variance under the unbiasedness constraint that E(ŷ(x)−y(x)) = 0,
where ŷ(x) is the predicted response at point x and y(x) is the true response. Hence the weights are chosen so that the
following expression is satisfied:

n∑
j=1

λj = 1. (6)

The weights then are given by the following:
λ1

...
λn

µ

 = Γ−1

γ(e1, e0)

...
γ(en, e0)

1

 , (7)

where µ is a Lagrange multiplier used to ensure equation (6). Γ is the covariance matrix of the observed points and
for ordinary Kriging is given by:

Γ =

γ(e1, e1) · · · γ(e1, en) 1

...
. . .

... 1
γ(en, e1) · · · γ(en, en) 1

1 1 1 0

 , (8)

where
γ(e1, e2) = E

(
|z(e1)− z(e2)|2

)
. (9)

A disadvantage of Kriging is that it uses a set of matrix equations in calculating the unique weights for point pre-
dictions. For large circuits and high dimensional designs, the time cost can become expensive. The use of NN on
the other hand can generate metamodels which are ultra-fast and robust in accuracy. The NN models however do not
efficiently model the effects of process variation. To ensure accuracy and time efficiency as well, we present a Kriging
bootstrapped metamodeling technique that combines the accuracy of Kriging with the speed of NN models.

8

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

The metamodel generation process takes in sample data from the extracted parasitic netlist. The sample data points
are fed into the Kriging metamodel generator for resampling of the data (bootstrapping). We generate N Kriging
bootstrapped data points by using N −1 points and the Kriging method to estimate the Nth point. N iterations of this
process will generate N Kriging bootstrapped data points which are then used for the NN training. The NN training
process is used to create metamodels for each performance objective (Figure-of-Merit or FoM) for the design. In this
work, 4 metamodels were created for the PLL circuit described in section 10.

7 Particle Swarm Optimization (PSO) Algorithm for Process-Variation Aware
Optimization

This Section presents a detailed discussion on the proposed particle swarm optimization (PSO) algorithm which per-
formed statistical design exploration over the bootstrapped Kriging metamodels.

7.1 Particle Swarm Optimization (PSO) Algorithm

PSO is a type of evolutionary swarm intelligence algorithm for numerical optimization problems. Swarm intelligence
algorithms are based on the exploitation of social or communal behavior of naturally or artificially occurring agents
to collectively search for solutions. While heuristic in nature and based on social behaviors, swarm intelligence
algorithms have proved to be very effective in optimization [29–31], and circuit design [32, 33].

PSO uses candidates of solutions termed “particles” and modeled after movement of organisms in bird flocks or fish
schools, hence the term swarm. The PSO algorithm models the swarm like motion to implement a collective search
algorithm, where the particles correspond to search agents which explore different habitats based on the quality of
previous solutions. The quality of the results is expressed through the position and velocity of the particles. The
particle’s movement are updated based on its previous solution (local intelligence) and are also influenced by the
global best known solution. Reiterative updates of the particles swarm towards the best solution.

7.2 Process-Variation Aware Adaptation of Particle Swarm Optimization (PSO) Algorithm

The optimization problem implemented in this flow is to minimize the power consumption of the PLL circuit using
the locking time as a design constraint. The process aware optimization of the circuit involves minimizing the mean µ
and standard deviation σ of the optimal power consumption. As a specific example, the optimization function can be
expressed as follows:

Minimize[µpwr + 3σpwr], (10)

while subjected to locking time constraint. The PSO algorithm for the PLL is shown in Algorithm 1. Fig. 6 presents
an illustration of the algorithm.

START

STOP

Monte Carlo Analysis

Calculate mu(µ),
sigma(σ)

Generate initial

search agents

Is termination

criteria met?
Yes

No

Update position and velocity

µ,σ(L,W, Vdd, tox)fr
eq

u
en

cy

fr
eq

u
en

cy

Lock_time
µ,σ(Power)fr

eq
u

en
cy

Figure 6: Flow diagram for the PSO algorithm [25].

9

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

Algorithm 1: Particle Swarm Optimization of PLL over the Metamodels [25].
Input: Tuning parameter set X , Bootstrapped Kriging metamodels, Tuning parameter ranges.
Output: X = (x1, x2, ..., xn) parameter set with optimized statistical performance;

1 begin
2 SET: N , number of particles;
3 SET: Maxiteration, counter←− 0;
4 SET: local best lxi

←− current position;
5 SET: global best gxi

←− current position;
6 Initialize: weight for swarm effect ϱ;
7 Initialize: velocity for swarm effect w;
8 while counter < Maxiteration do
9 foreach N do

10 Monte Carlo analysis over metamodels with nominal xi;
11 vi = wvi + ϱpτp(lxi − xi) + ϱgτg(gxi − xi);
12 xi ← xi + vi;
13 if xi < lxi

then
14 lxi

← xi;
15 if lxi

< gxi
then

16 gxi
← lxi

;

Result: Parameter set X with minimized µ, σ;

8 Case Study Circuit: A 180nm CMOS PLL

The phase locked loop (PLL) is a closed feedback loop circuit system whose output signal is locked to a reference
input signal. The PLL is a critical component in many Analog/Mixed Signal (AMS) systems including processors,
telecommunication devices, Field-Programmable Gate Arrays (FPGAs), controllers and many other systems. The
system level diagram of a PLL shown in Fig. 7 shows the major components of the PLL which include the phase
detector, the charge pump/loop filter, the voltage controlled oscillator (VCO) and the frequency divider.

Phase
Detector

Charge Pump
and

Loop Filter

LC-Tank
Voltage Controlled

Oscillator

Frequency Divider
 2

Output
Clock
Signal

Input
Reference

Clock
Signal

Figure 7: High level system diagram for the PLL.

The reference clock feeds the input signal to the phase detector, which compares and detects the phase difference
between the input signal and the output from the VCO. The charge pump generates a supply charge in proportion to
the error detected in the phase difference. The generated signal is then filtered by the loop filter to produce a control
signal which the VCO uses to produce an output signal which is locked to the reference input signal. The divider is an
optional component of the PLL which is used to generate an output signal which is a multiple of the reference input
signal.

The schematic and physical layout design of the PLL using a 180 nm CMOS technology was produced on the
CADENCE®Virtuoso platform. Figure 8 shows the physical layout of the design.

The PLL was characterized for power consumption, frequency output, locking time and jitter. The baseline design
values are shown in Table 1. The FoMs selected are Power (PPLL), Frequency (FPLL), Locking time (LckPLL), and
Jitter (JPLL). The design objective is the minimization of power consumption using the locking time as optimization
cost and 21 parameters as design variables.

10

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

1
1
1
1
1
1

1
11
1
1

1
1

1
11
1

11
1
1
1
1
1

11
1111
11
11

11
11

11
111
1

111111 111111
1
1111
11
1111
11
11
11111111111 111111111
11
1
11
11
1111
11
111111 11111111 11111111
1111111111

1
1
1
1
1
1
1
1
111

1
111
1
1
1111111
11
1
1
11

11

1111
1111
1111

111

111
111
111

1111111

1
11
1
11
1
1

1

11

1
1
1
11
111

1
1
11
1
11
1
1

1

11

1
1
1
11
111

111111111111 111111111111 11111111 11111111111111111111111111111111 1111
11111111 1111111111 111111 111111111111 11111111111111111111 11111111 111111
11
11
11
1111
1111
1111
11111111 11111111 111111111111 11111111 111111111111 11111111111111111111 1111
1111111111111111111111111111111

1111 111111111111111
1
1
111111
111111
11
11
1111111111111111111111

1111111111

11111111111111111111
11
11

1
1
1

1
1
11111

11111111111

111
111
111
111
111
111
1111111111
1
1

11
11
11

111111111

1111 1111

1111

11
11
1
1
1
1
11
11
1
1
1
1

1
1

1
1

1
1

11

11

1
1
1
1
1
1
11
11
1
1

11
1

1
11
1

11

1
11
1

1

1
1
1
1

1

1

1111
11
11
11

11

11

1111 11111 1111
11
1
1
1
1
1
11 1111111 1111111111 11

111 1111111111 1111111
11 11 111
1111
11
11
111111

1
1
11
11

111111111111111111111
111111111111111111111111
11111111111111

11111111111111111111111111111111
1111111111111111111111111111

1111 111111
1
1111
11
1111
11
11
11111111111 111111111
1
1
1
11
11
11
1111 11111111 11111111
111111111

1111 11
1
1
1

111111111111
111111111111111111111111111111111111
1111111111111111111111111111

1
1
1

1
1
11111

111

1111111111111111111111
111
111
111111111111111111111
111
111
1111
1
1

11
11
11

111111111

1111 1111

1111

11
11
1
1
11
11
11
11
1
1
1
1

1
1

1
1

1
1

11

11

1
1
1
1
1
1
11
11
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
11
11
11
11

1

1
1
1
11
1
1
1

1
1

111
111
111
111

1
1
1
1

1
1
1
1

1
1
1
1
1

1
1
1
1

111
111
111
111

1
11
11

1
1
1

11
1
11
1111
11
1
1

1111
11

111
1
1
111
1
11
11

1111
1111

1
11
1

11111
1
1
11
11
11
1
1

11
11

11
11

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

11
11
11

1
1
111111

11111

11111

1
1

1
1
1
1

11111111111
11111111111
11111111111

1
1
1
1

1

11
1

1

11
11

11

11
11

111
1
1
1

11
1111111111111111

11
11
11
11

11
11
11

11111

11111
11111

11111111111
11111111111
11111111111

1
1

11
11
11

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11111111111111111111
11
11

1
1
1

1
1
111111111 111

111
111
111
111
111
1111111
1
1

11
11
11

111111111111

1111 1111

1111

11
11

1
1

11
11
1
1
1
1
11
11
1
1
1
1

1

1
1

1
1

11

11

1
1
1
1
1
1
11
11
1
1

11
11
1
1
1
1

1
1
1
1

1

1
1
1
1
1
1

11
11
11
11

1
1

1

1
111111
1111

111

1111
11111111

1
1
11

1
1

1

11111
11111

11
1

11

111
111
11

11111

1111111111
1111111111

1
1
1
1
1
1
1
1

1

1
1
1
11
11
11

11
11
11

11
11
11

11
11

11
11
11

11
11

111
111
111

111
111

111
111
111

111
111

11
11
11

11
11

11
11
11

11
11

111
111
111

111
111

111
111
111

111
111

11
11
11

11
11

11
11
11

11
11

1

111
111

111
111

111111111111111
111111111111111
111111111111111

11
11

11111
11111

11
11

11
11
1
1

11
11

1
1

11
11

1
1

1

11
11
1
1
1
1

1
1
1
1

1

11
11
11

11
11
11

11
11
11

11
11

11
11
11

11
11

111
111
111

111
111

111
111
111

111
111

11
11
11

11
11

11
11
11

11
11

111
111
111

111
111

111
111
111

111
111

11
11
11

11
11

11
11
11

11
111

1
1
1

1
1
1
1
11
11
11
11111

1
1
1
1
1
1
1
1
1

11111111
11111111111111
11111111111111
1111111
1111111

1
1
11111111111
11111111 111111111
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

11
11
11
11
11

11111111
1
1
1
1

1
1
1
1
1

1
1
1
1
1

11
11
11
11
11

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

111
1
1
1
1

11111111
1
1
1
1

1111111

11
11

11
11
11

11
11

11
11

11
11
11

11
11

111
111

111
111

111
111
111

111
111

11
11

11
11

11
11
11

11
11

111
111

111
111

111
111
111

111
111

11
11

11
11

11
11
11

11
11

11111111111111
11111111111111
11111111111111
11111111111111
11111111111111
11111111111111
11111111111111

1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111

111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
111111111111111
11111111111111111111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111

1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
11111111111111111111111111111111111

1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111
1111111111111111111

111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111
111111111111111111

11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111

11
11

1
1

1

11
11
1
1

11
11

Figure 8: Physical design of the 180 nm PLL [15].

Table 1: Characterization of PLL for Figures of Merit (FoM) [15].
PLL Power Frequency Locking Jitter
Circuit PPLL FPLL LckPLL JPLL

Layout 2.48 mW 2.66 GHz 5.51 µs 16.80 ns

9 Process Variation Aware Statistical Analysis

In this section we perform a process variation aware statistical analysis of the generated Kriging trained ANN meta-
model. Monte Carlo simulation experiments are a common method for the analysis of process variation on analog
circuits in order to estimate the yield and efficiency of the design. Monte Carlo analysis enables an efficient investiga-
tion of the design space by randomly generating a distribution test case of design variables. The set of test cases form
a given probability distribution with a mean of the nominal value of the variable. This is particularly efficient in high
dimensional designs where a test case simulation time increases exponentially. For example, in our PLL case study
circuit which has 21 design and process parameters, even a high and low test case will require 221 simulations.

The selection of design and process parameters significantly affects the accuracy of the analysis. A sensitivity test is
usually performed to select parameters which are most sensitive to performance measure. Reported research [12,34,35]
shows that the length (Ln, Lp), width (Wn, Wp) and oxide thickness (Tox) have a significant effect on the performance
shift. Ln, Lp, Wn, Wp for the various sub-circuit components of the PLL have been used as design parameters. The
nominal values are selected from the baseline design in Section 8 and a Gaussian distribution with 10 % standard
deviation is used to generate the sample set for the metamodel simulation. Fig. 9 summarizes the statistical analysis
process. N = 1000 Monte Carlo simulations are performed for each FoM.

Gaussian Data Point

Distribution

L,W, Vdd, tox

fr
eq

u
en

cy

Peformance Shift

Distribution

fr
eq

u
en

cy

From Metamodel

Design Flow

jitter

Kriging Trained ANN
frequency

Kriging Trained ANN
Lock_time

Kriging Trained ANN

Metamodel Power

jitter
frequencyLock_time

Powerfr
eq

u
en

cy

Figure 9: Statistical Variation Analysis

11

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

The performance results of the Monte Carlo analysis are compared with an analysis from the spice simulation of the
PLL design in the next section.

10 Experimental Results

In this section, simulation experiments are performed on the case study 180 nm PLL design discussed in section
8 to illustrate the effectiveness of our proposed approach. The Kriging bootstrapped neural network metamodel is
built using the MATLAB®Neural Network toolbox and the mGstat toolbox [28, 36]. The model used in the design
flow is discussed in Section 5.3. The extracted parasitic netlist is parameterized and used for the sample data point
generation. mGstat is used to implement the Kriging boostrapping of the sample data points and then the metamodel
is generated using the Neural Network toolbox. Four metamodels are generated, one for each Figure of Merit (FoM)
(Power(PPLL) , Frequency (FPLL), Locking time (LckPLL), and Jitter (JPLL)) characterizing the PLL. A Monte
Carlo method is used to evaluate the statistical distribution of the four FoMs. A Gaussian distribution of 1000 samples
is used for the simulation analysis. The results are presented in Fig. 12. Also presented in Figures 13, and 14 are
statistical distributions using the ANN and the Kriging based metamodels, respectively, for comparison to the proposed
metamodel.

10.1 Design Objective and Simulation Setup

All of the logical schematic and physical layout designs were performed using the CADENCE®virtuoso platform. The
full blown parasitic (RLCK) netlist is extracted and parameterized with respect to the corresponding design variables.
The parameterized netlist is used as the circuit description for design sampling. An ocean script is created with
the parameterized netlist that can automate the design sampling procedure using MATLAB®. The Spectre analog
simulator was used to perform the simulations. The algorithm used to generate the Kriging metamodels was written
using MATLAB®with the help of the toolboxes mGstat [36] and SUMO [37]. A diagram showing the different tool
interactions is shown in Fig. 10. Any design engineer can use this as a guideline for tool usage to reproduce our results
when needed to be used in their circuit design.

Electronic Design Automation (EDA) Tools
(Cadence on Virtuoso Platform)

OCEAN Script

MATLAB

MATLAB Toolbox
mGstat:Geostatistical MATLAB

SUMO: SUrrogate MOdeling

Figure 10: Experimental Steps and EDA/Non-EDA Tool Interactions.

The 180 nm PLL circuit design was simulated for a low power consumption optimization using the locking time
as a design constraint. The optimization objective was to increase the yield and tolerance to process variation by
minimizing the mean and variance of the power dissipation of the PLL. The statistical optimization process uses the
Particle Swarm Optimization (PSO) algorithm described in Algorithm 1 and illustrated in Fig. 6 to search the design
space on the generated Kriging trained ANN metamodel. Monte Carlo simulation experiments are a common method
for the analysis of process variations on analog circuits in order to estimate the yield and efficiency of the design.
Monte Carlo enables an efficient analysis of the design by randomly generating a distribution test case of design
variables. The set of test cases is derived from a given probability distribution with a mean of the nominal value of
the variable. The initial nominal values are selected from the baseline design and a Gaussian distribution with 10
% standard deviation is used to generate the sample set for the metamodel simulation. Subsequent iterations of the
algorithm give the nominal point for the Monte Carlo simulations.

12

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

10.2 Results Analysis

Table 2 shows the accuracy of the proposed Kriging Bootstrapped Trained ANN Metamodels. The Root Mean Square
Errors (RMSE) for each of the FoMs is shown. A lower value of RMSE indicates a higher accuracy. The low RMSE
values thus demonstrate that the created metamodels are sufficiently accurate and can be used for design exploration.

Table 2: Statistical Accuracy of Kriging Generated Points [15].
FoM RMSE
Power (PPLL) 2.51 x 10 −6

Frequency (FPLL) 5.68 x 10 −13

Locking Time(LckPLL) 5.01 x 10 −12

Jitter (LckPLL) 1.69 x 10 −19

The Monte Carlo results for the various metamodels are shown in Table 3. A Monte Carlo analysis on the SPICE
model is used as baseline to compare the results. The results are also compared with the bare Kriging and ANN
metamodels.

Table 3: Statistical Analysis for Accuracy of Neural Network Metamodel for PLL FoMs [15].
Circuit Kriging-ANN Kriging ANN
Value Value error (%) Value error (%) Value error (%)

PPLL
Mean 2.48 mW 2.40 mW 3.22 2.50 mW 0.81 2.50 mW 0.81
STD 0.42 mW 0.34 mW 19.05 0.51 mW 21.43 0.69 mW 64.28

FPLL
Mean 2.66 GHz 2.51 GHz 5.64 2.66 GHz 0.11 2.74 GHz 5.38
STD 10.95 MHz 41.93 MHz 282.92 3.72 MHz 66.03 51.9 MHz 373.97

LckPLL
Mean 5.51 µs 5.11µs 7.26 5.51 µs 0.07 5.20 µs 5.63
STD 0.72 µs 0.44 µs 38.88 .58 ns 10.25 1.01 µs 40.27

JPLL
Mean 16.80 ns 14.69ns 10.25 16.78ns 0.12 17.91 ns 6.61
STD 1.32 ps 4.50 ps 240.91 0.68ps 48.48 19.17 ps 1352.22

Table 3 shows the mean (µ) and standard deviation (σ) for the FoMs in each of the metamodels. From the results
the Kriging metamodels are shown to be most accurate on both the mean (µ) and (σ) values for all FoMs. The
Kriging bootstrapped neural network metamodel on the other hand is shown to be more accurate on the (σ) values
than the plain neural network metamodel but less accurate on the (µ) values. This difference is expected because while
bootstrapping infuses the autocorrelation property of Kriging based techniques, some error is also introduced as well.
Fig. 11 shows the errors for the (µ) and (σ) as a bar chart. The histograms of the Monte Carlo analysis for the Kriging
bootstrapped, Kriging and neural network metamodels are shown in Figures 12, 13, and 14.

(a) Mean (b) STD

Figure 11: Comparative Results with Kriging and Neural Network [15].

13

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

1.5 2 2.5 3 3.5 4
x 10

−3

0

50

100

150

200

Power(w)

F
re

qu
en

cy

MonteCarlo Analysis of Power consumption

(a) Power

2.4 2.45 2.5 2.55 2.6 2.65 2.7
x 10

9

0

5

10

15

20

Frequency(Hz)

Fr
eq

ue
nc

y

MonteCarlo Analysis of Frequency

(b) Frequency

3 3.5 4 4.5 5 5.5 6 6.5 7
x 10

−6

0

20

40

60

80

100

120

Time(s)

F
re

qu
en

cy

MonteCarlo Analysis of Locking Time

(c) Locking Time

1.4 1.5 1.6 1.7 1.8 1.9 2
x 10

−10

0

50

100

150

200

Time(s)

F
re

qu
en

cy

MonteCarlo Analysis of Jitter

(d) Jitter

Figure 12: Statistical Analysis of FoMs using Kriging Bootstrapped Trained Neural Network based metamodeling
[15].

2.3 2.4 2.5 2.6 2.7 2.8
x 10

−3

0

20

40

60

80

Power(w)

F
re

qu
en

cy

MonteCarlo Analysis of Power consumption

(a) Power

2.645 2.65 2.655 2.66 2.665 2.67
x 10

9

0

20

40

60

80

100

120

Frequency(Hz)

Fr
eq

ue
nc

y

MonteCarlo Analysis of Frequency

(b) Frequency

4.8 4.9 5 5.1 5.2 5.3 5.4 5.5
x 10

−6

0

20

40

60

80

Time(s)

F
re

qu
en

cy

MonteCarlo Analysis of Locking Time

(c) Locking Time

1.66 1.67 1.68 1.69 1.7 1.71 1.72
x 10

−10

0

20

40

60

80

Time(s)

F
re

qu
en

cy

MonteCarlo Analysis of Jitter

(d) Jitter

Figure 13: Statistical Analysis of FoMs using Kriging based metamodeling [15].

14

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
x 10

−3

0

50

100

150

200

250

Power(w)

F
re

qu
en

cy

MonteCarlo Analysis of Power consumption

(a) Power

2.65 2.7 2.75 2.8 2.85 2.9 2.95
x 10

9

0

20

40

60

80

Frequency(Hz)

Fr
eq

ue
nc

y

MonteCarlo Analysis of Frequency

(b) Frequency

0 1 2 3 4 5
x 10

−6

0

10

20

30

40

50

Time(s)

F
re

qu
en

cy

MonteCarlo Analysis of Locking Time

(c) Locking Time

0.5 1 1.5 2 2.5 3 3.5
x 10

−10

0

50

100

150

200

250

Time(s)

F
re

qu
en

cy

MonteCarlo Analysis of Jitter

(d) Jitter

Figure 14: Statistical Analysis of FoMs using Neural Network based metamodeling [15].

The value of the Kriging bootstrapped metamodeling technique is due to the reduced time cost for design exploration.
While Kriging models may be more accurate, the time cost for design exploration for a large design space still becomes
too expensive due to the repetitive solution of large-dimension systems of equations for each sample point. One
obvious goal for metamodel use is the improved time cost. Table 4 shows the time cost for the Monte Carlo Analysis
on each metamodel.

Table 4: Monte Carlo Time Analysis Comparison for Metamodels [15].
Model Kriging-ANN Kriging ANN
Time 19 s 468 s 19 s
Speedup 24.63× 1 24.63×

Table 4 shows a speedup of approximately 25 times in time cost for the Monte Carlo Simulation of 1000 runs for
the Kriging bootstrapped model over traditional Kriging. The significant improvement in time cost is large enough
to mitigate the minimal error incurred in the metamodel. The overall use of metamodels significantly reduces the
simulation time over SPICE models. It may be noted that the Monte Carlo simulation time on the SPICE models is
approximately 5 days, which highlights the huge time gain with the use of metamodels.

The experimental analysis was performed using the generated parasitic netlists of the 180nm PLL designs. The opti-
mization of the statistical analysis for the power consumption (PPLL) was the objective, while using the locking time
(LckPLL) as a design constraint. A total of 21 design parameters were used for the optimization simulation. Further
statistical analysis was carried out using MATLAB®. The results from the optimization simulation displayed in Table
5 show an improved statistical variation of the design simulation. The histograms of the Monte Carlo analysis for the
optimized Kriging bootstrapped metamodel are shown in Fig. 12.

From the results it is observed that the standard deviation for PPLL, LckPLL, and jitter (JPLL) are all minimized
with the frequency (FPLL) having an increased deviation. The mean power consumption was also reduced while the
other FoMs were increased. This is expected since the statistical optimization started off with the design parameters
for optimal performance.

15

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

Table 5: Statistical Optimization for Kriging Neural Network Metamodel for PLL FoMs [25].

SPICE Netlist Kriging-ANN Metamodel
Before Optimization After Optimization

Value Value Error (%) Value Error (%)

Power (PPLL) Mean (µ) 2.48 mW 2.40 mW 3.33 2.35 mW 2.08
St. Dev. (σ) 0.42 mW 0.34 mW 19.05 0.39 mW 7.14

Frequency (FPLL) Mean (µ) 2.66 GHz 2.51 GHz 5.64 2.78 GHz 4.51
St. Dev. (σ) 10.95 MHz 41.93 MHz 282.92 16.92 MHz 54.52

Locking Time (LckPLL) Mean (µ) 5.51 µs 5.11µs 7.26 5.21 µs 5.44
St. Dev. (σ) 0.72 µs 0.44 µs 38.88 0.42 µs 41.67

Jitter (JPLL) Mean (µ) 16.80 ns 14.69ns 10.25 17.72ns 5.47
St. Dev. (σ) 1.32 ps 4.50 ps 240.91 0.33ps 75

10.3 Comparative Research

Table 6 shows a brief comparison of metamodeling based design techniques. The comparisons are only a perspective
and illustrate the applicability and viability of our proposed method for statistical variability analysis. Kriging mod-
eling is presented in [6]. In [12] a polynomial based metamodeling design including a statistical analysis on process
variation is presented. A polynomial regression based technique is presented in [38]. The accuracy based on the RMSE
value of the models (except for [6] which uses MSE) is shown in column 4 of Table 6. The presented metamodels
have been generated for different circuits, and even when the circuits are similar there are fabricated using different
silicon technologies and performance measures making, direct comparisons impossible. Hence, the comparisons are
only from a broad perspective point.

Table 6: Comparative Analysis of Related Research [15].
Test

Research Metamodel Circuit Accuracy
Garitselov [38] Polynomial PLL 0.157

Yu [6] Kriging RO 0.5325 (MSE)
LC-VCO 0.5325 (MSE)

Okobiah [39] Kriging Simulated Annealing 3.2× 10−9

Kuo [12] Polynomial PLL 2.0× 10−4

iVAMS 3.0 [15] Kriging-ANN PLL 2.51× 10−6

11 Conclusion and Future Research

This paper presented a metamodeling design analysis, design exploration and optimization technique that combines
traditional Kriging and ANNs to create process aware metamodels. Kriging based techniques are used to bootstrap
sample data points which accommodate the correlation characteristics of Kriging techniques into the sample data.
Simulation results indeed show an improved process awareness on the metamodels generated for the test case of an
180 nm PLL circuit. The Monte Carlo Simulation time also improved approximately 25×. The preliminary results
are promising. Future research is planned to explore the use of Deep Learning techniques for the ANN structure and
training and the automated incorporation of this framework within mixed-signal hardware description languages, such
as Verilog-AMS, as presented in our previous work [41].

Acknowledgments

The current arXiv paper is based on the following conference presentations [15, 25]. The current paper presenting
iVAMS 3.0 advances the state-of-art of iVAMS 1.0 [40] and iVAMS 2.0 [41], which were presented by us in the past.
The authors would like to thank UNT graduate Dr. Oghenekarho Okobiah for his help on conference versions of this
work.

References

[1] O. Okobiah, S. Mohanty, and E. Kougianos, “Fast Design Optimization through Simple Kriging Metamodeling:
A Sense Amplifier Case Study,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22,

16

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

no. 4, pp. 932–937, Apr 2014.
[2] O. Garitselov, S. P. Mohanty, and E. Kougianos, “A Comparative Study of Metamodels for Fast and Accurate

Simulation of Nano-CMOS Circuits,” IEEE Transactions on Semiconductor Manufacturing, vol. 25, no. 1, pp.
26–36, Feb 2012.

[3] O. Garitselov, S. Mohanty, and E. Kougianos, “A Comparative Study of Metamodels for Fast and Accurate
Simulation of Nano-CMOS Circuits,” IEEE Transactions on Semiconductor Manufacturing, vol. 25, no. 1, pp.
26–36, 2012.

[4] O. Okobiah, S. P. Mohanty, E. Kougianos, and M. Poolakkaparambil, “Towards Robust Nano-CMOS Sense
Amplifier Design: A Dual-Threshold versus Dual-Oxide Perspective,” in Proceedings of the 21st ACM Great
Lakes Symposium on VLSI, 2011, pp. 145–150.

[5] W. Van Beers, “Kriging Metamodeling in Discrete-Event Simulation: An Overview,” in Proceedings of the
Winter Simulation Conference, 2005, pp. 202–208.

[6] G. Yu and P. Li, “Yield-Aware Analog Integrated Circuit Optimization Using Geostatistics Motivated Perfor-
mance Modeling,” in Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International Conference on,
Nov. 2007, pp. 464–469.

[7] O. Okobiah, S. P. Mohanty, E. Kougianos, and O. Garitselov, “Kriging-Assisted Ultra-Fast Simulated-Annealing
Optimization of a Clamped Bitline Sense Amplifier,” VLSI Design, International Conference on, vol. 0, pp.
310–315, 2012.

[8] H. You, M. Yang, D. Wang, and X. Jia, “Kriging Model Combined with Latin Hypercube Sampling for Surrogate
Modeling of Analog Integrated Circuit Performance,” in Proceedings of the International Symposium on Quality
of Electronic Design, 2009, pp. 554–558.

[9] N. Jin and Y. Rahmat-Samii, “Advances in Particle Swarm Optimization for Antenna Designs: Real-Number, Bi-
nary, Single-Objective and Multiobjective Implementations,” IEEE Transactions on Antennas and Propagation,
vol. 55, no. 3, pp. 556–567, 2007.

[10] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling Multiple Objectives With Particle Swarm Opti-
mization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 256–279, 2004.

[11] I. Vilović, N. Burum, and D. Milić, “Using Particle Swarm Optimization in Training Neural Network for Indoor
Field Strength Prediction,” in 51st International Symposium ELMAR, 2009, pp. 275–278.

[12] C.-C. Kuo, M.-J. Lee, C.-N. Liu, and C.-J. Huang, “Fast Statistical Analysis of Process Variation Effects Using
Accurate PLL Behavioral Models,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 6,
pp. 1160–1172, June 2008.

[13] (2023) What Are Digital Twins? A Primer on Virtual Models. [Online]. Available: https://www.synopsys.com/
blogs/chip-design/digital-twins-semiconductor-industry.html

[14] O. Okobiah, S. P. Mohanty, and E. Kougianos, “Exploring Kriging for Fast and Accurate Design Optimization
of Nanoscale Analog Circuits,” in Proceedings of the 13th IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2014, pp. 244–247.

[15] O. Okobiah, S. P. Mohanty, and E. Kougianos , “Kriging Bootstrapped Neural Network Training for Fast and
Accurate Process Variation Analysis,” in Proceedings of the 15th IEEE International Symposium on Quality
Electronic Design (ISQED), 2014, pp. 365–372.

[16] M. Zakerifar, W. Biles, and G. Evans, “Kriging Metamodeling in Multi-objective Simulation Optimization,” in
Proceedings of the Winter Simulation Conference (WSC), 2009, pp. 2115–2122.

[17] W. E. Biles, J. P. C. Kleijnen, W. C. M. van Beers, and I. van Nieuwenhuyse, “Kriging Metamodeling in Con-
strained Simulation Optimization: An Explorative Study,” in Proceedings of the 39th Winter Simulation Confer-
ence, 2007, pp. 355–362.

[18] G. Dellino, J. Kleijnen, and C. Meloni, “Robust Simulation-Optimization using Metamodels,” in Proceedings of
the Winter Simulation Conference (WSC), Dec. 2009, pp. 540–550.

[19] B. Ankenman, B. Nelson, and J. Staum, “Stochastic Kriging for Simulation Metamodeling,” in Proceedings of
the Winter Simulation Conference, 2008, pp. 362–370.

[20] V. Aggarwal, “Analog Circuit Optimization using Evolutionary Algorithms and Convex Optimization,” Master’s
thesis, Massachusetts Institute of Technology, May 2007.

[21] L. Wang, “A Hybrid Genetic Algorithm- Neural Network Strategy for Simulation Optimization,” Applied Math-
ematics and Computation, vol. 170, no. 2, pp. 1329–1343, 2005.

17

https://www.synopsys.com/blogs/chip-design/digital-twins-semiconductor-industry.html
https://www.synopsys.com/blogs/chip-design/digital-twins-semiconductor-industry.html

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

[22] A. Khosravi, S. Nahavandi, and D. Creighton, “Developing Optimal Neural Network Metamodels Based on
Prediction Intervals,” in Proceedings of the International Joint Conference on Neural Networks, 2009, pp. 1583–
1589.

[23] C. W. Zobel and K. B. Keeling, “Neural Network-based Simulation Metamodels for Predicting Probability Dis-
tributions,” Computers and Industrial Engineering, vol. 54, pp. 879–888, May 2008.

[24] I. Sabuncuoglu and S. Touhami, “Simulation Metamodelling With Neural Networks: An Experimental Investi-
gation.” International Journal of Production Research,, vol. 40, no. 11, pp. 2483–2505, 2002.

[25] S. P. Mohanty, E. Kougianos, and V. P. Yanambaka, “Ultra-Fast Variability-Aware Optimization of Mixed-
signal Designs Using Bootstrapped Kriging,” in Sixteenth International Symposium on Quality Electronic Design
ISQED, 2015, pp. 239–242.

[26] G. Bohling, “Kriging,” Kansas Geological Survey, Tech. Rep., 2005.

[27] O. Garitselov, S. Mohanty, E. Kougianos, and G. Zheng, “Particle Swarm Optimization over Non-Polynomial
Metamodels for Fast Process Variation Resilient Design of Nano-CMOS PLL,” in Proceedings of the great lakes
symposium on VLSI, ser. GLSVLSI ’12, 2012, pp. 255–258.

[28] MATLAB, MATLAB and Neural Network Toolbox Release 2012b. Natick, Massachusetts, United States: The
MathWorks Inc., 2012.

[29] R. Poli, “Analysis of the Publications on the Applications of Particle Swarm Optimisation,” Journal of Artificial
Evolution and Applications, vol. 2008, pp. 4:1–4:10, January 2008.

[30] P. Civicioglu, “Transforming Geocentric Cartesian Coordinates to Geodetic Coordinates by Using Differential
Search Algorithm,” Computers and Geosciences, vol. 46, no. 0, pp. 229–247, 2012.

[31] M. Dorigo, M. Birattari, and T. Stutzle, “Ant Colony Optimization – Artificial Ants as a Computational Intelli-
gence Technique,” IEEE Computational Intelligence Magazine, vol. 1, pp. 28–39, 2006.

[32] S. Bennour, A. Sallem, M. Kotti, E. Gaddour, M. Fakhfakh, and M. Loulou, “Application of the PSO technique
to the Optimization of CMOS Operational Transconductance Amplifiers,” in Proceedings of the 5th International
Conference on Design and Technology of Integrated Systems in Nanoscale Era, 2010, pp. 1–5.

[33] O. Garitselov, S. Mohanty, E. Kougianos, and G. Zheng, “Particle Swarm Optimization over Non-Polynomial
Metamodels for Fast Process Variation Resilient Design of Nano-CMOS PLL,” in Proceedings of the great lakes
symposium on VLSI, 2012, pp. 255–258.

[34] K. Kang, B. Paul, and K. Roy, “Statistical Timing Analysis using Levelized Covariance Propagation,” in Design,
Automation and Test in Europe, 2005. Proceedings, vol. 2, 2005, pp. 764–769.

[35] S. Nassif, “Modeling and analysis of manufacturing variations,” in Custom Integrated Circuits, 2001, IEEE
Conference on., 2001, pp. 223–228.

[36] mGstat: A Geostatistical Matlab Toolbox, last accessed on 08 Apr 2025. [Online]. Available:
mgstat.sourcefourge.net

[37] D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A Surrogate Modeling and Adaptive
Sampling Toolbox for Computer Based Design,” J. Mach. Learn. Res., vol. 11, pp. 2051–2055, August 2010.

[38] O. Garitselov, S. Mohanty, and E. Kougianos, “Accurate Polynomial Metamodeling-Based Ultra-Fast Bee Colony
Optimization of a Nano-CMOS Phase-Locked Loop,” ASP Journal of Low Power Electronics (JOLPE), vol. 8,
no. 3, pp. 317–328, June 2012.

[39] O. Okobiah, S. Mohanty, and E. Kougianos, “Ordinary Kriging Metamodel-Assisted Ant Colony Algorithm for
Fast Analog Design Optimization,” in Proceedings of the 13th International Symposium on Quality Electronic
Design (ISQED), March 2012, pp. 458–463.

[40] S. P. Mohanty and E. Kougianos, “iVAMS 1.0: Polynomial-Metamodel-Integrated Intelligent Verilog-AMS
for Fast, Accurate Mixed-Signal Design Optimization,” arXiv Computer Science, vol. abs/1905.12812, 2019.
[Online]. Available: http://arxiv.org/abs/1905.12812

[41] S. P. Mohanty and E. Kougianos , “iVAMS 2.0: Machine-Learning-Metamodel-Integrated Intelligent
Verilog-AMS for Fast and Accurate Mixed-Signal Design Optimization,” arXiv Electrical Engineering and
Systems Science, vol. abs/1907.01526, 2019. [Online]. Available: http://arxiv.org/abs/1907.01526

18

mgstat.sourcefourge.net
http://arxiv.org/abs/1905.12812
http://arxiv.org/abs/1907.01526

iVAMS 3.0: Hierarchical-Machine-Learning-Metamodel-Integrated Intelligent Verilog-AMS for Ultra-Fast, Accurate
Mixed-Signal Design Optimization A PREPRINT

Authors’ Biographies
Saraju P. Mohanty received the bachelor’s degree (Honors) in electrical engineering from the
Orissa University of Agriculture and Technology, Bhubaneswar, in 1995, the master’s degree in
Systems Science and Automation from the Indian Institute of Science, Bengaluru, in 1999, and the
Ph.D. degree in Computer Science and Engineering from the University of South Florida, Tampa,
in 2003. He is a Professor with the University of North Texas. His research is in “Smart Elec-
tronic Systems” which has been funded by National Science Foundations (NSF), Semiconductor
Research Corporation (SRC), U.S. Air Force, NIDILRR, IUSSTF, and Mission Innovation. He has
authored 550 research articles, 5 books, and 10 granted and pending patents. His Google Scholar
h-index is 62 and i10-index is 300 with 17,000 citations. He is regarded as a visionary researcher

on Smart Cities technology in which his research deals with security and energy aware, and AI/ML-integrated smart
components. He introduced the Secure Digital Camera (SDC) in 2004 with built-in security features designed using
Hardware Assisted Security (HAS) or Security by Design (SbD) principle. He is widely credited as the designer for
the first digital watermarking chip in 2004 and first the low-power digital watermarking chip in 2006. He is a recipient
of 21 best paper awards, Fulbright Specialist Award in 2021, IEEE Consumer Electronics Society Outstanding Service
Award in 2020, the IEEE-CS-TCVLSI Distinguished Leadership Award in 2018, and the PROSE Award for Best Text-
book in Physical Sciences and Mathematics category in 2016. He has delivered 31 keynotes and served on 15 panels
at various International Conferences. He has been serving on the editorial board of several peer-reviewed interna-
tional transactions/journals, including IEEE Transactions on Big Data (TBD), IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), IEEE Transactions on Consumer Electronics (TCE), and ACM
Journal on Emerging Technologies in Computing Systems (JETC). He has been the Editor-in-Chief (EiC) of the IEEE
Consumer Electronics Magazine (MCE) during 2016-2021. He served as the Chair of Technical Committee on Very
Large Scale Integration (TCVLSI), IEEE Computer Society (IEEE-CS) during 2014-2018 and on the Board of Gover-
nors of the IEEE Consumer Electronics Society during 2019-2021. He serves on the steering, organizing, and program
committees of several international conferences. He is the steering committee chair/vice-chair for the IEEE Interna-
tional Symposium on Smart Electronic Systems (IEEE-iSES), the IEEE-CS Symposium on VLSI (ISVLSI), and the
OITS International Conference on Information Technology (OCIT). He has supervised 3 post-doctoral researchers, 19
Ph.D. dissertations, 29 M.S. theses, and 41 undergraduate projects.

Elias Kougianos received a BSEE from the University of Patras, Greece in 1985 and an MSEE in
1987, an MS in Physics in 1988 and a Ph.D. in EE in 1997, all from Louisiana State University.
From 1988 through 1998 he was with Texas Instruments, Inc., in Houston and Dallas, TX. In
1998 he joined Avant! Corp. (now Synopsys) in Phoenix, AZ as a Senior Applications engineer
and in 2000 he joined Cadence Design Systems, Inc., in Dallas, TX as a Senior Architect in
Analog/Mixed-Signal Custom IC design. He has been at UNT since 2004. He is a Professor in
the Department of Electrical Engineering, at the University of North Texas (UNT), Denton, TX.
His research interests are in the area of Analog/Mixed-Signal/RF IC design and simulation and in
the development of VLSI architectures for multimedia applications. He is an author of over 200

peer-reviewed journal and conference publications.

19

	Introduction
	Novel Contributions of the Current Paper
	Related Prior Research
	Process Variation Aware Ultra-Fast Design Optimization Flow for Mixed-Signal Circuits
	Proposed Kriging Bootstrapped Artificial Neural Network (ANN) Metamodeling
	Kriging Based Metamodeling
	Artificial Neural Network Metamodeling
	Kriging Bootstrapped ANN Metamodeling

	The Proposed Process-Variation Aware Kriging Bootstrapped Metamodeling
	Particle Swarm Optimization (PSO) Algorithm for Process-Variation Aware Optimization
	Particle Swarm Optimization (PSO) Algorithm
	Process-Variation Aware Adaptation of Particle Swarm Optimization (PSO) Algorithm

	Case Study Circuit: A 180nm CMOS PLL
	Process Variation Aware Statistical Analysis
	Experimental Results
	Design Objective and Simulation Setup
	Results Analysis
	Comparative Research

	Conclusion and Future Research

