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Abstract

The rapid advancements in artificial intelligence (AI) have revolutionized smart
healthcare, driving innovations in wearable technologies, continuous monitor-
ing devices, and intelligent diagnostic systems. However, security, explainability,
robustness, and performance optimization challenges remain critical barriers to
widespread adoption in clinical environments. This research presents an innova-
tive algorithmic method using the proposed EasyDiagnosis algorithm to improve
feature selection in healthcare datasets and overcome problems. EasyDiagnosis
integrating Genetic Algorithms (GA), Explainable Artificial Intelligence (XAI),
and Permutation and Combination Techniques (PCT), the algorithm optimizes
Clinical Decision Support Systems (CDSS), thereby enhancing predictive accu-
racy and interpretability. The proposed method is validated across three diverse
healthcare datasets using six distinct machine learning algorithms, demonstrat-
ing its robustness and superiority over conventional feature selection techniques.
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The results underscore the transformative potential of EasyDiagnosis in smart
healthcare, enabling personalized and transparent patient care. Notably, the pro-
posed algorithm, when combined with a Multi-layer Perceptron (MLP), achieved
an accuracy of up to 98.79%, highlighting its capability to improve clinical
decision-making processes in real-world healthcare applications.

Keywords: Smart Healthcare, Healthcare Cyber-Physical System (H-CPS), Machine
Learning, Genetic Algorithm, Explainable Artificial Intelligence (XAI), Automatic
Health Diagnosis

1 Introduction

Today’s world has made medical illness analysis more and more critical [19], leading
to increased research and development efforts in this area. Advances in technology,
such as deep learning and machine learning [41], have enabled researchers to lever-
age the potential of healthcare data to create novel approaches that enhance human
health outcomes. The algorithms can anticipate outcomes reasonably. However, the
algorithms frequently need to explain the performance forecasts clearly, which reduces
the effectiveness and reliability [32]. ”Black Box” is the term or issue discussed about
the reliability problem in [16]. Furthermore, the said algorithms’ lack of interpretabil-
ity presents severe difficulties in clinical contexts where medical personnel need lucid
explanations to comprehend and rely on the advice these models provide [25]. The
urgent need for specific procedures in medical illness analysis is highlighted by this
opacity, which not only makes adoption difficult and also raises questions about
accountability and ethical issues [17] [38]. In response to the difficulty, Explainable
AI (XAI) has surfaced to clarify the decision-making procedure of machine learning
models, thereby offering discernment into the how and why of a given prediction [6].
In medicine, XAI is essential for improving the dependability and comprehensibility
of disease analysis models [9].

The process starts with selecting an extensive healthcare dataset to guaran-
tee data quality and integrity. Following, detailed data analysis and preprocessing
procedures are performed. The dataset is optimized for precise model training by
researchers through data cleaning, normalization, and transformation. Following data
preprocessing, various deep learning and machine learning methods are employed to
develop the model, including neural networks, decision trees, random forests, sup-
port vector machines, and ensemble techniques. Employing a range of algorithms
allows researchers to examine each method’s unique strengths and limitations, thereby
increasing the likelihood of identifying the optimal model for disease prediction. The
main concern shifts to model explainability once the models are trained. Researchers
implement several explainable AI strategies to clarify the models’ decision-making
process. Implemented methods include attention mechanisms in deep learning models,
SHAP values, feature importance analysis, and LIME [21]. Inspired by natural selec-
tion, genetic algorithms are widely used to iteratively identify optimal feature subsets
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Fig. 1 System Model for Integrating Explainable AI in Clinical Decision Support Systems

that improve machine learning model performance. Likewise, permutation and com-
bination techniques provide a thorough method for feature selection by evaluating all
possible feature subsets using a fitness function. Using such techniques, researchers can
obtain essential insights into the fundamental principles underlying the predictions,
improving comprehension and confidence in the model’s results. Integrating XAI, GA,
and PCT improves model robustness by identifying biases and outliers, enhancing
disease analysis and advancing reliable, transparent healthcare analytics.

The proposed EasyDiagnosis is a novel algorithm designed to assess feature signifi-
cance across various datasets. Through rigorous testing on diverse datasets using both
machine learning and deep learning algorithms, the EasyDiagnosis has consistently
outperformed existing feature selection methods. One of the critical strengths of Easy-
Diagnosis is its adaptability, making it compatible with any algorithm and dataset.
Our approach integrates three popular and highly effective feature selection strate-
gies: XAI, PCT, and GA. By combining the techniques, the work computes accuracy
scores for each method individually, consistently demonstrating superior performance
compared to traditional feature selection algorithms.

The initial phase in the proposed paradigm is the gathering and preparation of
medical data. After processing, a machine learning (ML) model is trained using the
data to produce predictions. By integrating XAI, GA, and PCT, valuable insights
and recommendations can be generated. The EasyDiagnosis algorithm is subsequently
applied to determine the most appropriate approach for clinical decision support. Fig.
1 illustrates a system model which integrates an explanatory model in clinical decision
support. The workflow begins with Medical Data Analysis and Data Preprocessing,
followed by building ML Models for prediction. The Proposed EasyDiagnosis algo-
rithm is then applied to improve model accuracy and interpretability. The proposed
approach provides insights and recommendations by identifying the Best Model for
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robust clinical decision-making. The salient contributions of the proposed work are as
follows:

• Development of the EasyDiagnosis: The study presents an innovative algorithm that
combines XAI, GA, and PCT to enhance feature selection, particularly in Clinical
Decision Support Systems (CDSS).

• Superiority in Performance: EasyDiagnosis shows clear advantages over conventional
feature selection techniques, achieving accuracy rates as high as 98.5% across a
range of datasets and algorithms. This highlights its strength in both reliability and
performance.

• With its inherent flexibility, the EasyDiagnosis is suitable for a broad range of
algorithms and datasets, significantly expanding its applications within healthcare
analytics.

• Advancing healthcare analytics, this work enhances clinical decision-making with
systems that are more dependable, transparent, and interpretable, supporting
improved patient care.

Overall, the contribution of this work lies in developing the EasyDiagnosis algo-
rithm, which combines cutting-edge feature selection techniques with XAI to enhance
CDSS in healthcare analytics by increasing accuracy, transparency, and robustness
significantly advances the field.

The structure of this paper is as follows: Section II outlines the unique contribu-
tions of our research, and Section III reviews related literature. Section IV explores
the challenges faced in implementing Explainable AI (XAI). Section V provides the
foundational for understanding our work along with the proposed framework.Section
VI details the experimental procedures and presents the results. Lastly, Section VII
offers concluding remarks on our study.

2 Contribution of the Work

2.1 Problems Addressed in the Current Work

A comprehensive investigation and comparative analysis of various algorithms are
necessary. Many existing studies rely on a limited number of algorithms and must
thoroughly validate their effectiveness. The approach raises concerns regarding the
suitability of the algorithms for the task at hand. The current work addresses the gaps
by introducing the EasyDiagnosis, which incorporates multiple effective feature selec-
tion techniques and enhances model interpretability. The proposed approach provides
a more robust and transparent methodology for medical data analysis.

2.2 Solution Proposed

The proposed study addresses the explainability issue by integrating GA, XAI,
and PCT. This approach aims to enhance understanding of the prediction pro-
cesses by leveraging the methodologies to provide insights into the inner workings of
deep learning and machine learning algorithms. By combining, the study improves
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model transparency and simplifies modifications, impacting the healthcare sector
significantly.

Additionally, the study tackles the problem of limited algorithm exploration
by introducing a novel algorithm which leverages feature-based techniques. The
new method utilizes various feature set algorithms to generate predictions for the
same objectives. It identifies the most suitable model for a given dataset through
hyperparameter tuning and comprehensive analysis, ensuring a thorough evalua-
tion of algorithmic performance and enhancing healthcare applications’ accuracy and
predictive efficacy.

2.3 Novelty of the Work

In order to maximize feature selection in clinical decision support systems, the work
presents EasyDiagnosis, a novel approach that combines genetic algorithms, permuta-
tion and combination techniques, and explainable artificial intelligence. EasyDiagnosis
shows remarkable resilience and efficacy, with an accuracy of up to 98.5% across
a variety of datasets and models. Because of its adaptable nature, it may be used
with a variety of datasets and algorithms, which increases its usefulness in healthcare
analytics.

Additionally, the study presents a novel approach to predictive modeling by
employing six distinct machine learning methods and neural networks rather than
limiting the investigation to a few algorithms. The diverse methodological approach
provides multiple perspectives on the same dataset, offering subtle insights that
can enhance the efficacy of treatment plans and diagnostics. The proposed strat-
egy advances healthcare analytics and allows improved predictive modeling through
algorithmic diversity, contributing to better patient care.

3 Related Prior Research

The study employed post-hoc and agnostic models, namely Local Interpretable
Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), to
determine the most significant genes for classifying lung cancer types and subtypes [36],
as well as the most crucial features for predicting lung cancer survival [42]. In recent
times, the researchers discussed, for instance, and suggested utilizing SHAP and LIME
in conjunction with iAFPs-EnC-GA for fungal infection [1]. The paper introduces a
deep ensemble method that uses uncertainty in relevance scores to improve the relia-
bility and trustworthiness of predictions for clinical time series data with explainable
AI [45].

Recent advancements in federated learning for medical image analysis integrate
explainable AI and blockchain techniques to address challenges of communication over-
head and data heterogeneity, enhancing efficiency, accuracy, and interpretability [30].
Mediastinal Cysts and Tumors have also been detected using the Ensemble of Extreme
Gradient Boosting (XGBoost) and SHAP [44]. Recently, bloodstream infections with
SHAP(XAI) have been found in [34] using XGBoost, RF, SVM, and MLP. An SVM-
based model for predicting lung cancer from an image dataset is proposed by Kumar
et al. in [24]. Preprocessing is applied to a UC online dataset, and an SVM model,
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trained and tested on this data, achieved 98.8% accuracy, outperforming KNN, Naive
Bayes, and J48 models.Machine learning techniques have been extensively used for
feature selection and categorization in many different fields. The authors used a fea-
ture selection method based on Random Forest (RF), XAI which they found effective
in high-dimensional datasets [22]. They achieved better classification accuracy in [13]
using 1D and 2D Deep CNN with LSTM and DeepTD. The researchers also propose
using histopathology images from the LC25000 dataset to develop a CAD system for
lung and colon cancer analysis. [14]. The study introduces a scalable ML model using
minimal cognitive tests for accurate and explainable dementia risk prediction in aging
populations. [11].The study employs DNN and XAI (SHAP) to predict postprandial
glucose levels in Type 1 diabetes, enhancing artificial pancreas systems and decision-
making tools. [7]. A technique for early-stage lung cancer with segmentation method
is diagnosis using three picture datasets and with CNN and U-Net, and obtained
an AUC of 0.6459 [23].The researchers’ presented a classification technique based on
choice bireducts, which produced a high F1-score [33]. Furthermore, the investiga-
tion considers LightGBM and RF classifiers with intersection strategy based feature
selection, which achieved good classification task accuracy [40].

Table 1 Review of the literature in reference to the proposed study

Work Dataset Name Algorithm Used Accuracy

Y. Li et al. (2020) [26] LUNA16 Lung Cancer CNN with ResNet-18 82.15%

Ansari et al. (2011) [8] UCI Heart Disease Bayes Net Based Approach 87%

Beyene et al. (2018) [12] UCI Heart Disease ANN and SVM 81.82%, 80.38%

Riaz et al. (2018) [39] UCI Heart Disease KNN and Decision Tree 78%, 80%

Guleria et al. (2022) [18] Cardiovascular Disease LR, SVM, KNN with XAI 81.2%, 82.5%, 75.9%

Patro et al. (2018) [35] Heart Disease RF with XAI (SHAP and LIME) 87%

Batista et al. (2020) [10] COVID-19 Pandemic LR, Random Forest, SVM 85%

Mahdy et al. (2020) [28] COVID-19 Pandemic Multi-level Thresholding with SVM 95%

Ahmad et al. (2023) [2] Lung Cancer Dataset DT, LR, RF, Näıve Bayes with XAI 95%, 97%, 97%, 92%

Malafaia et al. (2021) [29] LIDC-IDRI Lung Cancer CNN with XAI 89.60%

Cao et al. (2025) [13] HIV, RNA-Seq Data DCNN ,LSTM, DeepTD 77.64%

4 Challenges in Deploying XAI for Healthcare
Applications

The development of AI systems that can provide clear, understandable justifications
for their choices and actions is known as Explainable Artificial Intelligence (XAI).
Incorporating XAI in the healthcare setting presents many obstacles [4].

Healthcare data is inherently complex, multifaceted, and sourced from various
origins, making it challenging to integrate and interpret effectively for developing
transparent AI models. [3].

Because of the complex structures, advanced artificial intelligence models based
on deep learning frequently serve as ”black boxes.” One major challenge is explaining
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the decision-making procedures of these models in a way that medical professionals
can comprehend [15].

A key component of interpretability is to recognize and display the most important
factors affecting a choice. Understanding which patient characteristics the AI model
considers and how it affects the predictions is critical in the healthcare industry [27].

The healthcare industry, governed by strict regulations like HIPAA, faces chal-
lenges in applying XAI systems while meeting regulatory criteria and ensuring
model accuracy and interpretability [37]. Creating interfaces that efficiently convey
AI-generated insights to healthcare professionals involves balancing comprehensive
explanations with simplicity, avoiding data overload while ensuring effective human-AI
engagement [46].

Algorithm 1 Adaptive Feature Selection Using GA

1: Input: Dataset D with features {A,B,C,D,E} and target T
2: Output: Best subset of features Sbest

3: procedure FeatureSelection(D,T )
4: Initialize: Set N (population size), k (top solutions), Pc (crossover rate), Pm

(mutation rate), MaxIter (iterations)
5: Generate population P = {S1, S2, . . . , SN}, each Si ⊆ {A,B,C,D,E}
6: for each Si ∈ P do
7: Compute fitness F (Si)
8: end for
9: Selection: Sort P by F (Si), select top k solutions Pselected

10: for each (Si, Sj) ∈ Pselected do
11: Generate random r ∈ [0, 1]
12: if r < Pc then
13: Create Snew from crossover of Si and Sj

14: end if
15: end for
16: for each Snew do
17: Generate random r ∈ [0, 1]
18: if r < Pm then
19: Mutate Snew by adding/removing a feature
20: end if
21: end for
22: Replacement: Evaluate F (Snew); replace the least fit in P with Snew

23: Check Termination: If MaxIter or satisfactory fitness reached, stop;
otherwise, repeat

24: Output: Sbest with the highest F (S) from final P
25: end procedure
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Fig. 2 Workflow framework of the proposed approach

5 The Proposed Novel EasyDiagnosis Framework

This section outlines the foundational components of our study, including the archi-
tecture of XAI, various Machine Learning (ML) frameworks, and the EasyDiagnos
framework. Fig. 2 illustrates the workflow of the proposed EasyDiagnosis framework,
detailing the entire implementation process. It begins with data augmentation, pro-
gresses through ML implementation and feature importance evaluation using the
proposed EasyDiagnosis algorithm, and concludes with the selection of the optimal
model.

5.1 What is XAI?

Explainable AI (XAI) is the term used to describe a group of artificial intelligence
systems with the ability to explain their own activities, revealing the advantages,
disadvantages, and possible future behaviors. XAI’s main philosophy is to use a variety
of approaches. The methods are meant to provide future developers with a wide range
of design choices that compromise explainability and performance. Essentially, XAI
aims to improve artificial intelligence system transparency by providing insights into
algorithms’ decision-making processes, making it easier to understand their outputs,
and building user and stakeholder trust.

5.2 Genetic Algorithm and PCT for Feature Selection

A genetic algorithm for feature selection is a search heuristic using the principles
of natural selection and genetics to find the optimal feature subset to improve a
machine-learning model’s performance. Permutation and combination algorithms are
exhaustive search methods used for feature selection. It involves generating all possible
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subsets of features and evaluating the performance using a fitness function. Algorithm
1 represents the working process of the GA process, and Algorithm 2 provides the
approach for the PCT.

5.3 Exploration of Classification Techniques

5.3.1 Logistic Regression

Logistic regression (LR) analyzes datasets where independent variables predict an
outcome by fitting data to a logistic curve, estimating event probability using P (y =
1|x) = 1

1+e−z where z = wTx+ b.

5.3.2 Decision Tree

Decision trees (DT) are used for regression and classification by splitting data into
subsets based on key attributes, forming a tree-like structure.

5.3.3 Gaussian Naive Bayes

Gaussian Naive Bayes (GNB), a probabilistic classifier, assumes feature independence

and uses Bayes’ theorem: P (y|x) = P (x|y)P (y)
P (x) .

5.3.4 Random Forest

Random Forest (RF) builds an ensemble of decision trees using random subsets of
features and data, outputting the class mode.

5.3.5 Multi-layer Perceptron (MLP) Classifier

MLP is a feedforward neural network with multiple layers, learning non-linear

relations; hidden layer activations are hi = σ
(∑m

j=1 w
(1)
ij xj + b

(1)
i

)
.

5.3.6 Gradient Boosting

Gradient Boosting (GB) is an ensemble technique that sequentially adds weak
learners to correct previous model errors, defined as Fm(x) = Fm−1(x) +

argminh
∑N

i=1 L(yi, Fm−1(xi) + h(xi)).

5.4 Description of Interpretable Models

Contextual Importance and Utility (CIU), Gradient-Weighted Class Activation Map-
ping (Grad-CAM), SHAP, and LIME are fundamental approaches in XAI that enhance
understanding of DL and ML algorithms. SHAP is notably recognized for improving
model accuracy and clarifying model behavior. In this work, we employ SHAP as the
primary part of the EasyDiagnosis. By leveraging these advanced XAI techniques, we
aim to deliver precise and interpretable model outputs, foster stakeholder confidence,
enable informed decision-making, and bridge the gap between complex AI models and
human understanding.
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Algorithm 2 Adaptive Feature Selection Using Permutations and Combinations
Technique (PCT)

Input: Dataset D with features F = {A,B,C} and target variable T
Output: Best subset of features Sbest for predicting T

1: procedure FeatureSelection(D,F, T )
2: Permutation Generation
3: Initialize set P ← all permutations of F
4: Combination Generation
5: Initialize set C ← all combinations of F
6: Fitness Evaluation
7: Initialize list FitnessScores← [ ]
8: for S ∈ P ∪ C do
9: Compute fitness (Accuracy) F (S) using fitness function f

10: Append F (S) to FitnessScores
11: end for
12: Selection
13: Sbest ← argmaxS∈P∪C F (S)
14: Output: return Sbest

15: end procedure

5.4.1 SHapley Additive exPlanations (SHAP)

SHAP is a crucial tool in XAI for interpreting machine learning models. Renowned
for its adaptability, SHAP quantifies each feature’s impact on model predictions using
Shapley values, offering deep insights into the decision-making process. It extends the
capabilities of previous XAI methods like LIME and DeepLift, making it a preferred
choice for model interpretation.

In a simplified form, the SHAP value for a feature i in a prediction x can be
expressed as equation 7.

ϕi(x) =
∑

S⊆{1,2,...,p}\{i}

|S|!(p− |S| − 1)!

p!
[fx(S ∪ {i})− fx(S)] (1)

Here, ϕi(x) represents the SHAP value for feature i in prediction x and fx(S) repre-
sents the model’s output when considering only the features in subset S. p represents
the total number of features. The SHAP library offers a variety of explainers, each
designed to fit particular model types and data properties.

5.4.2 SHAP Value Explain By An Example

Shapley values, derived from cooperative game theory, assess each player’s contri-
bution by fairly distributing rewards based on individual input. Shapley values in
machine learning assess each feature’s average marginal impact by evaluating all
feature combinations, offering a thorough understanding of its influence on model
outcomes.

Consider a team (A, B, C, D, E) working together to generate profit (P) for the
company. To fairly distribute profits based on individual contributions, each member’s
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Fig. 4 Calculating the shapley value for a feature

Shapley Value is calculated by comparing the profit with and without the partici-
pation. The method quantifies each member’s contribution, similar to determining
Shapley values for features in a dataset. Fig. 3 shown the process clearly. Fig. 4 rep-
resents the calculation of different parameters for the Shapley values calculation. The
SHAP value of member ‘A‘ is given by mean value calculation equation, and the δ
values are calculated as shown in Fig.4. The ”marginal contribution” of member ’A’
represents the impact of ’A’ within different group configurations or coalitions. To
compute the Shapley Value of ’A,’ we evaluate the contribution of ’A’ across all pos-
sible alliances and take the average of this assistance to quantify ’A’s overall influence
within the group.
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Fig. 2 illustrates the complete workflow of our study, detailing the data journey
from import to model evaluation. Initially, the raw data is imported to ensure accurate
predictions, followed by necessary preprocessing and data cleaning. The processed
data is then divided into training (70%) and testing (30%) sets. Subsequently, different
models are constructed and trained using the training dataset. Hyperparameter tuning
is performed to optimize model performance by iterating through various parameter
values for optimal results.

After training the models, the test dataset is used to predict outcomes and assess
accuracy. We introduce an XAI method, specifically SHAP, integrated with a Genetic
Algorithm (GA) and a Permutation Combination Technique (PCT)-based feature
importance approach, to propose a novel feature evaluator algorithm, EasyDiagnosis.
EasyDiagnosis identifies key features and offers important explanations for the models.
Since EasyDiagnosis is trained on testing data, it provides insights into the decision-
making process of our best-performing model. Finally, the most suitable deployment
model is selected based on comprehensive evaluation criteria and interpretability.

5.5 Proposed EasyDiagnosis Algorithm

The EasyDiagnosis is a novel algorithm designed to determine feature significance
across various datasets. EasyDiagnosis consistently outperforms existing feature selec-
tion algorithms in comparative tests when applied to machine learning (ML) and
deep learning (DL) models. Due to its global adaptability, EasyDiagnosis integrates
seamlessly with any algorithm and dataset.

EasyDiagnosis combines three effective feature selection strategies: Explainable
AI (XAI), Permutation & Combination Techniques (PCT), and Genetic Algorithms
(GA). It computes accuracy scores independently for each methods and synthesizes all,
resulting in consistently higher accuracy. The robustness of EasyDiagnosis is assessed
using six different algorithms, including GB, MLP Classifier, GNB, DT, and LR, and
validated on three healthcare datasets: Covid-19, Heart Disease, and Lung Cancer.
EasyDiagnosis demonstrated superior performance and flexibility in all cases compared
to state-of-the-art methods. Through rigorous testing and validation, EasyDiagnosis
establishes itself as a highly adaptive and accurate feature selection system, surpass-
ing conventional techniques. Fig. 5 and Algorithm 3 clearly discuss the proposed
EasyDiagnosis algorithm through flowchart and algorithm consecutively.

6 Experimental Results

In this work, we propose and investigate the critical role of feature explainers using
Explainable AI (XAI), in conjunction with the well-known Genetic Algorithm (GA)
and Permutation Combination Technique (PCT), to enhance the performance and
interpretability of machine learning algorithms. The evaluation is conducted across
three distinct healthcare datasets—COVID-19, heart disease, and lung cancer, repre-
senting various medical conditions. This comprehensive assessment demonstrates the
efficacy of the proposed EasyDiagnosis across various healthcare domains.
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Algorithm 3 Proposed EasyDiagnosis Algorithm

Input: Dataset X with features and target variable y
Output: Sorted feature importance Cimp

1: procedure FeatureSelection(X, y)
2: (Xtrain, ytrain), (Xtest, ytest)← Split(X, y)
3: PCTacc, PCTimp ← PCT(Xtest, ytest)
4: SHAPacc, SHAPimp ← SHAP(Xtrain, Xtest)
5: GAacc, GAimp ← GA(Xtrain, ytrain, Xtest)
6: Tacc,W ← CalcWeights(PCTacc, SHAPacc, GAacc)
7: Cimp ← Combine(PCTimp, SHAPimp, GAimp,W )
8: Display(Cimp)
9: end procedure

10: procedure Split(X, y)
11: return Split X, y into (Xtrain, ytrain), (Xtest, ytest)
12: end procedure
13: procedure PCT(Xtest, ytest)
14: Compute permutation importance on (Xtest, ytest)
15: Select features where importance > median
16: Train classifier; calculate PCTacc on Xtest

17: return PCTacc, PCTimp

18: end procedure
19: procedure SHAP(Xtrain, Xtest)
20: Compute SHAP values for Xtrain

21: Select features where SHAP value > median
22: Train classifier; calculate SHAPacc on Xtest

23: return SHAPacc, SHAPimp

24: end procedure
25: procedure GA(Xtrain, ytrain, Xtest)
26: Apply GA for feature selection on (Xtrain, ytrain)
27: Select features based on GA output
28: Train classifier; calculate GAacc on Xtest

29: return GAacc, GAimp

30: end procedure
31: procedure CalcWeights(PCTacc, SHAPacc, GAacc)
32: Tacc ← PCTacc + SHAPacc +GAacc

33: WPCT ← PCTacc
Tacc

,WSHAP ← SHAPacc
Tacc

,WGA ← GAacc
Tacc

34: return Tacc, (WPCT ,WSHAP ,WGA)
35: end procedure
36: procedure Combine(PCTimp, SHAPimp, GAimp,W )
37: Cimp ← (WPCT × PCTimp) + (WSHAP × SHAPimp) + (WGA ×GAimp)
38: return Cimp

39: end procedure
40: procedure Display(Cimp)
41: Sort and display features by Cimp in descending order
42: end procedure
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Fig. 5 Diagram of the EasyDiagnosis Algorithm for Enhanced Feature Selection

6.1 Simulation Setup

The data visualization and manipulation experiment is in a Python 3.12 environment
using packages like matplotlib, pandas, numpy, and seaborn.

The implementation utilizes the scikit-learn (SKLearn) toolkit for predictive
modeling, employing six distinct algorithms to enhance prediction accuracy. The
proposed study investigates various methods by implementing each algorithm and
importing custom libraries customized to meet specific requirements. We use the
Stable-Baselines3 library with Proximal Policy Optimization (PPO) to train an RL
agent for feature selection.

We utilize the SHAP libraries along with GA and PCT methods to enhance the
interpretability and insights of our models. The libraries help clarify the predictions
made by our models, shedding light on the underlying factors driving the results and
improving the transparency of our research.

6.2 Dataset Overview

The proposed work use three different types of datasets for this investigation. The
Lung Cancer online repository from the University of California, Irvine [20]. The entire
dataset consists of one class attribute, 32 instances, and 57 characteristics. There are
one label feature and fifteen input features in this dataset. Total 16 features and 309
data samples are available in the dataset.

The UCI Machine Learning Repository provided one of the datasets use in our
study, which is centered on heart disease [5]. The output features in the dataset indicate
several kinds of cardiac disorders. Total 12 features and 918 samples are available in
the dataset.
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One of the most extensive compilations of current COVID-19-related data is the
Google Health COVID-19 Open Data Repository [43]. Including information from over
20,000 sites globally, it offers a wide range of data formats to support researchers,
policymakers, public health experts, and others in understanding and managing the
virus. Total 11 features and 278848 samples are available in the dataset.

6.3 Detailed Discussion

This paper explores the role of feature importance in enhancing the performance
and interpretability of machine learning algorithms across three diverse healthcare
datasets—COVID-19, heart disease, and lung cancer. The datasets represent a broad
spectrum of medical conditions, allowing for a comprehensive evaluation of the
effectiveness of Explainable Artificial Intelligence (XAI) across different healthcare
domains.

We employed six distinct classification algorithms: Logistic Regression (LR), Deci-
sion Tree (DT), Gaussian Naive Bayes (GNB), Random Forest (RF), Multi-layer
Perceptron Classifier (MLP), Gradient Boosting (GB). By leveraging the diverse set
of algorithms, we aim to capture the variation in model performance across different
healthcare datasets and conditions. Each algorithm offers unique strengths and weak-
nesses. The comprehensive approach is essential for thoroughly evaluating the models’
performance and interpretability.

The proposed model ensemble consists of six algorithms, where the LR is with
random state=0 (default parameters otherwise), Decision Tree with entropy criterion
and random state=0, Gaussian Naive Bayes, Random Forest are using default config-
urations. Additionally, we include an MLP Classified with a hidden layer size of 100,
ReLU activation (f(x) = max(0, x)), Adam optimizer, and a learning rate of 0.001.
Finally, the ensemble incorporates Gradient Boosting with log loss function, a learning
rate of 0.1, and the friedman mse criterion.

The result matrices for COVID-19, heart disease, and lung cancer datasets are
presented in Table 2, where only data preprocessing are applied, without any feature
importance techniques. The tables provide a baseline performance metric, enabling us
to evaluate the impact of feature importance strategies in subsequent analyses. Com-
paring initial results with outcomes after applying feature selection methods aims to
demonstrate improvements in model accuracy, robustness, and interpretability. Per-
formance is measured using accuracy and F1 score, with accuracy reflecting overall
performance and F1 score balancing recall and precision as its harmonic mean.

The accuracy metrics after applying Permutation Feature Importance, Explainable
AI (XAI) techniques, and the Genetic Algorithm (GA) feature importance technique
are presented in Table 3 using lung cancer data. A reinforcement learning-based
method, a Deep Q-Learning algorithm that dynamically chooses the most relevant
features to improve feature selection, is also implemented for comparison with the pro-
posed EasyDiagnosis. The observation we found with an F1 score of 92. 12% and a
mean accuracy of 91. 71% shows that the EasyDiagnosis method significantly increases
the accuracy of the model. Although the methods improved the accuracy of specific
models, they did not enhance the performance across all algorithms. We introduced our
proposed EasyDiagnosis algorithm to address the limitation, consistently improving
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Table 2 Performance prediction metrics without features importance consideration

Sl No Algo
Lung Cancer Heart Disease Covid-19 Data

Accuracy F1 Score Accuracy F1 Score Accuracy F1
Score

1 LR 89.855 94.117 83.478 86.619 92.363 92.526
2 DT 91.304 94.915 80.869 83.823 93.395 94.452
3 GNB 91.304 94.827 83.478 86.713 90.452 91.352
4 RF 91.304 94.915 83.043 85.920 93.399 94.459
5 MLP 88.405 93.333 84.782 87.632 92.396 94.452
6 GB 89.855 94.117 88.043 86.021 93.399 94.457

Table 3 Performance prediction metrics with feature importance consideration for Lung Cancer

Sl No Algorithm
PCT XAI GA Deep Q-learning EasyDiagnosis

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

1 LR 89.96 94.31 89.86 94.21 89.86 94.31 90.65 91.23 94.16 95.46

2 DT 91.80 95.92 89.86 94.02 92.75 95.80 89.19 91.01 96.76 96.76

3 GNB 86.96 92.31 86.96 92.31 86.96 92.31 90.76 92.75 94.18 94.73

4 RF 89.86 94.12 92.75 95.87 92.75 95.80 91.19 92.24 98.79 99.42

5 MLP 89.86 94.12 91.30 95.08 88.41 93.55 88.40 93.75 96.19 96.76

6 GB 89.86 94.12 89.86 94.02 92.75 95.80 91.71 92.12 99.19 99.79

Table 4 Performance prediction metrics with EasyDiagnosis feature
importance consideration

Sl No Algo.
Heart Disease Covid-19 Data

Accuracy F1 Score Accuracy F1 Score

1 LR 92.76 92.21 96.34 96.23

2 DT 94.10 93.72 97.95 98.58

3 GNB 91.85 91.32 94.78 95.71

4 RF 96.95 96.50 98.65 99.15

5 MLP 96.12 95.80 98.51 99.14

6 GB 97.50 96.73 97.15 98.97

accuracy across all models, and delivering more reliable and precise outcomes. Using
the strengths of multiple feature importance techniques, the EasyDiagnosis algorithm
ensures robust performance and enhanced interpretability in diverse healthcare appli-
cations. Comparing the results obtained using the EasyDiagnosis technique, as shown
in the final column of Table 3, with the baseline metrics in Table 2, it is evident that
the EasyDiagnosis algorithm outperforms the other six models.

The EasyDiagnosis is validated using two additional datasets: Heart disease and
COVID-19. The accuracy metrics for the datasets are shown in Table 4. In both
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Fig. 6 EasyDiagnosis feature explanation for Lung Cancer Data

Fig. 7 Accuracy score comparison for Lung Cancer with EasyDiagnosis features

cases, EasyDiagnosis consistently outperformed other feature significance techniques.
The comprehensive evaluation demonstrates that EasyDiagnosis is a valuable tool to
enhance the performance of machine learning models in healthcare applications. It
maintains robustness across diverse datasets and methods and significantly improves
accuracy.

The feature selection process of the EasyDiagnosis algorithm provides a relevance
score for each feature, ranked in descending order, as shown in Table 6. The fea-
ture importance scores are expressed as probabilities ranging from 0 to 1. The table
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Table 5 Performance Comparison of EasyDiagnosis Model and Baseline with Statistical Analysis
(95% CI)

SI No Algo Accuracy F1 Score Precision Recall

1 LR 93.85% ± 0.5% 93.42% ± 0.4% 93.10% ± 0.4% 93.85% ± 0.5%

2 DT 95.30% ± 0.6% 94.89% ± 0.5% 96.15% ± 0.5% 94.64% ± 0.6%

3 GNB 94.65% ± 0.6% 94.21% ± 0.5% 92.85% ± 0.5% 96.43% ± 0.6%

4 RF 97.15% ± 0.4% 96.82% ± 0.4% 97.10% ± 0.4% 97.15% ± 0.5%

5 MLP 96.84% ± 0.5% 96.43% ± 0.4% 95.90% ± 0.4% 96.84% ± 0.5%

6 GB 97.54% ± 0.4% 97.22% ± 0.4% 97.10% ± 0.4% 97.54% ± 0.5%

Table 6 Features important of Lung Cancer Dataset

Sl. No Features Name Feature weight

1 ANXYELFIN 0.203482

2 COUGHING 0.135953

3 CHRONIC DISEASE 0.129164

4 FATIGUE 0.103765

5 ALCOHOL CONSUMING 0.099770

6 PEER PRESSURE 0.072191

7 YELLOW FINGERS 0.064810

8 ANXIETY 0.064340

9 CHEST PAIN 0.050378

10 ALLERGY 0.031955

11 SWALLOWING DIFFICULTY 0.027210

12 WHEEZING 0.016981

ranks features by importance based on the EasyDiagnosis algorithm. ANXYELFIN
is the most significant feature (weight: 0.203), followed by COUGHING (0.136) and
CHRONIC DISEASE (0.129). Features like FATIGUE (0.104) and ALCOHOL CON-
SUMING (0.100) are moderately important, while WHEEZING (0.017) is the least
influential. This probabilistic representation offers an intuitive and straightforward
understanding of each feature’s relative importance, facilitating informed decision-
making during model development. Figure 6 shows the feature importance overview
of lung cancer data. By highlighting the most critical features, the EasyDiagnosis
algorithm enhances the interpretability and performance of machine learning models
across various healthcare applications.
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Table 7 Performance comparison of proposed and previous research

Work Dataset Algorithm Accuracy

Ahmad et al. (2023) [2] Lung Cancer Dataset Random Forest 97%

Naseer et al. (2019) [31] Lung Cancer Dataset ANN 96.67%

Riaz et al. (2018) [39] UCI Heart Disease Dataset KNN, DT 78%, 80%

Wickstrøm et al. (2020) [45] ECG Data Ensemble Learning 93.8%

Batista et al. (2020) [10] Covid-19 Pandemic Dataset SVM 84.85%

Mahdy et al. (2020) [28] Covid-19 Pandemic Dataset SVM 95%

Nfissi et al. (2024) [33] TESS, EMO-DB DCNN, XAI 79.5%

Sharma et al. (2024) [40] WSC, CAP ECG data DWSN,TNN, XAI 98%

Proposed Work Lung Cancer Dataset Random Forest 98.79%
UCI Heart Disease Dataset GB 97.05%

Covid-19 Pandemic Dataset MLP 98.65%

6.4 Statistical Analysis of the Models Performance

This study applies confidence intervals (CIs) and hypothesis testing methods to vali-
date the statistical significance of model performance improvements. A 95% confidence
interval (CI) is used to verify the degree of uncertainty in model predictions is com-
puted for each evaluation metric, including accuracy, F1-score, precision, and recall.
The CIs provide an estimated range within which the actual performance metrics are
expected to fall, ensuring a more reliable assessment of model effectiveness. A paired
t-test is also performed to compare each model against the baseline model. This test
evaluates whether the observed improvements in accuracy and other metrics are statis-
tically significant, confirming that the enhancements are not due to random variations
in the dataset.

The proposed models performed consistently in several runs using the EasyDiag-
nosis technique. We obtained an accuracy of 97.54% ± 0.4% (95% CI: 97.14, 97.94)
using 5-fold cross-validation. On the other hand, the accuracy of the baseline model
(Decision Tree) with EasyDiagnosis is 95.30% ± 0.6% (95% CI: 94.70, 95.90). The
outcomes show that the proposed EasyDiagnosis model performs noticeably better
than the baseline model. A paired t-test comparing the multiple models demonstrates
the model’s superiority, which confirmed a statistically significant difference with t =
17.01, p < 0.0001. Furthermore, the statistical significance of the observed accuracy
gains is further supported by an ANOVA test with F = 351.73, p < 0.0001. Table V
represents the performance comparison of proposed EasyDiagnosis Model and Baseline
using 5-Fold cross-validation and statistical significance analysis

6.5 Comparative Analysis with Existing Research

The model proposed in the work achieves a prediction accuracy of 98.5% on the
Covid-19 Dataset using the MLP, outperforming the other models. Similarly, on the
UCI Heart Disease Dataset, our model achieves an accuracy of 90.52% using the GB
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algorithm, matching the performance of previous models. Using the RF approach,
the suggested model achieves an accuracy of 95.5% for the Lung Cancer Dataset,
showing competitive performance in comparison to earlier research. Fig. 7 represents
the effect of EasyDiagnosis features on others regarding accuracy. The comparison
between the prediction accuracy of our proposed model and other existing models is
shown in Table 7. The table presents a performance comparison between the proposed
work and previous research across different datasets and algorithms. The proposed
work demonstrates notable improvements in accuracy for each dataset and algorithm
combination.

7 Conclusion

The work underscores the vital role of feature importance in improving the perfor-
mance and interpretability of machine learning algorithms within the healthcare sector
by evaluating various feature selection techniques in three distinct datasets: lung can-
cer, heart disease, and COVID-19. We identified the strengths and limitations of each
method. The proposed EasyDiagnosis consistently surpasses traditional techniques,
offering superior accuracy and robustness across diverse algorithms and datasets. The
algorithm identifies key features with probabilistic importance and ensures their inter-
pretability and relevance. The comprehensive evaluation validates the EasyDiagnosis
as a transformative tool for advancing machine learning applications in healthcare,
leading to more accurate, reliable, and actionable insights.

The algorithm ensures thorough and objective feature selection by combining PCT,
SHAP, and GA. Its adaptive weighing method improves stability and robustness, which
dynamically allocates importance based on accuracy contribution. It enhances model
interpretability and generalization by capturing both linear and non-linear depen-
dencies, which makes it appropriate for complex datasets. The algorithm employs
various feature selection strategies, increasing its capacity to find the most relevant
characteristics for better prediction performance. While this adds computing com-
plexity, it guarantees a complete and robust feature examination. Furthermore, the
model performs well with massive datasets, making it ideal for detailed analysis.
The accuracy-based weighing mechanism is flexible and can be further adjusted to
improve consistency across multiple applications. As healthcare data grows in com-
plexity, the EasyDiagnosis presents a promising solution for refining predictive models
and enhancing clinical decision making.
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