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ABSTRACT16

Brain tumor diagnosis using MRI scans is critical for improving patient survival rates. However, automating

the analysis of these scans faces significant challenges, including data privacy concerns and the scarcity

of large, diverse datasets. A potential solution is Federated Learning (FL), which permits cooperative

model training among multiple organizations without requiring the sharing of raw data, but it faces various

challenges. To address these, in this work, we proposed FedARCH (Federated Adaptive Reputation-

aware aggregation with CKKS Homomorphic encryption), a novel FL framework designed for a cross-silo

scenario, where client weights are aggregated based on reputation scores derived from performance

evaluations. Our framework incorporates a weighted aggregation method using these reputation scores

to enhance the robustness of the global model. To address sudden changes in client performance, a

smoothing factor is introduced, while a decay factor ensures that recent updates have a greater influence.

These factors work together for dynamic performance management. Additionally, we address potential

privacy risks from model inversion attacks by implementing a simplified and computationally efficient

CKKS homomorphic encryption, which allows secure operations on encrypted data. With FedARCH,

encrypted model weights of each client are multiplied by a plaintext reputation score for weighted

aggregation. Since we are multiplying ciphertexts by plaintexts, instead of ciphertexts, the need for

relinearization is eliminated, efficiently reducing the computational overhead. FedARCH achieved an

accuracy of 99.39%, highlighting its potential in distinguishing between brain tumor classes. Several

experiments were conducted by adding noise to the clients’ data and varying the number of noisy clients.

An accuracy of 94% was maintained even with 50% of noisy clients at a high noise level, while the

standard FedAvg accuracy dropped to 33%. Our results and the security analysis demonstrate the

effectiveness of FedARCH in improving model accuracy, its robustness to noisy data, and its ability to

ensure data privacy, making it a viable approach for medical image analysis in federated settings. The

FedARCH GitHub repository link is https://github.com/gswetha697/FedARCH
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INTRODUCTION41

Brain tumors are a very critical condition, and immediate identification and treatment are required to42

improve patient survival rates. Diagnosis of brain tumors is often done using MRI and CT scans. MRI43

scans are usually preferred over CT scans because they do not cause radiation exposure. Tumors can be44
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of two types: benign and malignant. Malignant tumors are cancerous and require immediate treatment,45

while benign tumors are non-cancerous but necessitate frequent tests and patient monitoring.46

Analyzing MRI scans is crucial in this context, but it is often time-consuming and requires expertise.47

Automating brain MRI image analysis presents several challenges. The major challenge is the availability48

of datasets; medical institutions often do not share their patient data to protect privacy. To address this, a49

new paradigm called Federated Learning (FL) (McMahan et al. (2017)) has emerged as a solution, where50

only model weights are shared instead of raw data, thereby preserving patient data privacy. In an FL51

framework, there is a central server, often represented by a cloud environment, that holds a global Deep52

Learning (DL) model. Multiple clients, each representing a medical institution, have their local data and a53

copy of the global model, referred as local model. Each client trains the local model with their local data54

and only shares the model weight updates with the central server, preserving patient data privacy. The55

central server aggregates the weights received from each client using the Federated Averaging (FedAvg)56

algorithm and updates the global model, which is then sent back to all clients. This process is repeated for57

a certain number of rounds or until convergence.58

Although this approach seems to offer a solution, there are several issues associated with its real-time59

application. For example, these frameworks require a large amount of data, which is not always possible60

in the medical domain, as some medical conditions can be extremely rare and underrepresented. To61

address this problem, we utilize transfer learning (TL). By employing pre-trained models, we can leverage62

existing knowledge and adapt it to our specific problem with limited data. This approach helps mitigate63

the challenge of data scarcity by fine-tuning models on small, specialized datasets, thereby improving64

performance even when the amount of local data is limited (Khan et al. (2022b)).65

In FL, the global model is trained using the weights received from the clients. However, if a client66

sends malicious or erroneous data to the central server, which treats all clients equally, the global model67

will use these erroneous updates for aggregation. This can eventually corrupt the global model and affect68

all clients. Several works (Fan et al. (2023), Kang and Ahn (2023)) have been proposed to address this69

problem, but most are based on a cross-device scenario rather than a cross-silo scenario. A cross-device70

scenario involves IoT devices, where the number of devices is large but their computational ability is71

limited. In contrast, a cross-silo scenario involves organizations, where the number of entities is smaller72

but their computational ability is higher. For our use case, we consider a cross-silo scenario where multiple73

medical institutions collaborate for federated learning. In a cross-device scenario, existing solutions often74

reject the weights from underperforming clients and only consider the weights from the best-performing75

clients. This approach is feasible in cross-device scenario because the server can choose from a large pool76

of clients. However, in a cross-silo scenario, where the number of clients is already limited, completely77

rejecting a client’s update can increase bias towards certain clients, ignoring others.78

We propose FedARCH, a novel framework where reputations are assigned to each client based on79

their performance evaluation. Instead of using a simple FedAvg approach, where all the model weights are80

aggregated using a simple average, a reputation-based weighted aggregation is employed. This process is81

iterated after each round of training, as client performance and, therefore, reputations can change after any82

round. To prevent sudden changes in client performance from unduly affecting the assigned reputations,83

we have implemented a smoothing factor. This factor stabilizes the reputation adjustments, preventing84

abrupt increases or decreases from causing significant fluctuations. Additionally, as the training progresses85

across multiple rounds, it is important that more recent performance updates have a greater influence on86

the reputation, while older updates should gradually diminish in impact. To achieve this, we incorporate a87

decay factor that reduces the weight of older reputations, allowing the system to adapt to the recent client88

performances. We will discuss these details in the upcoming sections.89

Another potential issue in FL is the model inversion attack (Fredrikson et al. (2015)), where a90

malicious actor can reconstruct the original data from the shared weights, thus compromising privacy. To91

address this problem, researchers developed homomorphic encryption (HE), which allows aggregation to92

be performed on encrypted data without decrypting it. In FedARCH, we used CKKS HE (Cheon et al.93

(2017)), a somewhat homomorphic encryption scheme (SHE). We have specifically chosen CKKS over94

other HE schemes like RSA and Paillier, because:95

• CKKS is based on the hardness of Ring Learning With Errors (RLWE) problem, which is considered96

to be quantum-resistant offering security against potential quantum attacks while enabling efficient97

encrypted computations.98
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• CKKS allows a limited number of both addition and multiplication operations on encrypted data,99

which is necessary for our weighted aggregation, unlike other HE schemes that support only one of100

the two operations.101

Some of the other popular RLWE-based HE schemes include BGV and BFV (Brakerski (2012), Brakerski102

et al. (2014)). However, CKKS HE was selected because it operates on approximations, significantly103

enhancing computational efficiency. CKKS can handle real numbers, enabling it to support the complex104

arithmetic required for our model. This approximate arithmetic capability makes CKKS faster compared105

to other schemes that operate on exact arithmetic, providing a good balance between security and106

performance for our proposed FedARCH framework.107

CONTRIBUTIONS OF THE CURRENT PAPER108

Motivation109

Most existing FL research focuses on cross-device scenarios, which involve numerous simple IoT devices110

or mobile phones with limited computational capabilities and intermittent connectivity. These studies111

typically assume high dropout rates, ignore underperforming clients, and don’t provide feedback on client112

contributions. While these assumptions may suit cross-device FL, they are not applicable to cross-silo FL,113

where multiple organizations, such as medical institutions, collaborate with substantial, valuable data.114

In contrast to cross-device FL, the stakes are notably higher for cross-silo FL. Here, each client115

represents an organization, contributing critical and sensitive data, especially relevant in domains like116

healthcare. Ignoring any client, even an underperforming one, risks losing essential data. Organizations in117

this setting are generally more reliable and experience lower dropout rates than individual devices, making118

it essential to devise sophisticated approaches to handling client contributions effectively. Furthermore,119

providing performance feedback to clients in cross-silo FL can help organizations understand their120

contribution’s impact on the global model. Such feedback enables institutions to improve their local121

models and strengthen future contributions to the global model.122

Problem Addressed123

FL applications in medical image analysis face multiple challenges that limit their potential. Key124

issues include untrusted third-party servers, inadequate client data validation, calculating accurate client125

reputations, and managing dynamic performance variations. Many existing solutions only address one or126

a few of these challenges, often at the cost of overall system performance and increased computational127

overhead. For FL to be fully effective in sensitive fields like healthcare, these challenges must be addressed128

in a unified manner without sacrificing model performance.129

Solution Proposed130

We propose FedARCH, a novel FL framework that evaluates each client’s contribution before incorporating131

it into the global model, using an adaptive reputation mechanism with smoothing and decay factors to132

maintain dynamic, reliable reputations. This adaptive reputation mechanism factors in both recent and133

historical performance, ensuring that contributions remain meaningful over time while mitigating the134

influence of sudden performance changes.135

To address the challenge of the untrusted server, we employ the CKKS HE technique, which enables136

secure operations on encrypted weights, thereby protecting the data from model inversion attacks. CKKS137

is particularly well-suited as it supports both addition and multiplication operations on real numbers, a138

feature that other HE schemes lack. This setup allows the server to work exclusively with encrypted data139

without needing decryption, maintaining data privacy. The computational overhead associated by using140

CKKS HE is reduced by using the plaintext-ciphertext multiplications instead of ciphertext-ciphertext141

multiplications. This greatly reduces the ciphertext growth and noise accumulation.142

Novelty and Significance of the Solution143

FL holds tremendous potential to automate medical image analysis, yet its benefits in critical fields are hin-144

dered by ongoing security and performance challenges. FedARCH addresses these issues comprehensively145

without compromising model accuracy.146

The primary contributions of this work include:147
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1. FedARCH, an innovative cross-silo FL framework – Featuring adaptive reputation-based weighted148

aggregation for real-time performance management, particularly useful in classifying brain tumors149

from MRI scans.150

2. Client performance evaluation – Using validation reports from neighboring clients, the system151

provides feedback to underperforming clients, encouraging continuous improvement.152

3. Incorporation of optimized CKKS HE – This approach effectively guards against model inversion153

attacks from an untrusted server without compromising on computational efficiency.154

4. Extensive simulations with variable client performance – Compared with the standard FL al-155

gorithm, FedARCH demonstrates superior performance, especially in scenarios with multiple156

underperforming clients.157

The proposed framework advances the field by enhancing both security and model performance, particu-158

larly in high-stakes applications like medical imaging.159

RELATED PRIOR RESEARCH160

Table 1. Comparison of Features Across Different References

Reference Dataset Approach Accuracy

Khan et al. (2022b) Figshare 23-layer CNN 97.8%

Mathivanan et al. (2024) Kaggle MobileNetV3 99.75%

Rasool et al. (2022) Kaggle GoogleNet-SVM 98.01%

Senan et al. (2022) SARTAJ AlexNet-SVM 95.10%

Khan et al. (2022a) Kaggle Hierarchical Deep Learning-Based

Brain Tumor (HDL2BT) classifica-

tion

92.13%

Lamrani et al. (2022) Kaggle CNN model for binary classification 96.33%

Gaur et al. (2022) SARTAJ CNN and Explainable AI 94.64%

Vidyarthi et al. (2022) Kaggle NN classifier with Cumulative Vari-

ance method (CVM) for feature sele-

cion

95.86%

Albalawi et al. (2024) Kaggle VGG with FL 98%

Islam et al. (2023) Kaggle Voting Ensemble of 6 TL models With FL 91.05%

Without FL 96.68%

Viet et al. (2023) Figshare VGG with FL 98.69%

Ay et al. (2024) - FedAvg 85.55%

Zhou et al. (2024) SARTAJ FL with EfficientNetB0 80.17%

and ResNet50 65.32%

With the advent of DL and Convolutional Neural Networks (CNNs), there are several research papers161

published to address the problem of brain tumor classification using DL techniques. A 23-layer CNN162

model was proposed for brain tumor classification on the Figshare dataset, while TL was also applied to163

address a binary classification task on a smaller Harvard dataset (Khan et al. (2022b)). To further leverage164

TL, an ensemble approach was employed for feature extraction across multiple TL models, combining the165

top three models using a Multi-layer Perceptron (MLP) (Remzan et al. (2024)). For the same classification166

problem, YOLOv7 was utilized, incorporating a Convolutional Block Attention Module (CBAM) to167

enhance feature extraction (Abdusalomov et al. (2023)).168

Although these approaches generate high-performing accuracies, they are based on simple local169

learning models trained on smaller datasets, which may lack generalizability when applied to different170

datasets. Centralized learning, where all data is collected and processed at a single location, poses171

additional challenges, including the risk of a single point of failure and reluctance from organizations to172

participate due to concerns about patient data privacy. To address these issues, researchers introduced FL,173
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a collaborative learning technique that preserves patient privacy by working with model updates rather174

than raw data.175

FL has gained significant attention as an approach to train models across decentralized devices or176

institutions while preserving data privacy. Initially, the FedAvg algorithm was introduced, enabling local177

models to be trained independently on each client and subsequently aggregated using a simple average to178

form a global model that synthesizes knowledge from all clients (McMahan et al. (2017)). Building on179

this foundation, FL was first applied to medical image analysis, demonstrating its potential in sensitive180

domains (Sheller et al. (2020)). To further enhance FL’s performance, ensemble and voting techniques181

were integrated to improve classification accuracy in complex datasets (Islam et al. (2023)). Additionally,182

TL techniques were combined with FL specifically for brain tumor classification, allowing the model183

to be evaluated across various client contribution levels and performance metrics, thus highlighting the184

adaptability of FL in handling diverse data distributions (Viet et al. (2023)).185

While effective, model inversion attacks (Fredrikson et al. (2015)), pose a significant threat to FL186

systems by reconstructing sensitive data from model updates. Various defense mechanisms have been187

considered, including differential privacy (Dwork et al. (2014)) and secure multi-party computation188

(Zhao et al. (2019)), but these often come with trade-offs in terms of computational overhead and model189

accuracy. To address these challenges and preserve data privacy, secure aggregation techniques were190

explored to ensure that the central server cannot access individual model updates (Bonawitz et al. (2017)).191

Recent advancements, such as the use of HE (Cheon et al. (2017)), enable computation on encrypted192

data, eliminating the need for decryption in a zero-trust architecture and further enhancing privacy in193

FL systems. The SHE approach was employed for cancer image analysis, incorporating an additive194

secret sharing technique (Truhn et al. (2024)). But since all clients are treated equally and their updates195

are aggregated to update the global model, ignoring the issue of underperforming clients can affect the196

performance of the final model.197

To address client contribution disparity, weighted aggregation was utilized based on a data quality198

factor, along with the EL-Gamal HE technique (Zhang et al. (2022)). Since EL-Gamal supports multi-199

plicative homomorphism, the encryption scheme was modified to enable additive homomorphism, thereby200

reducing communication overhead. The FedRaHa framework was proposed, incorporating reputations201

for client selection based on cosine similarity scores and employing hierarchical aggregation to reduce202

communication overhead (Panigrahi et al. (2023)). A Lightweight Privacy-preserving Federated Learning203

(LPBFL) scheme was introduced to calculate the reputation of each client prior to aggregating their204

updates into the global model, thereby preventing malicious updates from poisoning the final model. This205

scheme utilized Paillier HE to maintain the privacy of local model updates (Fan et al. (2023)). Paillier206

is a partial HE scheme, which supports only either of addition or multiplication operations, and it is207

considerably slow. A Genetic Algorithm approach was proposed to optimize client selection for FL, with208

communication cost minimization as the objective function (Kang and Ahn (2023)). The use of GA can209

significantly increase the training time and is not suitable for larger datasets and huge number of clients.210

A private blockchain-based framework was considered for storing model weights in chunks rather than211

directly, with miners tasked with evaluating the quality of local updates (Bhatia and Samet (2023)). The212

major limitation of this work is the scalability, if the number of the clients increase, then the number of213

weights will increase predominantly, thus making the idea of storing the weights in blockchain inefficient.214

Table 1 summarizes various existing work in the field of brain tumor classification task. In summary, while215

significant progress has been made in addressing data privacy, model robustness, and client heterogeneity216

in FL, challenges remain, particularly in cross-silo scenarios. FedARCH builds on these foundations217

by introducing reputation-based weighted aggregation, smoothing and decay factors for dynamic perfor-218

mance management, and the integration of CKKS HE to enhance privacy and security. CKKS HE, in219

particular, is notable for its efficient handling of approximate arithmetic, making it especially suitable for220

FL applications.221

PRELIMINARIES222

Federated Learning223

FL is a latest trending paradigm in the machine learning community, offering solutions to several problems224

such as data scarcity, data privacy preservation, and real-time collaborative learning. FL has gained225

significant accolades for its capability to allow multiple parties to collaborate and train a global model226

without sharing their raw data, instead sharing the weight updates. This replaced the centralized learning227
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Figure 1. FL architecture

scenario, where data from multiple clients is collected in a cloud server and is used to train a global228

model, which also resides in the same cloud. FL implementation requires the following components and229

is illustrated in Figure 1:230

• Server: A server is a cloud environment that holds the global model and acts as an aggregation231

server, aggregating the weights from clients.232

• Client: A client can be any organization or medical institution in a cross-silo scenario, while in a233

cross-device scenario it can be any device like mobiles, IoT devices, etc.234

• Global Model: In FL, multiple clients collaboratively train a global model, which can be any ML or235

DL model.236

• Local Model: Each client receives a replica of the global model to train on its local data and at the237

client side it is referred as local model.238

• Model Weights: When training the local model with local data, model weights are obtained. These239

weights represent the learned parameters of the neural network, determining the importance of input240

features, controlling the strength of neural connections, and encapsulating the model’s knowledge241

gained from the training data.242

The typical workflow of FL involves the server distributing the initial global model to all clients. Each243

client trains the model on its local data, updates the model weights, and sends these updates back to the244

server. The server aggregates the updates to form a new global model, which is then redistributed to the245

clients. This process repeats for a predefined number of rounds or until convergence.246

CKKS Homomorphic Encryption247

To further enhance data privacy and security in FL, especially when dealing with a curious server that248

might attempt to infer sensitive information from model updates, we employ CKKS HE (Cheon et al.249

(2017)). CKKS (Cheon-Kim-Kim-Song) is a type of somewhat homomorphic encryption scheme that250

supports arithmetic operations on encrypted data without needing to decrypt it, ensuring that data remains251

secure during the aggregation process. Key components of CKKS HE within FL include:252
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• CKKS Context: This holds parameters such as the polynomial modulus degree, scaling factor,253

security parameters, and the public-secret key pair. It defines the encryption scheme’s environment,254

setting up the structure for encryption, decryption, and homomorphic operations.255

• Message Encoding and Decoding:256

Encoding: In CKKS, real numbers are encoded into a polynomial ring to enable encrypted opera-257

tions (Huynh (2020)). The message m is transformed into a plaintext polynomial ∆m(x), where258

∆ is a scaling factor used to maintain precision during homomorphic operations by converting259

floating-point numbers to large integers. This is done by multiplying the floating-point numbers by260

the scaling factor before encryption, enabling accurate representation within the encryption scheme.261

This encoding maps the message into the ring262

R = Z[x]/(xN +1) (1)

where Z represents integers, (xN +1) is a cyclotomic polynomial, and N is the polynomial degree,263

usually represented as powers of 2:264

m³ ∆m(x) * Z[x]/(xN +1) (2)

This polynomial representation allows CKKS to perform homomorphic operations like addition265

and multiplication on encrypted data, with the operations corresponding to similar operations on266

plaintext polynomials.267

Decoding: The reverse process that maps the polynomial back to real numbers.268

• Key Generation: Generate public and private keys: (pk,sk), where pk is used for encryption and sk269

for decryption. Each plaintext polynomial is encrypted using a public key, resulting in ciphertexts270

of the form: c1 = (c1,0,c1,1) and c2 = (c2,0,c2,1), where ci, j is a polynomial in Zq[x]/(x
N +1)271

• Encryption: Given a plaintext polynomial m(x), the encryption function using public key pk = (a,b)272

and a random noise e generates a ciphertext c, a pair of polynomials where,273

c = Enc(m(x), pk) = (c0,c1) (3)

c0 = b.s+m+ e0 (4)

c1 = a+ e1 (5)

• Homomorphic operations:274

Both addition and multiplication operations are performed on the ciphertexts, producing encrypted275

results that approximate the arithmetic operations on the underlying plaintexts.276

Addition:277

Enc(m1(x), pk)+Enc(m2(x), pk) = Enc(m1(x)+m2(x), pk) (6)

Enc(m1(x)+m2(x), pk) = (c1,0 + c2,0,c1,1 + c1,2) (7)

where (c1,0,c1,1) and (c2,0,c2,1) are ciphertexts for m1(x) and m2(x) respectively.278

Multiplication:279

When two ciphertexts are multiplied, it is not as straightforward as addition, the polynomial280

representations of ciphertexts expand:281

cmul = c1 7 c2 (8)
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since each ciphertext is a tuple (c0,c1), the multiplication expands as follows:282

cmul = (c1,0,c1,1)7 (c2,0,c2,1) (9)

cmul = (c1,0c2,0,c1,0c2,1 + c1,1c2,0,c1,1c2,1) (10)

This results in a new third-term ciphertext, i.e.,283

cmul = (c20,c
2
1,c
2
2) (11)

The ciphertext is expanded in degree, like here in this example it is 3, further it will increase to 5, 9284

and so on. To prevent this, relinearization is required to bring it back to the standard 2-term format285

and maintain the size of the ciphertext. But, it further increases the computational complexity and286

overhead.287

• Decryption: Given a ciphertext c, the decryption function returns the plaintext polynomial

m(x) = Dec(c,sk). (12)

In FedARCH framework, encrypted model weights (Et
i ) of the client i at round t are multiplied by288

a plaintext normalized reputation score (R̄t
i) for weighted aggregation. Since we multiply ciphertexts289

by plaintexts, rather than by other ciphertexts, relinearization is not required. Relinearization, typically290

used in HE schemes, manages the growth of ciphertext size and complexity after multiplying ciphertexts291

together. By avoiding the need for relinearization, we simplify our computational process and reduce292

overhead. These weights from different clients are further added together using ciphertext addition, which293

is a straightforward operation in CKKS.294

Integrating CKKS HE into our FL framework provides a robust solution to protect sensitive client295

data from potential privacy breaches by the central server. This approach ensures that even if the server is296

compromised or curious, it cannot access or infer the original data, thus maintaining the confidentiality297

and privacy of each client’s data throughout the training process.298

FEDARCH FRAMEWORK299

Adaptive Reputation-aware weighted aggregation300

We propose FedARCH, a novel FL framework for collaborative learning in a cross-silo scenario.301

In this framework, we created a simulated environment with 10 clients, where each client represents a302

medical institution. A central server, referred to as the aggregation server, holds the global model used303

for the FL process. The server performs the aggregation of client weights after each FL round, and this304

process is repeated until the specified number of rounds is reached.305

In this scenario, we assume the server is not trustworthy and it could perform a model inversion306

attack to obtain the original data, thus being termed as “curious” server. We also assume that clients are307

trustworthy, meaning they do not perform a model inversion attack or intentionally send malicious or308

erroneous updates. However, clients can still underperform due to several reasons:309

Data Heterogeneity: Clients have different data distributions. For example, medical institutions may have310

varying case severities, leading to differences in model performance.311

Resource Constraints: Some clients might have limited computational resources, resulting in less effective312

training.313

Model Training Issues: Suboptimal hyperparameter settings, insufficient training epochs, or software314

bugs can cause variations in local model performance.315

Environmental Factors: Factors like network latency or power outages could impact the training process316

for some clients.317

Data Quality: Variations in data quality across clients, such as noisier or less representative data, can lead318

to poorer model performance.319
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Table 2. Notations Used in Federated Learning with Reputation and CKKS Encryption

Notation Description

Dtrain Training dataset

Dval Validation dataset

Dtest Testing dataset

N No. of clients

R No. of rounds

α Smoothing factor for reputation update

β Decay factor for reputation update

W 0 Initial global model weights

W t Global model weights at round t

W t
i Local model weights of client i at round t

Et
i

Encrypted local model weights of client i at

round t

Rt
i Reputation of client i at round t

R̄t
i Normalized reputation of client i at round t

Pt
i Validation score of client i at round t

Pt
prev

Validation score of the previous client at

round t

Et
prev

Encrypted local model weights of the previ-

ous client at round t

W t
prev

Local model weights of the previous client

at round t

context CKKS encryption context

Algorithm 1 Federated Learning with Reputation and CKKS Encryption

Require: Training dataset Dtrain, Validation dataset Dval , Testing dataset Dtest , Number of clients N,

Number of rounds R, Smoothing factor α , Decay factor β , CKKS context context

Ensure: Final global model W R

1: Split Dtrain among N clients

2: Initialize global model W 0

3: Initialize reputations R0
i ± 1 for all clients i

4: Distribute Dval to all N clients

5: for t = 0 to R21 do

6: for each client i do

7: Train local model and obtain W t
i

8: Et
i ± CKKSEncryption(W t

i ,context)
9: Send Et

i to client (i+1) mod N

10: end for

11: for each client i do

12: Call VALIDATION(Et
(i21+N) mod N

, context)

13: end for

14: Collect all Et
i and validation scores Pt

i at the global server

15: Call UPDATEREPUTATION(Pt
i ,R

t
i,α,β )

16: Update global model weights:

17: Et+1 = ∑
N
i=1 R̄t+1

i ·Et
i (Aggregate weights)

18: for each client i do

19: W t+1± CKKSDecryption(Et+1,context)
20: end for

21: end for

22: W R±W t+1

23: Evaluate final global model W R on Dtest
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Algorithm 2 Validation

Require: Encrypted weights Et
prev, CKKS context context

Ensure: Validation score Pt
prev

1: W t
prev± CKKSDecryption(Et

prev,context)
2: Validate the model using Dval

3: Store validation score Pt
prev

Algorithm 3 UpdateReputation

Require: Validation scores Pt
i , Reputations Rt

i , Smoothing factor α , Decay factor β
Ensure: Updated and normalized reputations R̄t+1

i

1: for each client i do

2: Rt+1
i = (α ·Rt

i +(12α) ·Pt
i ) ·β

3: end for

4: Normalize reputations R̄t+1
i =

Rt+1
i

∑
N
j=1 Rt+1

j

Algorithm 4 CKKS Encryption

Require: Local model weights Wi, CKKS context context

Ensure: Encrypted local model weights Ei

1: Ei±{}
2: for each layer k in Wi do

3: vector± Flatten(Wi[k])
4: Ei[k]± CKKSEncrypt(vector,context)
5: end for

6: return Ei

Algorithm 5 CKKS Decryption

Require: Encrypted local model weights Ei, CKKS context context

Ensure: Decrypted local model weights Wi

1: Wi±{}
2: for each layer k in Ei do

3: decrypted vector± CKKSDecrypt(Ei[k],context)
4: Wi[k]± Reshape(decrypted vector)
5: end for

6: return Wi
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Figure 2. FedARCH architecture

By considering these factors, our proposed framework aims to accommodate and adjust for underper-320

forming clients through reputation-based weighted aggregation, smoothing, and decay factors, ensuring321

that the global model remains robust and accurate despite these variations.322

Each client trains the global model, enhancing decision-making by participating in the FL process323

with local data while ensuring data privacy by sharing only the model weights. In FedARCH framework,324

we use the pre-trained ResNet18 model (He et al. (2016)) and fine-tune it for our specific use case. A325

replica of the global model W 0 is shared with all clients. Upon receiving the model, each client Ci trains it326

with their local data Dtrain. The local model weights W t
i are generated at each client, and these weights327

are encrypted using CKKS HE to preserve privacy from a curious server. Figure 2 provides an overview328

and Figure 3 a detailed illustration of the proposed FedARCH framework.329

Each client Ci shares its encrypted local model weights Et
i with the server for aggregation and with330

the next client Ci+1 for validation. In this framework, each client Ci also acts as a validator for its previous331

client Ci21. Specifically, client Ci validates the local weights Et
i21 of the previous client Ci21 using the332

validation data Dval and generates a validation score (val score) Pt
prev for that previous client, which is333

then sent to the server. The next client, upon receiving the previous client’s encrypted local model weights334

Et
prev, decrypts them using CKKS decryption to obtain the local model weights W t

prev. To facilitate this,335

we assume that all clients share a common encryption scheme with a public-private key pair managed by336

a trusted authority. This ensures that each client can securely decrypt the weights from the previous client337

using the shared private key. This validation mechanism provides an additional layer of accountability338

and accuracy, reducing potential biases and ensuring a more comprehensive evaluation of the model’s339

performance across various datasets.340

Upon receiving the val scores from all clients, the server’s notifier informs underperforming clients if341

their validation score falls below a threshold value, defined as the average of the validation accuracies of342

all clients in that round. This notification helps clients take appropriate measures to improve their local343

data or training processes. Although clients could validate themselves, the notifier is necessary because344

clients do not have access to the validation accuracies of other clients to calculate this threshold. As a part345

of the server, the notifier ensures that clients receive the necessary feedback to enhance their performance.346

The server then assigns a reputation value Rt
i to each client using the val scores. These reputations are347
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Figure 3. Working of the Proposed FedARCH framework

updated and adjusted using smoothing and decay factors. A smoothing factor α is employed to handle348

sudden increases or decreases in client performance and maintain stability, while a decay factor β reduces349

the impact of older reputations, ensuring the model adapts to the latest updates. The working of the350

smoothing and decay factors is given by Equation 13 and the notations are described in Table 2.351

Rt+1
i = (α ·Rt

i +(12α) ·Pt
i ) ·β (13)

If the smoothing factor α is high (closer to 1), the new reputation will rely more heavily on the352

previous reputation, reducing the influence of the current performance. This makes the system less353

sensitive to sudden changes or fluctuations in client performance. On the other hand, if α is low (closer to354

0), the current performance will have a greater influence, making the reputation more responsive to recent355

client behavior. For the decay factor, if β is close to 1, the reputations will maintain their value over time,356

retaining a strong memory of both past and current performance. If β is closer to 0, the reputations will357

gradually decay, allowing newer updates to have a stronger influence while older updates lose significance.358

The choice of these factors can be dynamically adjusted by the server based on the validation scores359
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obtained from the clients.360

361

The reputations are then normalized to obtain the normalized repuation weight score R̄t
i for each client.362

Using these plaintext normalized reputation weights, the server performs weighted aggregation on the363

clients’ encrypted local model weights, optimizing CKKS HE to perform addition and multiplication364

operations on encrypted data without increasing the computational complexity. This process is represented365

in Equation 14.366

Et+1 =
N

∑
i=1

R̄t+1
i ·Et

i (14)

After the weighted aggregation, the initial global model W0 is updated with the new aggregated weights367

Wt , which are then sent to all clients to update their local models. These aggregated weights remain in368

encrypted form, so the clients decrypt them using CKKS decryption before updating their local models.369

This entire process is repeated for R rounds or until convergence.370

EXPERIMENTAL RESULTS371

Dataset372

For implementing FedARCH, we have considered the Kaggle dataset (Nickparvar (2021)) containing373

7,023 brain MRI images with four class labels: meningioma, glioma, pituitary, and no tumor. Three374

datasets—Figshare, SARTAJ, and Br35H—combined to form this dataset. A representative sample image375

for each class label is shown in Figure 4. The dataset is organized into two main folders: Training and376

Testing. Each folder contains subfolders corresponding to the four class labels: meningioma, glioma,377

pituitary, and no tumor. The Training folder contains 5,712 images, while the Testing folder contains

Figure 4. Sample brain MRI images

378

1,311 images. The class distribution in each folder is illustrated in Figure 5. We further split the images379

in the Testing folder into validation and testing sets, with 655 images for validation and 656 images for380

testing. We have created a simulation environment with 10 clients and a central server with a global381

model. Each client holds a replica of the global model and acts as a validator for the previous client. The382

training data is split among the 10 clients, and the validation data is distributed to all clients for client383

evaluation.384

Experimental Setup385

As discussed earlier, a simulation environment is created to establish a client-server framework, consisting386

of a single central server and 10 clients. The entire FL process is implemented from scratch using PyTorch,387
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Figure 5. Class distribution of Kaggle dataset

Figure 6. Comparison of CL vs Standard FL vs Proposed

without relying on any existing FL frameworks. For CKKS HE, the TenSEAL package is utilized. The388

implementation is carried out using Jupyter Notebook on a DGX server with the following specifications:389

Nvidia RTX 3060 GPUs with 12 GB GDDR6 graphics and Intel Core i9 CPUs with 8 cores and 64 (2 x390

32GB) DDR4RAM.391

Evaluation metrics392

We rigorously evaluated the proposed framework against state-of-the-art solutions using various evaluation393

metrics (Singamsetty et al. (2024)). Accuracy is used to obtain the overall performance measure. Precision394

and recall are employed to assess the model’s impact in reducing the number of false positives (FP) and395

false negatives (FN), respectively. The F1-score is calculated to balance both precision and recall. For396

brain tumor multi-class classification, it is crucial to not only reduce the number of FPs but also reduce397

FNs. An FP could cause unnecessary panic and lead to unnecessary treatment for patients, while an FN398

could overlook a potentially dangerous tumor, leading to delayed treatment and decreasing patient survival399

rates. These metrics ensure that the FedARCH framework is thoroughly evaluated, thereby improving400

decision-making and patient outcomes.401

Results402

We compared our proposed framework with existing solutions, and the comparison is presented in Table403

3. This table highlights the key features incorporated in the proposed framework that are not addressed404

by the existing work. The proposed FedARCH framework is compared with centralized learning and405

standard FL with FedAvg, and the results are shown in Figure 6. FedARCH performs on par with FedAvg406

and almost similarly to centralized learning. To further evaluate its robustness, gaussian noise is added407

to some clients’ data to observe the impact on the final model accuracy. We initially introduce noise408

to 10% of the clients and gradually increase this to 50% of the clients. Three different noise levels are409

considered: low (noise level=0.1), medium (noise level=0.4), and high (noise level=0.8). FedARCH is410

compared with the standard FL with FedAvg, and the results are illustrated in Figures 7-9. The results411
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Figure 7. Comparison of Standard FL and Proposed with different percentages of noisy clients with
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Figure 8. Comparison of Standard FL and Proposed with different percentages of noisy clients with

medium noise level

10% 20% 30% 40% 50%
Noisy clients with higher noise

0

20

40

60

80

100

120

Ac
cu

ra
cy

Proposed
Std. FL

Figure 9. Comparison of Standard FL and Proposed with different percentages of noisy clients with

higher noise level
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Figure 10. Comparison of Proposed approach with different percentages of noisy clients at different

noise levels

10% 20% 30% 40% 50%
Percentage of noisy clients

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Noisy clients vs Accuracy for the standard FL

Low noise
Medium noise
High noise

Figure 11. Comparison of Standard FL with different percentages of noisy clients at different noise

levels
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Figure 12. Comparison of with and without ckks for Standard FL and Proposed approaches with 40%

noisy clients at a low noise level
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Table 3. Comparison of Features Across Different References

Reference DL FL Reputation Weighted

Aggrega-

tion

Dynamic

Perfor-

mance

Manage-

ment

HE Under per-

forming

Clients

Medical

Data

Thiriveedhi

et al. (2025)

7 × × × × × × 7

Khan et al.

(2022b)

7 × × × × × × 7

Mathivanan

et al. (2024)

7 × × × × × × 7

Albalawi et al.

(2024)

7 7 × × × × × 7

Islam et al.

(2023)

7 7 × × × × × 7

Viet et al.

(2023)

7 7 × × × × × 7

Ay et al.

(2024)

7 7 × × × × × 7

Bhatia and

Samet (2023)

7 7 × × × × 7 7

Lytvyn and

Nguyen

(2023)

7 7 × × × × × 7

Fan et al.

(2023)

7 7 7 × 7 7 7 ×

Zhang et al.

(2022)

7 7 7 7 × 7 × 7

Panigrahi et al.

(2023)

7 7 7 × × 7 × 7

Kang and Ahn

(2023)

7 7 × × × × × ×

Truhn et al.

(2024)

7 7 × × × 7 × 7

Kim et al.

(2024)

7 7 × × × × × 7

Yang et al.

(2021)

7 7 × 7 × × × 7

FedARCH 7 7 7 7 7 7 7 7

clearly demonstrate that as both the percentage of noisy clients and the level of noise in the clients’ data412

increase, FedARCH efficiently resists the impact of noise, whereas the standard FedAvg approach fails.413

The impact of increasing the noise level on model accuracy is also considered and is illustrated in414

Figures 10 and 11. With an increasing noise level and number of noisy clients, there is some impact on the415

proposed framework, as the accuracy slightly reduces from 99% to 94%. However, for standard FedAvg,416

there is a significant drop in performance, with accuracy plummeting from 99% to 32%. This highlights417

the level of resistance exhibited by our proposed FedARCH framework.418

We also compare the influence of CKKS HE on both the standard and proposed approaches. A419

simulation with 40% noisy clients at a low noise level is used to evaluate the impact on both approaches,420

with and without CKKS. The results are shown in Figure 12. No significant difference is observed in the421

proposed approach, but the standard approach performs better with the inclusion of CKKS. This highlights422

that the addition of CKKS HE does not negatively affect the performance of our model, unlike the423
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Figure 14. Validation reports

Differential Privacy approach. This can be attributed to CKKS’s ability to operate on encrypted data, real424

numbers, and approximate arithmetic. The accumulation of noise, which is a common issue in encryption425

scenarios, is effectively managed in our case. This is because we only consider plaintext-ciphertext426

multiplication during weighted aggregation, rather than ciphertext-ciphertext multiplication, which helps427

prevent significant noise accumulation. In this context, the plaintext refers to the normalized reputation428

weights, and the ciphertext refers to the encrypted local model weights.429

To address sudden spikes in performance and reduce the impact of older reputations, smoothing and430

decay factors are considered. Various combinations of these factors were tested and compared to assess431

their impact, as shown in Figure 13. To simulate real-time changes in performance, we altered the status432

of an underperforming client (client 3) to a well-performing client and a well-performing client (client433

5) to an underperforming client after round 7. Validation reports before and after this simulation are434

shown in Figure 14. A rigorous evaluation was conducted using various standard metrics, with the results435

illustrated in Figures 15-17.436

Security Analysis437

Formal Analysis438

FedARCH is robust not only in terms of performance but also with respect to security. To demonstrate this,439

we utilized a Python tool called Bandit (Roy (2023)), which is highly effective in scanning Python code440
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Figure 15. Comparison of evaluation metrics

Figure 16. Confusion matrix for Standard FL with 40% noisy clients at a low noise level
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Figure 17. Confusion matrix for Proposed FedARCH approach with 40% noisy clients at a low noise

level

Figure 18. Bandit security analysis report of FedARCH

for security vulnerabilities and generating a comprehensive security report. We specifically chose Bandit441

because it can efficiently detect dangerous code execution commands, code injection vulnerabilities,442

insecure key usage, and weak cryptographic practices, issues that are particularly relevant in FL scenarios.443

We have also used the Scyther tool (Egala et al. (2023)), which is popular for formal security analysis of444

communication protocols. It can detect several attacks like Man-in-the-middle (MITM) attacks, Denial-445

of-Service (DoS) vulnerabilities, Replay attacks, Authentication weaknesses, and Key exchange security.446

Given the security-sensitive nature of FL, we aimed to identify and eliminate such vulnerabilities in447

our proposed framework. The Bandit report and scyther report, presented in Figure 18 and Figure 19448

respectively, serves as concrete evidence of FedARCH’s resilience against security threats.449

Informal Analysis450

The CKKS HE scheme, which we considered in our proposed FedARCH framework, facilitates the451

secure aggregation of encrypted weights at the server without requiring decryption in an untrustworthy452

environment. CKKS is based on the RLWE problem, which is NP-Hard, thus providing potential post-453

quantum resistance (Lyubashevsky et al. (2010)). Since the clients are assumed to be honest in our454

framework, the risk of collusion attacks—where clients collude with the server to infer other clients’455
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Figure 19. Scyther security analysis report of FedARCH

Figure 20. Comparison of the the proposed FedARCH approach and existing related work
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Table 4. Evaluation Metrics Comparison for Proposed FedARCH and Standard FL by Class Label for

40% noisy clients with lower noise

Class Label Metric FedARCH Standard FL

Meningioma

Accuracy 99 92

Precision 100 90

Recall 97 68

F1-Score 99 78

Glioma

Accuracy 99 90

Precision 98 98

Recall 98 59

F1-Score 98 73

Pituitary

Accuracy 100 64

Precision 99 48

Recall 100 99

F1-Score 100 65

No Tumor

Accuracy 100 79

Precision 99 100

Recall 100 7

F1-Score 99 14

private data—is minimized. Additionally, since each client acts as a validator only for one neighboring456

client, it can only access one neighboring client’s data, thereby preventing any single client from accessing457

information about all other clients.458

Discussion459

The results clearly demonstrate that our proposed framework effectively mitigates the impact of under-460

performing clients on the final global model, whereas the standard FedAvg approach fails as the number461

of noisy clients and the level of noise increase. The various evaluation metrics further validate that462

the proposed model significantly reduces false positives and false negatives, thereby avoiding unnec-463

essary panic and delayed treatments. Table 4 highlights the class-wise evaluation metrics obtained by464

the proposed approach compared to the standard approach. Figure 20 illustrates the robustness of the465

proposed framework compared to existing approaches. While Mathivanan et al. (2024) achieves the466

highest accuracy of 99.75%, it lacks the federated learning setup and security guarantees provided by our467

framework, which achieves the next highest accuracy of 99.39%.468

CONCLUSION AND FUTURE DIRECTIONS469

In this paper, we proposed FedARCH, a novel FL framework that integrates reputation-aware weighted470

aggregation and optimized CKKS HE for brain tumor multi-classification in a cross-silo environment.471

Compared to state-of-the-art solutions, FedARCH not only demonstrated superior performance but472

also proved more robust in mitigating the impact of underperforming clients on the global model. In473

addition, underperforming clients receive feedback on their performance, enabling them to enhance their474

training and contribute more effectively to the collaborative learning process. This, in turn, increases475

prediction accuracy, ultimately facilitating better treatment options and preventive measures for patients.476

By integrating optimized CKKS HE, we reduce the computational overhead, balancing both security and477

performance. The robustness of FedARCH is proved using security analysis tools like Bandit and Scyther.478

The proposed framework also shows potential for extension to other medical image analysis tasks,479

offering significant benefits for automated diagnosis, early detection, and treatment. Although this study480

assumes that all clients are honest, future work could investigate the FedARCH’s applicability in a481

zero-trust environment, and incorporating performance-based incentives for clients in a decentralized482

framework.483
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