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Abstract: This research introduces Fortified-Edge 2.0, a novel authentication framework that 
addresses critical security and privacy challenges in Physically Unclonable Function (PUF)-
based systems for collaborative edge computing (CEC). Unlike conventional methods 
that transmit full binary Challenge-Response Pairs (CRPs) and risk exposing sensitive 
data, Fortified-Edge 2.0 employs a machine learning-driven feature abstraction technique 
to extract and utilize only essential characteristics of CRPs, obfuscating the raw binary 
sequences. These feature vectors are then processed using lightweight cryptographic 
primitives, including ECDSA, to enable secure authentication without exposing the original 
CRP. This eliminates the need to transmit sensitive binary data, reducing the attack surface 
and bandwidth usage. The proposed method demonstrates strong resilience against 
modeling attacks, replay attacks, and side-channel threats, while maintaining the inherent 
efficiency and low power requirements of PUFs. By integrating PUF unpredictability with 
ML adaptability, this research delivers a scalable, secure, and resource-efficient solution for 
next-generation authentication in edge environments.

Keywords: Physical Unclonable Function; Security-by-Design; Hardware-Assisted Security; 
Edge Computing; Secure Authentication; Cybersecurity; Machine Learning; Cryptography; 
Authentication Protocol; Error Detection; Error Correction 17

1. Introduction 18

Edge computing has emerged as a critical paradigm for real-time processing in dis- 19

tributed environments, enabling computation closer to data sources such as Internet-of- 20

Things (IoT) devices, sensors, or local servers [1]. Edge computing approach presents 21

key benefits like reduced latency, bandwidth optimization, enhanced security and privacy, 22

real-time decision making, offline functionality, cost efficiency, and scalable and distributed 23

architecture. These advantages make edge computing a crucial component in supporting 24

IoT systems, and different organizations have proposed various IoT architectures taking 25

various perspectives into account. Edge architecture involves various components like 26

Edge Devices, Edge Nodes, Edge Data Centers, Edge Cloud, and Edge Analytics [2]. 27

The key techniques that enable decentralized edge computing are Virtual Machines 28

(VMs), Containers, Software Defined Networking(SDN), Content Delivery Networks(CDN), 29

Cloudlets, and Micro Data Centers (MDC)/Edge Data Centers (EDC) [3]. 30

Security is crucial in edge computing for protecting data and maintaining system 31

integrity. A comprehensive security architecture for edge computing involves robust tech- 32

nologies like encryption, secure authentication protocols, and other privacy-preserving 33
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techniques. Advanced cryptographic techniques ensure confidentiality and integrity, while 34

technologies like Artificial Intelligence (AI) and ML enable intelligent decision making 35

and analytics [4]. However, ensuring security at the edge presents significant challenges 36

due to the heterogeneous nature of computing environments and the presence of resource- 37

constrained devices. The availability of high-performance computing and secure net- 38

work infrastructure varies widely across applications, from well-established smart cities to 39

resource-limited smart villages. 40

The increase in devices generating data has led to massive volumes of data that require 41

efficient processing. Consequently, the computing environment has evolved, incorporating 42

various architectures such as cloud, fog, edge, cloudlet, and Mobile Edge Computing 43

(MEC). These architectures facilitate data processing at different levels of the IoT structure. 44

Edge computing, as shown in Figure 1, is one such paradigm that brings computation 45

closer to where data is generated, primarily to reduce latency and alleviate network band- 46

width constraints. This shift in computing has paved the way for real-time applications 47

that demand faster response times. Building upon edge computing, collaborative edge 48

computing enables resource sharing across the network to complete computational tasks 49

efficiently. This approach is inherently distributed, with participating computing servers, 50

often referred to as edge nodes, located in different geographical regions [5]. 51

Edge Node Edge Node

Cloud

• Sensors
• Connected IoT devices

Edge Node

Edge Computing Architecture

• Big data processing
• Data warehousing

• Computing offload
• Data caching/storage
• Data processing
• Service delivery
• Security and privacy

Cloud Layer

Edge Layer

Device Layer

Internet

LAN/WAN
Gateways, 
Routers
Base stations

Figure 1. Edge computing architecture.

Edge computing is characterized by processing data closer to its source, enabling 52

faster response times and reducing the amount of data sent to the cloud, which helps 53

conserve network resources. It enhances security and privacy by keeping sensitive data 54

on local devices while also improving system reliability. Additionally, distributed comput- 55

ing minimizes data movement between the cloud and edge devices. While applications 56

requiring extensive computation may still rely on the cloud, real-time applications such as 57

surveillance, real-time monitoring systems, healthcare, and autonomous vehicles benefit 58

from processing at the edge to ensure low latency and quick decision-making. 59

Edge nodes within this architecture provide the necessary infrastructure, including 60

data processing, storage, networking capabilities, software, and power backup, enabling 61

efficient and resilient operations. However, task computation can be delayed due to node 62
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overload. To address this, edge computing incorporates computation offloading through 
a controlled process known as load balancing, which transfers queued tasks to the next 
available edge node (server or data center), ensuring seamless processing without delays. 
Static and dynamic load balancing methods effectively distribute computing tasks among 
edge data centers or nodes. Static load balancing methods include Round-robin, minimal 
combination, and weighted round-robin, and the dynamic methods include predictive 
load balancing and machine learning-based methods to allocate resources in real-time. 
Edge computing security systems, therefore, employ a variety of techniques to protect 
against cyberattacks and ensure secure data transfer between the nodes [6]. Furthermore, 
the collaborative computing environment is dynamic, requiring nodes to authenticate one 
another to maintain the security and privacy of both data and computation. Additionally, 
newly formed nodes must be verified and authenticated, necessitating end-to-end security 
across a multi-hop network.

Traditional security mechanisms, like cryptography and secure authentication meth-
ods originally designed for cloud and high-performance computing environments, are often 
unsuitable for edge-based deployment. This necessitates the development of lightweight, 
adaptive, and secure authentication solutions that align with the unique constraints and 
requirements of edge computing. With the rise of 5G networks and AI-driven automation, 
edge computing is expected to play a crucial role in the future digital transformation.

Edge computing in resource-constrained collaborative environments demands a 
lightweight security solution to ensure secure data transmission over untrusted multihop 
networks. Geographically distributed edge nodes from diverse origins must be verified, 
and cryptographic authentication protocols play a crucial role in securely authenticating 
these nodes before task offloading and computation. Physical Unclonable Functions (PUFs) 
are proposed as a security primitive for a low-power authentication protocol that delivers 
security against side-channel attacks and data breaches, ensures the integrity of the system 
[7]. Various PUF architectures are employed that help to develop robust authentication 
systems for both device and data security for edge computing without the need for explicit 
key storage. PUF is a hardware security primitive that enables embedded security, incorpo-
rating security-by-design(SbD) principles for making security an integral part of the system 
[8]. PUFs are resistant to cloning, they can generate cryptographic keys on-the-fly, which 
means sensitive information does not need to be stored in memory [9].While aiming to 
develop secure and sustainable solutions that are also scalable, it is essential to prioritize 
energy efficiency and ensure compatibility with resource-constrained environments.

The remainder of this paper is organized as follows: Section 2 presents the novel 
contributions of the current research. Section 3 provides an in-depth discussion of the 
state-of-the-art literature related to the research domain. Section 4 explores the security 
and privacy considerations in edge computing frameworks, with particular emphasis 
on key challenges and their corresponding mitigation strategies. Section 5 introduces 
the proposed feature-based authentication process utilizing PUFs. Section 6 describes 
the experimental setup for implementing the proposed method and presents the results 
along with a comprehensive analysis. Finally, Section 7 concludes the paper and outlines 
directions for future research. 106

2. Novel Contributions of the Current Paper 107

This research focuses on enhancing the confidentiality, integrity, and scalability of 108

secure authentication systems using PUFs. In a collaborative edge computing environment, 109

where PUFs serve as a security primitive for device authentication and authorization, 110

ensuring data integrity and confidentiality is crucial. In scenarios like load balancing, 111



Version May 27, 2025 submitted to Future Internet 4 of 29

where Edge Data Centers (EDCs) must authenticate each other, it is essential to consider 112

how CRP data is stored and managed. Since each EDC stores CRP data locally and 113

communicates it across the network, the data becomes vulnerable to security breaches. To 114

address the challenges of secure data communication and integrity, this research proposes 115

the following novel solutions. 116

• This research proposes a novel feature-based authentication system that utilizes ex- 117

tracted and vectorized features of PUF data. 118

• Enhancing data and device integrity by transmitting the vectorized data instead of the 119

raw data using k-mer sequence embeddings. 120

• Implementing encryption and decryption protocols that use feature vectors as plaintext 121

and convert them to ciphertext using efficient hashing algorithms. 122

• Utilizing the Elliptic Curve Digital Signature Algorithm (ECDSA) for authentication, 123

eliminating the need for shared secret keys and leveraging asymmetric key cryptogra- 124

phy. 125

• Designing an efficient cryptographic algorithm resistant to man-in-the-middle attacks, 126

ensuring end-to-end data security. 127

• Communicating both challenges and responses in their vectorized forms to enhance 128
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data security and integrity.

2.1. Research Motivation

Cybersecurity at the edge presents significant challenges due to the heterogeneous 
nature of computing environments. The availability of infrastructure varies across ap-
plications, whether in smart cities with well-established networks or smart villages with 
resource constraints. A resource-constrained environment has unique security and op-
erational challenges that differ significantly from those in a  well-developed smart city 
infrastructure.

In such environments, lightweight yet robust cybersecurity solutions are essential. This 
research focuses on developing secure authentication protocols for collaborative computing 
systems that enable seamless processing at the resource-constrained edge. By leveraging 
PUFs and Machine Learning (ML), this work aims to design a secure, energy-efficient, 
lightweight, low-power, and low-latency authentication protocol with an emphasis on 
efficient bandwidth usage.

Security and privacy are critical in cybersecurity, particularly in systems utilizing 
PUF-based Challenge-Response Pairs (CRPs) for authentication. Secure storage and com-
munication of CRP data are of paramount importance, as any breach, such as fault injection, 
data manipulation, or data theft, could compromise the entire system. To mitigate these 
risks, this research introduces a novel feature-based authentication protocol that prevents 
the direct transmission of CRP data, enhancing data security and resilience against attacks.

Additionally, bandwidth constraints in edge environments pose a significant chal-
lenge. Traditional cryptographic protocols are often computationally intensive and require 
large bandwidth, making them impractical for low-power edge devices. Cryptographic 
protocols, notably Rivest–Shamir–Adleman (RSA) and Advanced Encryption Standard 
(AES) are renowned for their robust security features. However, their computational and 
bandwidth demands could be challenging for resource-constrained environments. To 
achieve high-level security, RSA requires large key sizes; a 2048-bit RSA key is considered 
secure for most applications. The use of large keys increases computational overhead and 
bandwidth requirements. AES is more efficient than RSA in terms of computational require-
ments, however, the performance of AES depends on underlying hardware and affects 
the performance throughput, making it unsuitable for real-time applications [10]. Power 
consumption of the security protocols needs to be consisdered while employing them at 160



Version May 27, 2025 submitted to Future Internet 5 of 29

161

162

163

164

165

166

167

168

169

170

171

172

173

174

less resourceful environments [11]. This research aims to develop an efficient security 
mechanism that minimizes bandwidth consumption while maintaining high security, low 
latency, and adaptability to resource-limited environments.

2.2. Problems Addressed

Edge computing environments are highly heterogeneous, with varying levels of 
computational power, memory, and connectivity. Smart city applications may have reliable 
infrastructure, while smart village applications face limited resources and unpredictable 
connectivity. Conventional cybersecurity solutions are often too computationally expensive 
for low-power edge devices. The primary goal of this research is to study the security 
challenges of resource-constrained edge computing environments and present a novel 
secure authentication protocol that is based on concepts of hardware-assisted security and 
security-by-design. The key idea is to propose an integrated security model for secure 
authentication. The research explicitly addresses the challenge of securing authentication 
in resource-constrained edge environments using PUF, where direct transmission of binary 
CRP data increases the system’s vulnerability to external attacks. 175

• There is a lack of lightweight yet secure authentication mechanisms for resource- 176

constrained edge. Traditional cryptographic authentication methods like Public Key 177

Infrastructure (PKI) and symmetric encryption consume high computational resources 178

and energy, making them unsuitable. 179

• Authentication protocols must be resilient against attacks while ensuring low power 180

consumption and minimal latency. 181

• Edge devices are prone to physical and cyberattacks such as side-channel attacks, 182

replay attacks, cloning, and key extraction. Existing authentication mechanisms lack 183

uniqueness and resistance against cloning, making devices susceptible to unauthorized 184

access. 185

• Authentication protocols require frequent communication between edge devices and 186

central servers. In collaborative edge computing, there will be frequent communi- 187

cation between the participating clients, like the edge data centers, which increases 188

bandwidth consumption. In remote areas with low network reliability, excessive 189

bandwidth usage can lead to delays and authentication failures. 190

• Secure storage and transfer of data needs to be ensured to prevent data breaches or 191

authentication failures, especially in systems that use PUF CRP data for authentication 192

purposes. 193

2.3. Solutions Proposed 194

This research proposes a novel feature-based authentication mechanism that integrates 195

PUFs and efficient cryptographic algorithms to enhance security at the dynamic collabora- 196

tive edge. PUFs provide a lightweight yet robust security solution, while cryptographic 197

algorithms ensure secure computation and communication. The proposed feature-based 198

approach focuses on PUF data security, privacy, and reliability, making it a suitable and 199

efficient option for secure authentication in resource-constrained and heterogeneous edge 200

environments. 201

• PUFs provide hardware-level uniqueness, making each device tamper-resistant and 202

unclonable. PUF-based authentication eliminates the need for storing cryptographic 203

keys, reducing attack vectors such as key theft or tampering. 204

• ML models enhance authentication by detecting anomalies, improving PUF response 205

stability, and adapting to changing environmental conditions. ML-based feature ex- 206

traction ensures accurate authentication while maintaining lightweight computation. 207
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• The proposed authentication protocol is designed to be energy-efficient, lightweight, 208

and secure, minimizing computational overhead on constrained devices. It ensures 209

fast authentication while preserving strong cryptographic security. 210

• The protocol optimizes challenge-response communication to minimize data exchange, 211

reducing bandwidth consumption. By using vectorized challenge-response represen- 212

tations, the system reduces authentication latency without compromising security. 213

3. Related Prior Research 214

PUFs have emerged as lightweight hardware security primitives, offering a robust 215

solution for ensuring system integrity and proving authenticity through their inherent 216

uniqueness and unclonability. While PUFs demonstrate resilience against various external 217

threats, the rapid advancement of technology has introduced sophisticated attack vectors 218

aimed at compromising such systems. Consequently, recent research has focused on 219

enhancing PUF-based security by integrating cutting-edge technologies, such as ML and 220

Artificial Intelligence (AI), to reinforce their robustness and adaptability in modern threat 221

landscapes. 222

Research [12] indicates that PUFs, due to their inherent properties such as irrepro- 223

ducibility, uniqueness, obfuscation, and unpredictability, are highly effective in mitigating 224

a wide range of attacks. These include man-in-the-middle, side-channel, replay, spoofing, 225

reverse engineering, intellectual property hijacking, hardware Trojan insertion, counterfeit 226

hardware, Sybil attacks, denial-of-service (DoS), node capture, and routing-based attacks. 227

Moreover, PUFs eliminate the need to store cryptographic keys in memory, making them 228

particularly suitable for resource-constrained environments due to their low-cost and 229

high-security characteristics. 230

A study on the use of PUFs for secure authentication in edge data centers demonstrates 231

that PUFs provide an efficient and lightweight solution for implementing security at the 232

edge [13]. By combining effective CRP management with the principles of SbD, PUFs 233

enable security to be integrated as a foundational component of the system. This approach 234

facilitates the creation of secure operating environments with continuous monitoring and 235

enforcement of security throughout the entire life cycle of the device. 236

ML techniques have been employed to model PUF behavior, which helps in under- 237

standing and improving PUF-based security. In the research [14], a deep neural network 238

attack on arbiter-PUF has been studied to identify the vulnerabilities and strengthen the de- 239

fense. The research shows that deep neural network (DNN) effectively models OAX-PUFs, 240

revealing security vulnerabilities in combinational logic-based PUF designs and calling for 241

new defenses against ML-based attacks. 242

A study proposes a novel Virtual PUF (VPUF) authentication scheme for IoT networks 243

using a split learning-based encoder–decoder architecture. By offloading computation 244

to the server and transmitting latent representations instead of raw PUF responses, the 245

VPUF reduces power consumption, maintenance, and processing overhead on resource- 246

constrained devices [15]. It addresses limitations of hardware PUFs, such as aging effects 247

and production costs. Experimental results show the scheme achieves 100% authentication 248

accuracy, even under noisy conditions, effectively emulating hardware PUF behavior while 249

ensuring secure and efficient authentication in IoT environments. 250

A novel research involving 5G secure handover authentication protocol using Spik- 251

ing Neural Networks and Fuzzy Logic (SNN-FL) to enhance cybersecurity in mobile 252

networks is proposed in [16]. The protocol mitigates attacks such as man-in-the-middle 253

(MITM), replay, desynchronization, and DoS, while ensuring forward and backward key 254

secrecy. It significantly reduces communication overhead, handover latency, and packet 255

loss compared to existing 5G-AKA and 3GPP R16 protocols. Experimental results show the 256
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proposed method achieves high accuracy (98%), precision (0.97), recall (0.97), and F1-score 257

(0.98), making it an efficient and robust solution for secure communication in large-scale, 258

resource-constrained 5G environments. 259

A machine learning–based authentication framework, PUF-Phenotype, has been pro- 260

posed in [17], utilizing noisy DRAM-PUF responses for secure device identification without 261

reliance on helper data or traditional error correction. Features have been extracted using a 262

modified VGG16 CNN from visual representations of PUF responses, and classification 263

has been performed using lightweight models such as SVM and RF for both device- and 264

group-level authentication. CRP database storage has been eliminated, and intra-group 265

authentication has been enabled on resource-constrained devices. Achieving over 98% 266

accuracy under varying environmental noise conditions, the system has been demonstrated 267

as a robust and scalable ML-driven alternative for IoT security. 268

A study involving ML to aid PUF-based authentication is proposed in [18]. This 269

research proposes a lightweight authentication framework for the Internet of Medical 270

Things (IoMT), integrating ML and PUFs to ensure data integrity and privacy. The proposed 271

method eliminates the need for storing CRPs, reducing communication (68 bytes) and 272

computation costs (2.33 ms). A machine learning-controlled PUF generates unpredictable 273

responses, achieving 99.76% accuracy. The framework effectively mitigates impersonation, 274

replay, and man-in-the-middle attacks while preserving anonymity and forward secrecy. 275

Its efficiency and robustness make it suitable for resource-constrained medical devices, 276

outperforming existing approaches in security and performance metrics. 277

Furthermore, ML and AI have been employed along with PUF for enhancing the 278

security and reliability of the PUF-based security systems. some of the relevant research 279

that addressed various security challenges is listed in Table 1. 280
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Table 1. Comparative table of PUF and ML-based cybersecurity research.

Research Paper Year Algorithm Application Security Challenges Addressed

Millwood et al. [17] 2023 Deep CNN (VGG16),
SVM/RF classifiers

Group-based authenti-
cation in IoT

Noise resilience, elimination of
helper data, scalability

Sajadi et al. [19] 2023 Delay-based ML-
resistant PUF architec-
ture

IoT device authentica-
tion

Resistance to ML modeling attacks,
lightweight implementation

Zhang et al. [20] 2024 4-layer DNN model-
ing PUFs with combi-
national logic

PUF vulnerability anal-
ysis

Exposure of security flaws in
OR/AND logic-based PUFs

Talukder et al. [21] 2024 Supervised ML (e.g.,
RF, SVM)

Network intrusion de-
tection in big data envi-
ronments

Improved detection accuracy, re-
duced false positives

Mahmood et al.
[22]

2024 Supervised and un-
supervised ML tech-
niques

Network intrusion de-
tection systems

Optimizing network security

Chen et al. [23] 2023 Transformer-based se-
quence modeling

Real-time network in-
trusion detection

Timely detection and handling of se-
quential data threats

Hernandez et al.
[24]

2023 Federated learning
with multiple ML
models

Distributed intrusion
detection across IoT
systems

Data privacy, scalability, adaptabil-
ity

Debicha et al. [25] 2023 Adversarial ML for
botnet traffic simula-
tion

IDS robustness evalua-
tion

Exposure of ML-based IDS vulnera-
bilities, attack mitigation

Kaushik et al. [26] 2025 Statistical feature selec-
tion + lightweight ML
classifiers

Intrusion detection in
constrained IoT sys-
tems

Efficient training, improved accu-
racy, lower computation

Tang et al. [27] 2024 RF profiling integrated
with PUF authentica-
tion

Remote keyless entry
system security

Detection of unauthorized access,
mutual authentication

Fortified-Edge 2.0
(Current Work)

2025 ML-based feature ex-
traction and authenti-
cation

PUF-based distributed
authentication proto-
col

Privacy protection, secure CRP han-
dling, communication security

4. Security and Privacy in Edge Frameworks 281

Edge processing has evolved in response to the rapid growth of connected devices 282

that continuously generate large volumes of data. In time-critical applications such as 283

autonomous vehicles, healthcare, and traffic management, where latency is unacceptable, 284

there is a pressing need for faster processing closer to the data source. However, as edge 285

processing moves nearer to the point of data generation, it expands the attack surface, 286

making systems more vulnerable to a range of security threats. The decentralized nature of 287

edge computing complicates the implementation of uniform security measures across all 288

the nodes [28]. 289

The modern era of edge computing adopts a distributed framework, which necessitates 290

effective resource management and secure task offloading to mitigate potential attacks and 291

system failures. Security and privacy becomes critical in edge environments especially 292

when it is a resource-constrained environment. Processing sensitive data at the edge raises 293

concerns about data confidentiality and user privacy. Ensuring secure data handling and 294

storage at the edge is critical to prevent unauthorized access and data breaches [29]. 295
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Table 2. Security and privacy challenges and proposed mitigation techniques.

Privacy & Security Chal-
lenges

Description Proposed Mitigation

Expanded Attack Surface
[30]

Edge nodes deployed in unsecured envi-
ronments become easy targets for attack-
ers.

Use of blockchain, encryption, and secure
authentication protocols.

Sensor Compromise
[31]

Vulnerable medical sensors may be phys-
ically tampered or remotely controlled to
leak data.

Tamper-resistant hardware, PUF-based
key generation, secure boot mechanisms.

Healthcare data security
[32]

Secure storage and transmission of medical
data

Blockchain integration with cloud, ECDSA,
snart contracts

Data Leakage from
Edge/Cloud Nodes
[33]

Sensitive health data can be exposed from
edge caches or cloud storage.

Access control, searchable encryption, and
federated data sharing.

Lack of Standardization
[34]

Inconsistent protocols and vendors hinder
unified security enforcement.

Development of interoperability standards
and unified data governance frameworks.

Privacy of User Health
Data
[35]

Health records must comply with strict
data privacy regulations (e.g., HIPAA,
GDPR).

Smartcard login, user-controlled access,
and privacy-preserving machine learning
models.

Malicious Node Injection
[36]

Rogue devices may be inserted to manipu-
late or extract data.

Digital signatures, node authentication,
and trust management strategies.

Given the inherent challenges in edge computing, security and privacy must be inte- 296

grated as core components of the system architecture, as emphasized by several studies 297

summarized in Table 2. In addition to these, persistent issues such as data minimization, 298

infrastructure security, data anonymity, integrity, authorization, authentication, access 299

control, and confidentiality continue to demand effective solutions. The emergence of ad- 300

vanced technologies such as 6G, AI, blockchain, digital twins [37], and edge intelligence has 301

further expanded the research scope, offering new opportunities to design and implement 302

efficient security protocols tailored for edge computing environments. 303

Security solutions that operate in isolation are not sustainable in the long term, as they 304

tend to increase the attack surface and make the system more vulnerable, ultimately eroding 305

trust in the overall security framework. Moreover, such fragmented approaches can lead to 306

decreased performance efficiency and higher operational costs. A more effective strategy in 307

conjunction with the principles of Security-by-Design (SbD) [38]. This integrated approach 308

ensures end-to-end security throughout the lifecycle of a device or system, enhancing 309

trust, improving performance, and supporting policy compliance from the ground up. 310

Hardware-Assisted Security (HAS) that facilitates SbD by enabling the integration of 311

security mechanisms at the design level through dedicated hardware components has 312

become a foundational principle in modern cybersecurity, especially pertinent to embedded 313

systems, IoT devices, and Cyber-physical systems [39], [40], [41]. This approach also 314

incorporates technologies like trusted execution environments (TEEs), trusted platform 315

modules (TPMs), and hardware security modules (HSMs) to provide security solutions 316

across various applications and computing platforms [42]. 317

Ongoing research in edge computing privacy and security is largely driven by un- 318

resolved challenges such as establishing user trust, enabling collaboration among hetero- 319

geneous systems, developing low-cost fault-tolerant deployment models, and designing 320

lightweight yet secure authentication and verification mechanisms. 321

4.1. Hardware Assisted Security - PUF 322

HAS refers to security mechanisms implemented at the hardware level to protect data, 323

the hardware itself, or the entire system. HAS involves integrating dedicated security 324



Version May 27, 2025 submitted to Future Internet 10 of 29

hardware components, modifying hardware designs, or altering system-level architectures 325

to meet specific security requirements. It facilitates the implementation of SbD and Privacy- 326

by-Design (PbD) principles, both of which emphasize proactive security integration during 327

system development [43]. HAS contributes to overall cybersecurity by supporting a range 328

of security functions, as illustrated in Figure 2. 329
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Figure 2. Cybersecurity functions realized through HAS in SbD paradigm.

HAS complements traditional software defenses by embedding protection mecha- 330

nisms at the hardware level, offering enhanced isolation, observability, resilience, and 331

performance. Despite its advantages, challenges remain in implementation correctness, 332

integration, and long-term adaptability. HAS targets a wide range of threats and vulnera- 333

bilities, including software-based attacks such as code flaws, malicious software behavior, 334

and control-flow attacks. It also addresses microarchitectural and hardware-level exploits 335

like side-channel attacks, fault injection, and unpatched hardware flaws. Additionally, 336

HAS mitigates access control violations stemming from improper resource isolation and 337

unauthorized peripheral access. Broader concerns such as hardware immutability, supply 338

chain threats, and policy enforcement issues also fall within the scope of HAS-enabled 339

protections [44]. 340

PUFs in the context of cybersecurity for IoT devices offer a hardware-based solution by 341

generating unique, device-specific responses based on intrinsic manufacturing variations. 342

PUFs eliminate the need to store secret keys, making devices more resistant to physical 343

and invasive attacks such as eavesdropping, side-channel attacks, and unauthorized access 344

resulting from insecure key storage. They play a critical role in secure authentication and 345

lightweight encryption schemes, providing cost-effective security tailored for resource- 346

constrained environments while addressing both privacy and integrity concerns in IoT 347

systems [45]. 348

Utilizing the intrinsic manufacturing variations in a device to generate a unique 349

fingerprint of that hardware offers the advantage of unclonability, this property of the PUFs 350

gives an edge over other hardware-based security methods as the hacker cannot clone 351

the intrinsic properties of the device. Thus, PUFs can provide a low cost hardware-based 352

security to enable device identification and cryptographic key generation. 353

PUFs are integrated into various systems to bolster security and trust. They find appli- 354

cations in various environments of smart city and smart village infrastructure, providing 355

low-power security solutions in resource-constrained ecosystems. Some of the applications 356

where PUFs are employed are shown in Figure 3. 357
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Figure 3. Application areas of PUF-based security solutions.

When employing PUFs for security, several parameters must be carefully considered. 358

Key indicators for assessing the robustness of a well-designed PUF include the amount of 359

helper data required, reliability, security strength, uniqueness, flexibility, and portability. 360

4.2. PUF Security Challenges 361

PUF offers promising security solutions for embedded systems and IoT devices, how- 362

ever, their practical deployment faces several challenges. A PUF model needs to satisfy the 363

key metrics that evaluate a PUF as a suitable and strong PUF for security purposes. Metrics 364

like uniqueness, reliability, uniformity, bit aliasing, randomness, and high entropy are the 365

key indicators of a strong PUF [46]. 366

Apart from the PUF features, they face other challenges externally, such as: 367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

• Environmental variations: PUFs are vulnerable to external parameters like temper-
ature, voltage, aging, seismic activity, and so on. Ensuring a steady and reliable 
PUF operation under adverse conditions requires error correction systems without 
increasing the system complexity.

• Modelling Attacks: Advanced ML techniques have been used to predict PUF re-
sponses, compromising their security. Certain PUF architectures are vulnerable to
ML-based modelling attacks [47],[48], therefore, PUF designs resilient to such attacks 
need to be considered for security.

• Limited CRP: Supposedly, if the PUF responses generated by a device that satisfies all 
the key metrics making it a strong PUF are finite in numbers, such a device cannot be 
employed for device authentication that requires frequent authentication.

• CRP exhaustion: There is a risk of CRP exhaustion due to repeated use over time, 
when the PUF device cannot generate unique CRPs, and reusing the existing CRPs is 
not a viable solution in the context of security.

• Secure storage: In collaborative environments where distributed computing in in-
volved, which has PUF as a security primitive, and every local device needs to store a 
copy of the CRP data, poses a threat to data privacy and security as the distributed en-
vironment increases the attack surface, any random vulnerable device can be targeted. 385
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• Storage space requirements: Resource-constrained devices will find it challenging to 386

store a large dataset of CRP securely. 387

Addressing these challenges requires continuous research on robust PUF architectures 388

with improved error detection and correction mechanisms, and standardized evaluation 389

frameworks to ensure their effective and secure deployment in the real-world. 390

4.3. Machine Learning in Error Detection and Correction 391

An error occurs when the output information does not match the expected result 392

during execution, or when the output does not accurately reflect the input information 393

during communication. Digital signals often develop errors due to noise during trans- 394

mission or system malfunctions during execution, leading to bit errors where a binary 0 395

may flip to a 1, and vice versa. Factors such as noise, cross-talk, temperature variations, 396

voltage fluctuations, and device aging can adversely affect communication networks and 397

hardware performance, introducing errors. Additionally, external attacks that deliberately 398

manipulate devices or data represent another significant cause of errors in information 399

systems. 400

Traditional error-correcting codes (ECCs) like Hamming, Reed-Solomon, Turbo, and 401

Convolutional codes are employed in correcting errors in communication and storage 402

systems. However, they add redundancy, parity bits, and algebraic techniques to detect 403

and correct errors. These traditional methods face limitations as the data complexity and 404

system noise increase, lowering their adaptability and efficiency [49]. 405

ML has become an indispensable tool in error detection and correction in the current 406

era across various domains, enhancing the system reliability and performance more effec- 407

tively compared to traditional methods. Traditional methods, which work on predefined 408

set of rules fail to adapt well to complex and evolving data patterns. ML algorithms, 409

however, has the capability to learn from data, identify intricate patters, and adapt to new 410

type of errors, making them highly suitable and effective in dynamic environments. ML 411

has been increasingly employed for detecting and correcting code errors across various 412

programming languages. Algorithms such as K-Means, Graph Neural Networks (GNNs), 413

K-Nearest Neighbors (KNN), Linear Regression, Naive Bayes, Random Forest, and Support 414

Vector Machine (SVM) classifiers have been studied for their effectiveness in identifying 415

and correcting code errors. Some models focus specifically on syntax error detection, while 416

others offer theoretical frameworks for broader error correction strategies [50]. However, a 417

more generalized model for automatically detecting and correcting errors irrespective of 418

the programming language is still an open research question. 419

ML-based error detection and corrections have been increasingly employed across 420

various domains that involve data processing and communication. KNN-regression has 421

been researched for error detection and correction in aircraft sensors, which are crucial for 422

the mechanical system. The solution is a data-driven approach where the ML model uses 423

autocorrelation online and compares with the offline library to accurately detect failures, if 424

any [51]. 425

ML methods significantly outperform traditional approaches in handling the high 426

variability and noise associated with Power Line Communication (PLC) channels. ML 427

models such as SVM, Deep Learning (DL), Random Forest (RF), Decision Trees (DT), and 428

KNN are trained on PLC datasets to predict errors, optimize network parameters, and 429

reduce bit error rates (BER). In this context, ML-based techniques demonstrate superior 430

performance compared to conventional error correction methods, such as Hamming codes, 431

Reed-Solomon codes, and Turbo codes [52]. Study shows that SVMs are effective in 432

classifying data in noisy environments for optimal code selection, DL improves feature 433
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extraction for better error correction, and RF identifies error patterns and corrects them 434

with low computational overhead. 435

ML is employed to address the reliability challenges of Digital Computing-in-Memory 436

(DCIM) architectures, focusing on the effects of transient faults and circuit aging that 437

can lead to single-event failures or performance degradation. To mitigate transient faults 438

in NOR gates, the study utilizes model prediction techniques such as the Probabilistic 439

Transfer Matrix (PTM) and Signal Probability Reliability (SPR) methods to analyze fault 440

susceptibility. These ML-based predictive modeling approaches are critical for accurate 441

circuit reliability estimation and for designing robust DCIM systems [53]. Quantum systems 442

represent an emerging research field where ML techniques are increasingly employed in 443

Quantum Error Correction (QEC). Methods such as supervised learning, unsupervised 444

learning, semi-supervised learning, reinforcement learning, and deep learning (DL) are 445

used to improve the detection, classification, and correction of errors in quantum systems. 446

The integration of ML significantly reduces computational latency, enhances the robustness 447

of QEC protocols, and offers scalability for future large-scale quantum computing [54]. 448

Furthermore, ML-based error detection and correction methods are applied across 449

various domains. In real-time weather forecasting, ML models correct prediction errors 450

by learning from discrepancies between model forecasts and observational data, thereby 451

enhancing forecast accuracy. Deep learning (DL) techniques have been used to detect 452

errors in medical datasets, such as mislabeled laboratory samples, helping to maintain data 453

integrity, which is vital for accurate diagnoses and treatments. Additionally, chatbots and 454

virtual assistants employ ML to detect and correct errors in user interactions, improving 455

communication accuracy. By learning from past interactions, ML models enhance response 456

relevance and reduce mistakes over time. 457

5. The Proposed Fortified-Edge 2.0 Framework 458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

To enhance the strength of the authentication system, this research proposes a novel 
authentication protocol that prioritizes data security. In the current scenario, where critical 
PUF CRP data is transmitted over a network, ensuring data integrity is essential to prevent 
compromise by external attacks. Cryptographic methods encrypt plaintext into ciphertext 
for secure communication. However, this research takes security further by uniquely 
processing the plaintext before transmission.

Reliability is a crucial aspect of any security system utilizing PUFs. One of the key 
reliability challenges is the presence of bit errors in PUF responses, which can arise due to 
environmental variations. Therefore, integrating an effective bit error correction mechanism 
is essential for a robust PUF-based security system.

In addition to enhancing security at the edge, the proposed framework aligns with 
broader sustainability objectives by emphasizing computational efficiency and energy 
awareness in IoT systems [55]. By leveraging Physically Unclonable Functions (PUFs) 
and lightweight cryptographic primitives such as ECDSA, the authentication process 
significantly reduces the need for intensive computation and large key storage, which 
are common drawbacks of traditional security protocols. The use of k-mer-based feature 
extraction further contributes to a low-overhead implementation by enabling efficient data 
representation and minimizing processing time. These design choices collectively lead to 
lower power consumption and reduced thermal load, which are critical for prolonging 
device lifespans and supporting scalable, energy-efficient deployments in smart city and 
smart village infrastructures. Therefore, the framework not only addresses the need for 
robust security in heterogeneous edge environments but also supports the long-term goal 
of sustainable IoT system design. 481
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An ML-based PUF bit error detection and correction method is proposed in this 
research [56]. This approach leverages an efficient K -mer s equencing m ethod, which 
processes binary n-bit PUF responses as binary sequences and extracts relevant features. 
The ML model is trained on these features, enabling it to detect errors in new data. This 
method demonstrates high efficiency, achieving up to 99% accuracy. A key advantage of 
using ML is that it does not introduce additional area or computational overhead, unlike 
existing methods such as fuzzy extractors or error correction codes.

The ML-based error correction process is illustrated in Figure 4. The error detection 
and correction process is shown in Algorithm 1 . The n-bit binary PUF responses are 
transformed into binary sequences, referred to as words. A K-mer of 6 is applied to extract 
features, which are then vectorized using CountVectorizer(), into unique integer vectors. 
These vectors serve as references for bit error detection. K-mers algorithms are largely used 
for analysis of genomic datasets, where K-mers represent a contiguous nucleotide or amino 
acid sequence of fixed length K. K-mers are used in bioinformatics for sequence alignment, 
sequence clustering, error correction of sequencing reads, pattern recognition, and so on 
[57]. 497

CRP Dataset Data Chunks

Sequencing 
Model

101011011…

Feature Extraction 
and VectorizationData Preprocessing

101011111…

Error Detection 
and Correction

PUF Response

Corrected ResponseML Model

Figure 4. Error detection and correction model.

Algorithm 1 Bit-Flip Error Classification Using K-Mer and Naive Bayes

Require: Dataset D of N binary sequences, K-mer size k 
Ensure: Trained classifier and evaluation metrics

1: Step 1: Load and Preprocess Data
2:
3:

Read each sequence from D into list S = {s1, s2, . . . , sN} 
Initialize DataFrame DF with column sequence ← S

4: Step 2: Assign Class Labels
5:
6:

For each index i ∈ [0, N − 1], compute class label ci = ⌊i/100⌋ + 1 

Add column DF[class] ← ci
7: Step 3: Extract K-Mers and Vectorize
8: For each sequence si in DF[sequence]:
9:

10:
Generate overlapping K-mers Ki = {si[j : j + k] | 0 ≤ j ≤ |si| − k} 
Concatenate Ki into space-separated string wi

11:
12:

Set DF[wordsi] ← wi
Drop original column DF[sequence]

13: Step 4: Feature Transformation
14: Apply CountVectorizer with n-gram size 4 on DF[words] to obtain matrix X
15: Step 5: Split Dataset
16:
17:

Let y ← DF[class]
Split X, y into training and testing sets:

18: Xtrain, Xtest, ytrain, ytest
19: Step 6: Train and Evaluate Classifier
20:
21:

Train Multinomial Naive Bayes model on (Xtrain, ytrain) 
Evaluate performance on Xtest using accuracy and other metrics
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The error correction model uniquely transforms binary responses into integer vec- 498

tors. By leveraging this transformed data, without directly revealing the original n-bit 499

response—a novel authentication protocol is implemented using feature vectors. The 500

feature-based authentication system, which integrates machine learning and secure authen- 501

tication protocols, is illustrated in Figure 5. 502
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Figure 5. The proposed process flow of feature-based authentication.

The proposed framework illustrates the preprocessing of PUF CRP data and feature 503

extraction using an ML model. Additionally, the model is implemented in a distributed 504

framework, making it suitable for PUF-based security systems deployed in collaborative 505

computing ecosystems at the edge [58]. First, the CRP dataset is used to train the ML 506

model, which is then deployed across multiple edge servers. The distributed framework is 507

implemented using Federated Learning, where each local model is trained on its respective 508

PUF data. Features are extracted, vectorized, and the local model parameters are sent to a 509

global server, which aggregates them using FedAvg. The updated model is then distributed 510

back to the local models at the edge. This distributed error detection and correction system 511

is utilized to authenticate edge devices. In the current scenario, the application considered 512

is Edge Data Centers (EDCs) participating in load balancing at the edge. These EDCs must 513

be authenticated in real time before task offloading. 514

The proposed authentication protocol operates in multiple stages. In the first stage, 515

Client_1 (EDC-1) initiates authentication with Client_2 (EDC-2) to enable task sharing. The 516

selected challenge is vectorized, encrypted using private keys, and transmitted over the 517

network to Client_2. 518

Upon receiving the encrypted challenge, Client_2 decrypts it and reconstructs the 519

original n-bit challenge from its vectors using the local Federated Learning (FL) model. 520

The reconstructed challenge is then applied to the PUF module, which generates the 521

corresponding n-bit response. The local ML model at Client_2 vectorizes the response, 522

encrypts the vectors, and transmits them back to Client_1. 523

Client_1 decrypts the received vectors using its public key and reconstructs the original 524

n-bit response. The extracted response is then verified against the expected value. If the 525

verification is successful, Client_2 is authenticated, and both clients proceed with task 526

sharing. The proposed method eliminates the vulnerability of transmitting crucial PUF 527

data in its original form, improves the data security, and maintains the integrity of the 528

system. 529
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A generalized representation of the combined process flow of the PUF module along 530

with the ML model for secure authentication is shown in Figure 6. 531

ML Model ML Model PUF Module PUF module

Auth Request Ci

f(Ci) = VCf(C’i) = (VC, sKS)f(Ci) = VC

Ci

Ri

f(R’i) = (VR, SR)f(Ri)= VR
f(Ri) = VR
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Auth Result

Extracted featureEncrypted and signed Challenge

Encrypted and signed Response

Decrypted feature

Binary n-bit Challenge

Decrypted feature

Binary n-bit Challenge

Binary n-bit Response

Extracted feature

Binary n-bit Response
Verify(SR, VR, pKC)

PUF Enabled Client -1 PUF Enabled Client - 2

Figure 6. Feature-based authentication between PUF-enabled devices.

Client_1 initiates an authentication request. Client_2’s ML model extracts the feature 532

vector of a challenge in response to an authentication request initiated by Client_1. It then 533

encrypts and digitally signs the resulting vectorized challenge before transmitting it to 534

Client_1. Upon receiving the message, Client_1 decrypts it, verifies the signature, and 535

forwards the challenge vector to its local ML model, which reconstructs the original n-bit 536

binary challenge. This reconstructed challenge is applied to the PUF module, producing 537

an n-bit binary response. The ML model in Client_1 then extracts the feature vector from 538

this response. The vectorized response is subsequently encrypted, signed, and sent back 539

to Client_2. Upon receiving the message, Client_2 decrypts and verifies it, and sends the 540

response vector to its ML model, which reconstructs the binary response. This response is 541

then compared with the expected response from the stored CRP dataset. If the response is 542

verified successfully, an authentication result is sent to Client_1. 543

6. Experimental Results and Analysis 544

This research utilizes a 64-bit Arbiter PUF architecture implemented on a Xilinx 545

BASYS3 FPGA board. A dataset comprising 100,000 entries is generated using 1,000 unique 546

challenges applied across multiple PUF instances. The machine learning model based on 547

k-mer feature extraction is trained and evaluated on a Raspberry Pi 4 to assess performance 548

in a resource-constrained environment. ECDSA is employed for secure communication due 549

to its efficiency, compact signature size, and strong security guarantees. Despite having a 550

smaller key size, ECDSA offers security comparable to that of RSA with significantly larger 551

keys. This reduction in key length minimizes computational overhead, making ECDSA 552

especially well-suited for edge devices. Furthermore, the compact signatures generated by 553

ECDSA help reduce bandwidth consumption, making it an ideal choice for lightweight, 554

low-latency, and secure authentication frameworks deployed in distributed systems. The 555

algorithm is implemented in a client-server model, where the server can be interchanged 556

with any participating client, which acts as a verifier during mutual authentication in a 557

distributed computing environment. 558
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6.1. Experimental Setup 559

The ECDSA-based secure authentication protocol uses asymmetric keys (Pub- 560

lic/Private), which enhances the integrity of the cryptographic system where both client 561

and server have their unique keys and only public keys are shared. The security level 562

and speed of operation of ECDSA algorithm is very high,the computational cost is moder- 563

ate. Using public/private key pairs eliminates the need for sharing secret keys, and the 564

algorithm is resistant to man-in-the-middle attacks. 565

The implementation of the ECDSA authentication protocol using the feature vectors 566

of the CRP data comprises three steps. 567

1. Feature extraction: N-K-mers are used to extract the features of both challenges and 568

responses. The K-mers are converted to vectors using the CountVectorizer function. 569

2. Server: The server selects a random challenge at a given index and extracts the vectors, 570

encrypts the challenge vector using its private key, and sends the package to the client. 571

3. Client: The client will decrypt the package using the server’s public key and convert 572

the vectors to their corresponding binary challenge. The client will also convert the 573

generated response to its feature form using k-mers, convert it to vectors and encrypt 574

the vectorized response, sign it with its private key, and send it to the server for 575

verification. 576

The steps used to extract the characteristics of the challenges and the response are 577

shown in Algorithm 2. This process transforms a binary sequence into a numerical feature 578

vector suitable for secure authentication. It begins by taking a binary sequence B of length 579

m and a k-mer size k, initializing an empty list K to store extracted k-mers. By sliding a 580

window of size k across the sequence, it extracts overlapping substrings Ki from positions 581

i = 0 to i = m − k, appending each to the list K. After collecting all k-mers, the list is 582

converted into a text string representation. A CountVectorizer is then applied, treating 583

each k-mer as a word and counting the frequency of each unique pattern to generate a 584

fixed-length numerical feature vector V. 585

Algorithm 2 Feature Extraction Using K-Mers

Require: Binary Sequence B of length m, K-mer size k
Ensure: Feature Vector V

1: Step 1: Initialize
2: Define an empty list K ← {} to store k-mers.
3: Step 2: Extract K-Mers
4: for i← 0 to m− k do
5: Extract substring Ki = B[i : i + k]
6: Append Ki to list K
7: end for
8: Step 3: Vectorization
9: Convert K into a text string representation.

10: Apply CountVectorizer to transform K into vector V.
11: Step 4: Return Feature Vector
12: Output V as the final feature representation.

Algorithm 3 shows the steps involved in the evaluation on the server side. The 586

process begins by loading the CRP dataset CRP from a local file. A challenge C is selected 587

from the dataset, and feature extraction techniques are applied to generate a vectorized 588

representation VC. To ensure data authenticity and integrity, the server computes a digital 589

signature SC = Sign(VC, skS) using its private key skS, and transmits the signed challenge 590

tuple (VC, SC) to the client. Upon receiving the client’s signed response (VR, SR), the server 591

performs signature verification by validating SR against VR using the client’s public key 592

pkC. If the verification succeeds and the received vectorized response VR matches the 593



Version May 27, 2025 submitted to Future Internet 18 of 29

expected response VE stored in the dataset, the server ends the authentication process with 594

a success message. Otherwise, an authentication failure message is generated. To facilitate 595

performance evaluation, the server records critical metrics, including execution time, CPU 596

utilization, and memory usage, before terminating the session. 597

Algorithm 3 Server Authentication Process

Require: Challenge-Response Dataset CRP
Ensure: Authentication Result

1: Step 1: Initialize
2: Load dataset CRP from CSV.
3: Step 2: Challenge Selection
4: Select a challenge C ∈ CRP .
5: Generate vectorized challenge VC using feature extraction.
6: Step 3: Challenge Signing
7: Compute digital signature SC = Sign(VC, skS).
8: Send tuple (VC, SC) to client.
9: Step 4: Receive and Verify Response

10: Receive signed response (VR, SR) from client.
11: Verify signature: Verify(SR, VR, pkC).
12: if Signature SR is valid then
13: if VR = VE (expected response) then
14: Send authentication success message.
15: else
16: Send authentication failure message.
17: end if
18: else
19: Send authentication failure message (invalid signature).
20: end if
21: Step 5: Log and Close
22: Log execution time, CPU, and memory usage.
23: Close connection.

Algorithm 4 shows the steps involved in the evaluation on the client side. The client 598

authentication process begins with the client establishing a connection to the server and 599

sending an authentication request. Upon receiving a tuple consisting of the encrypted 600

vectorized challenge Venc
C and the corresponding server-generated signature SC, the client 601

decrypts Venc
C to recover the original vectorized challenge VC. The authenticity of the chal- 602

lenge is then verified by validating the server’s signature SC against VC using the server’s 603

public key pkS. If the signature verification succeeds, the client reconstructs the original 604

binary challenge C from VC, applies it to its embedded PUF to generate the binary response 605

R, and vectorizes the response to produce VR. Subsequently, the client signs VR using 606

its private key skC to produce a signature SR. The client then transmits the signed tuple 607

(VR, SR) back to the server. If the server’s signature verification fails, the client aborts the 608

authentication session to prevent further communication with a potentially compromised 609

server. Finally, the client logs critical performance metrics, including execution time, CPU 610

usage, and memory consumption, before closing the connection. 611

The secure authentication process using ECDSA is shown in Algorithm 5. The ECDSA 612

Key Management and Signing process begins by attempting to load existing key pairs for 613

both the server (skS, pkS) and the client (skC, pkC) from secure file storage. If the keys are 614

missing or found to be invalid, new ECDSA key pairs are generated for both entities using 615

a specified elliptic curve C, and the resulting keys are securely stored in PEM format for 616

future sessions. Once key management is completed, the signing process involves taking a 617

message M and a corresponding private key sk, computing its digital signature σ using the 618

ECDSA algorithm, and subsequently encoding the signature into a base64 format σb for 619
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Algorithm 4 Client Authentication Process

Require: Server Public Key pkS, Client Private Key skC
Ensure: Authentication Result

1: Step 1: Initiate Authentication Request
2: Establish a connection with the server.
3: Send an authentication request.
4: Step 2: Receive and Verify Challenge
5: Receive tuple (Venc

C , SC) from the server.
6: Decrypt Venc

C to obtain VC.
7: Verify signature Verify(SC, VC, pkS).
8: if Signature is valid then
9: Reconstruct binary challenge C from VC.

10: Apply C to the PUF to generate response R.
11: Vectorize R to obtain VR.
12: Sign VR using client private key to obtain SR.
13: Send tuple (VR, SR) to the server.
14: Receive authentication result.
15: else
16: Abort connection (invalid server signature).
17: end if
18: Step 3: Log and Close
19: Log execution time, CPU, and memory usage.
20: Close connection.

transmission or storage. For signature verification, the received base64-encoded signature 620

σb is first decoded to recover the original signature σ, and the verification is performed 621

against the message M using the public key pk. The verification process outputs whether 622

the signature is valid or invalid, ensuring the integrity and authenticity of transmitted 623

messages within the authentication framework. The mathematical symbols used in the 624

process algorithms are shown in Table 3. 625

Table 3. Mathematical Symbols Used in ECDSA Key Management

Symbol Meaning
C ECDSA Curve (e.g., NIST256p)

skS, pkS Server’s Private/Public Key
skC, pkC Client’s Private/Public Key

M Message to be signed
σ ECDSA Digital Signature
σb Base64 Encoded Signature

Sign(M, sk) Signing Function
Verify(σ, M, pk) Signature Verification Function

Base64Encode(σ) Base64 Encoding
Base64Decode(σb) Base64 Decoding

6.2. Analysis of Results 626

The binary CRP data is converted to its vector form using ML algorithms. The 627

vectorized data is analyzed and visualized first to study the distribution of the feature 628

values across the challenge features and response features. Figure 7 shows the distribution 629

of feature values, showing how challenge features correlate with response features and 630

vectorization. 631
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Algorithm 5 ECDSA Key Management and Signing

Require: ECDSA Curve C, File Paths for Key Storage
Ensure: Persistent Key Pairs for Server and Client

1: Step 1: Load or Generate Keys
2: Server: Attempt to load (skS, pkS) from files.
3: Client: Attempt to load (skC, pkC) from files.
4: if Keys are missing or invalid then
5: Generate new ECDSA key pair (skS, pkS) for server using curve C.
6: Store (skS, pkS) in PEM format.
7: Generate new ECDSA key pair (skC, pkC) for client using curve C.
8: Store (skC, pkC) in PEM format.
9: end if

10: Step 2: Signing a Message
11: Given a message M and private key sk, compute:
12: σ = Sign(M, sk) using ECDSA.
13: Encode signature: σb = Base64Encode(σ).
14: Return signature σb.
15: Step 3: Verifying a Signature
16: Given message M, signature σb, and public key pk:
17: Decode: σ = Base64Decode(σb).
18: Verify using ECDSA: Verify(σ, M, pk).
19: Return verification result (valid or invalid).
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Figure 7. Feature value distribution of challenges and responses.

The correlation is estimated using the Pearson Correlation Coefficient (PCC), which 632

measures the linear correlation between each challenge feature and the corresponding 633

response feature. PCC is the ratio between the covariance of two variables and the product 634

of their standard deviations, the result is always between -1 and 1. Mathematically, it is 635

represented by equation 1. 636

r =
cov(X, Y)

σXσY
(1)

where: 637

• cov(X, Y) is the covariance between variables X and Y, 638

• σX and σY are the standard deviations of X and Y, respectively. 639

From the evaluations, the correlation values obtained are: Average Correlation: 0.2721, 640

Maximum Correlation: 1.0000, and Minimum Correlation: -0.0964. A correlation average 641

of 0.27 is a low to moderate value, this means the challenge feature and response features 642

are somewhat related but largely independent. This is good for PUF-based security, as 643

a high average correlation would mean that attackers could predict the response from 644
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Figure 8. Scatter plot of extracted response features.

the challenge easily. When selecting the challenges for authentication, those with high 645

correlation can be omitted. 646

A scatter plot of the discrete feature values is shown in Figure 8, which shows that 647

the challenge and response vectors are mostly smaller integer values because of count 648

vectorization frequencies. Many challenge and response pairs seem to occupy a small set 649

of possible values, and a low variation across features aligns with the Pearson correlation 650

average of 0.27 found earlier. For some pairs, as the challenge feature values increase, 651

response feature values also seem to increase, although not strongly linearly. 652

The evaluation of the entropy distribution of the response features is shown in Figure 653

9. It is seen that most of the responses generated appear in the high entropy region between 654

1.4 and 1.6, which implies that the feature values are well spread and less predictable. 655

However, a small number of features have lower entropy in the range of 0.6-1.2, and these 656

responses can be omitted from use in the authentication process. The entropy plot also 657

shows that it varies across features and not every feature is equally random, which is quite 658

expected in real-world PUF response data. 659

Distribution of Entropy for Response Features
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Figure 9. Distribution of entropy for response features.

The challenge vectors generated are visualized to study the distribution of features by 660

analyzing selected challenge vectors as shown in Figure 10, which displays five randomly 661

selected challenge vectors, each line represents a vectorized challenge, showing feature 662
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values across indices. High variability is seen in the vectors, suggesting the diversity of 663

challenge representation. 664

Feature Index

Visualization of Vectorized Challenge Data
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Figure 10. Distribution of challenge vectors.

Figure 11 shows five randomly selected response vectors; the difference in representa- 665

tion from challenge vectors is because of the PUF mechanism. It is seen that some response 666

vectors have higher peak values, which reflect a stronger feature significance. This study 667

will help select a pair of challenge responses with stronger feature representations for 668

authentication purposes. 669

Visualization of Vectorized Response Data
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Figure 11. Distribution of response vectors.

The results of the code execution are illustrated in Figure 12 and Figure 13. In the 670

server-side evaluation, the server waits for a client request after opening the connection. the 671

server then selects a binary challenge from the dataset and converts it into its corresponding 672

vectorized representation. This vectorized challenge is securely transmitted to the client. 673

After receiving the client’s vectorized response, the server reconstructs the original binary 674

response sequence. It performs authentication by verifying whether the reconstructed 675

response matches the expected response associated with the challenge. If there is a match, 676

the server sends the successful authentication message to the client. 677

Similarly, on the client side, the client sends an authentication request to the server, 678

and receives a vectorized challenge in the encrypted form, client will decrypt the payload, 679

extract the vectorized challenge and reconstruct the original binary sequence, the binary 680
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Figure 12. Server-side authentication results.

challenge is then applied to the PUF device and binary response is obtained. The binary 681

response is vectorized, encrypted, and sent to the server for verification. The client will 682

wait for the authentication results. If the authentication fails, the connection between the 683

client and server is closed.

Figure 13. Client-side authentication results.
684

During each round of server-client authentication, the performance metrics are 685

recorded. For real-time applications in resource-constrained environments, it is important 686

to prove that there is lower computation time and lower bandwidth consumption. The 687

performance metrics of the current protocol are shown in Table 4. 688

The bandwidth of the authentication process is computed as follows: Total data 689

transferred is the sum of challenge data size in bytes and response data size in bytes, that is 690

662 bytes and 626 bytes, converted to bits by multiplying by 8. The total execution time is 691

the total time taken by the server to authenticate the client, which is 0.028031 seconds. 692

Bandwidth =
Total Data Transferred× 8

Total Execution Time
(2)

Bandwidth =
1288× 8
0.028031

≈ 367687.69 bps (≈ 368 Kbps) (3)

The total bandwidth of the authentication process is estimated as close to 368 Kbps. 693

The total authentication time taken is an average of 0.02 seconds, and the bandwidth 694

consumed for the feature-based authentication protocol is 368 kbps, as shown from the 695

evaluation using equations 2 and 3. 696
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Table 4. Performance metrics of server and client.

Metric Server Side Client Side
Total Execution Time (ms) 28.031 28.031
Challenge Signing Time (ms) 1.067 -
Challenge Receiving Time (ms) - 3.133
Response Receiving Time (ms) 3.952 -
Response Signing Time (ms) - 1.002
Response Sending Time (ms) - 0.000
Signature Verification Time (ms) 2.003 1.948
CPU Usage (%) 32.40 36.90
Original Challenge Size (bytes) 105 -
Vectorized Challenge Size (bytes) 662 -
Original Response Size (bytes) - 105
Vectorized Response Size (bytes) 626 -

697

698

699

700

6.3. Security Analysis

The proposed feature-based authentication framework addresses critical security chal-
lenges inherent to integrated systems employing PUF. By leveraging k-mer-based feature 
extraction and ECDSA for secure message authentication, the current implementation is 
designed to be resilient against a range of prominent theoretical threats, as outlined below: 701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

• Replay attacks: The proposed framework resists replay attacks by incorporating fresh 
PUF challenges for each authentication. Since challenges are randomly selected and 
signed by the server, reusing previous response vectors will fail signature verification 
or mismatch the expected response, thereby preventing unauthorized reuse.

• Modeling Attacks: A machine learning attack aims to build predictive models of 
a PUF’s behavior using observed CRP data. The proposed system prevents this by 
never transmitting the raw CRPs. Instead, it transmits vectorized abstractions of the 
challenge and response, which are obfuscated and lack direct correlation to the binary 
input-output, significantly reducing the feasibility of modeling attacks.

• Man-in-the-Middle (MitM) Attacks:All the transmitted data, including the vector-
ized challenge and response, is digitally signed using ECDSA. Any tampering or 
substitution by an adversary in transit will result in signature verification failure at 
the receiver, thereby preventing MitM attacks.

• Side-Channel Attacks:: By transmitting only the abstracted feature vectors rather than 
raw binary data, the protocol minimizes the information exposed over the channel. 
This design inherently reduces side-channel leakage that could otherwise be exploited 
to infer the internal PUF behavior or secret keys.

• Cloning Attacks:The use of PUFs ensures that device identities are physically bound 
and unclonable due to inherent hardware variations. Even if the attacker observes 
multiple authentication sessions, reproducing the exact behavior of the device is not 
possible without access to the original hardware. 723

6.4. Comparitive Perspective 724

The superiority of the current research is demonstrated through significant enhance- 725

ments over the preliminary Fortified-Edge 2.0 framework [59]. The current work addresses 726

critical security challenges by introducing a secure, low-latency, and low-bandwidth au- 727

thentication protocol tailored for resource-constrained edge environments. A comparative 728
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analysis of the Fortified-Edge research with state-of-the-art research from Table 1 is pre- 729

sented in Table 5. 730

The preliminary work presents a machine learning-based authentication monitoring 731

system for the EDC, which continuously monitors the authentication process using parame- 732

ters such as location, EDC ID, site ID, authentication time, and others. Threats are detected 733

by identifying anomalies in these parameters and flagging them as potentially malicious 734

requests. While the preliminary work ensures security by monitoring incoming authentica- 735

tion requests and processes, it does not address broader security challenges such as data 736

confidentiality and privacy during communication. It does not meet the requirements for 737

a low-latency, low-bandwidth authentication protocol essential for resource-constrained 738

edge environments. 739

In contrast, the current work effectively addresses these challenges by introducing a 740

secure, lightweight authentication protocol based on machine learning-driven PUF feature 741

extraction. This approach ensures that critical PUF CRP data remains protected during 742

transmission, even across untrusted communication networks. The results from state-of- 743

the-art literature show the efficient use of ML for security solutions in various applications. 744

However, using a feature-based authentication process as proposed by the Fortified-Edge 745

2.0 research is novel. 746

7. Conclusions and Future Research 747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

Security solutions leveraging embedded hardware provide strong protection without 
adding complexity to the system architecture. HAS is an emerging area that enhances 
privacy and security by incorporating SbD principles, embedding security as an integral 
and continuous process throughout the life cycle of a device or system. PUFs represent 
a secure, lightweight, and robust solution within the HAS paradigm, particularly well-
suited for optimization in resource-constrained environments such as collaborative edge 
computing in smart village infrastructures. ML techniques further strengthen the security, 
integrity, and reliability of PUF-based systems. This research focuses on improving the 
reliability and security of device identification and data communication by proposing 
a novel feature-based authentication protocol. By transmitting sensitive CRP data in a 
vectorized form, the protocol ensures that critical information remains concealed from 
potential adversaries within the network. The k-mer-based feature extraction model ef-
ficiently derives distinctive features from binary challenge and response sequences and 
supports accurate reconstruction of the original sequences from the extracted vectors. This 
method enhances the confidentiality and integrity of transmitted data. Statistical analysis 
of the extracted feature vectors demonstrates strong correlation and high entropy levels, 
characteristics essential for reliable PUF operation in real-world applications.

The use of PUF eliminates the need for storing and retrieving cryptographic keys 
significantly reducing the computational complexity and associated power-overhead. Addi-
tionally, the ECDSA algorithm is selected over RSA for shorter and secure keys, contributing 
to reduced computational cost and energy usage. The k-mer based feature extraction further 
reduces the dimensionality of the data, enabling faster computation.

Performance evaluation shows that the proposed protocol is computationally efficient, 
consuming minimal CPU resources and achieving execution times of approximately 28ms. 
Additionally, bandwidth consumption is measured at around 368 Kbps, highlighting 
the protocol’s suitability for deployment in resource-constrained environments. Future 
work includes evaluating the protocol’s resilience against various external attack models, 
validating its performance across different hardware platforms, and enhancing the design 
to offer robustness against quantum adversaries. 776
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Table 5. Comparison of results with state-of-the-art literature.

Research ML Algo-
rithm

Application Cryptography 
Algorithm

Auth.
Time (s)

Bandwidth
(Kbps)

Accuracy
(%)

Energy
efficiency &
Sustainabil-
ity

Scalability

[17] LR and RF
classifiers,
CNN for
feature
extraction

PUF be-
haviour
authentica-
tion

NA NA NA 98.4 No real-
time infer-
ence, high
energy
efficiency

Group-
based
DRAM-
PUF
limits
scalabil-
ity

[21] DT, RF
and Extra
Tree

Network
intrusion
detection

NA NA NA 99.99 Lacks
energy
profiling,
moderately
sustainable

High,
tested on
various
bench-
mark
datasets

[22] RF, DT,
KNN,
MLP,
ANN,
CNN

Network
intrusion
detection

Multi-factor
authentica-
tion (MFA)

NA NA 99.97 Moderate
energy
efficieny,
designed
to reduce
long-term
environ-
mental
impact

Supports
dis-
tributed
ML and
scalable
IDS

[23] Decision
Trans-
former

Network
intrusion
detection

NA NA NA 99.33 High
energy
efficieny,
high sus-
tainability

DTs scale
well with
data

[27] CNN Remote key-
less entry

XOR-based
secret key
encryption

2.05 NA 99.8 Moderate
energy
efficiency,
Higher
hardware
depen-
dency
reduces
sustainabil-
ity

Limited
to vehicle
specific
setup

[59] SVM Authentication 
Monitoring

PUF based
Authentica-
tion

NA NA 99 Design
optimized
for low
resource
usage

Designed
for collab-
orative
environ-
ment

Fortified-
Edge
2.0
(Cur-
rent
work)

K-mer PUF CRP
Feature
Extraction

ECDSA 0.028031 368 99.74 Lightweight
ECDSA
and ML
model for
high energy
efficieny
and high
sustainabil-
ity

Feature-
based
encoding
supports
dis-
tributed
ecosys-
tem
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