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Abstract—As the global population is increasing and agri-
cultural resources are diminishing, effective management of
plant diseases become critical. Convolutional Neural Network
(CNN)-based models have been widely adopted in Agriculture
Cyber-Physical Systems (A-CPS) due to their high accuracy.
However, these models require large, labeled datasets for training,
limiting their practicality in plant disease detection where data
is heterogeneous, scarce, and subjected to continual evolution.
To address these challenges, we propose Semantic-Search, a
knowledge-driven system that interprets plant diseases based on
high-level semantic features like visual patterns, colors, and crop
type, rather than relying solely on low-level image features. The
system classifies diseases by querying a structured knowledge
base using these semantics. “semantic search” here refers to
classification based on semantic feature extraction and knowledge
base querying. It enables greater adaptability, interpretability,
and robustness to intra-class variability caused by differing en-
vironmental conditions. The system can incorporate new disease
classes through simple knowledge base updates, eliminating the
need for retraining. This facilitates efficient scaling to evolving
set of diseases. We validated the proposed approach on a dataset
of 11,000 images encompassing 21 diseases across 11 plant
species, achieving an accuracy of 90%, thereby demonstrating
its effectiveness, scalability.

Keywords—Agriculture Cyber-Physical System (A-CPS); Con-
volutional Neural Networks (CNN); Natural Language Pro-
cessing (NLP); Cognitive Computing; Semantic Understanding;
Knowledge-driven; Database Query

I. INTRODUCTION

Advancements in the Internet of Things (IoT) and imag-
ing techniques have been integrated into Agriculture Cyber-
Physical Systems (A-CPS) [1] to detect disease infestations
at early stages and enable timely treatment. While imaging
techniques can effectively detect whether crops are diseased,
they are not robust enough to accurately classify the specific
type of disease. To address this limitation, widespread develop-
ment of CNN-based methods using Artificial Intelligence (AI)
and Machine Learning (ML) started within the framework of
precision agriculture [2].

All CNN-based classification and segmentation models
consist of two primary components: a feature extractor and
a classifier. The feature extractor uses a series of 2D or
3D kernels at various scales to capture the most significant
features effectively. The classifier layer receives the extracted
features and uses them to determine the unique combination of

characteristics that define each class [3]. The feature extractor
and classifier are trained using machine learning algorithms,
eliminating the need for human intervention in curating them.
They rely entirely on the data provided during training,
learn the most effective features and classification rules. This
modeling paradigm is termed Data-Driven Classification as
depicted in Fig. 1. So, to add a new class to the model, it
must be provided with a large number of images representing
that class, and the model must be retrained. This process
involves significant computational resources and human effort
for labeling the images.
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Figure 1: Illustration of the data-driven approach.

In contrast to data-driven methods, this article "Semantic-
Search" introduces a novel approach that performs classifi-
cation based on the knowledge embedded within the model.
The proposed method semantically analyzes the image and
utilizes the detected semantic features along with an associated
knowledge base to achieve classification through a knowledge-
driven approach [4].

The rest of the paper is organized as follows: Section
II introduces our proposed solution and explains its new
contributions in detail. In Section III, we provide a brief
overview of previous work in this area, helping to set the
context for our approach. Section V explains our proposed
method in detail. In Section VI, we present the experimental
results. Finally, Section VII concludes the article and offers
suggestions for future research.
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II. NOVEL CONTRIBUTIONS OF THE CURRENT PAPER

A. Problem Addressed in the Current Paper

In agriculture, the vast diversity of plant species and the
multitude of diseases affecting them pose significant chal-
lenges for image-based classification. A single disease may
exhibit different visual features across varying geographic
and environmental conditions, resulting in an exceedingly
large number of disease classes. Consequently, acquiring a
sufficiently comprehensive set of leaf images for every class
to effectively train a CNN model is infeasible. This inherent
data dependency of data-driven CNN-based AI models renders
them unsuitable for scaling and adapting to new disease
classes. Semantic-Search aims to overcome these challenges
by classifying images based on their semantic characteristics,
making it more adaptable to new classes and transparent in
its decision-making process. It enables rapid development of
localized models tailored to specific geographic regions and
effectively handles intra-class variability caused by environ-
mental factors.

B. Proposed Solution of the Current Paper

Table I: Brief overview of a few disease semantics.

Plant Disease Symptom Semantics

Apple Cedar rust Orange or yellow patches
encircled by a red band,
that turn brown as the
infection progresses.

Objects: Patches
Colors: Brown,
Red, Yellow,
Orange

Apple Powdery
mildew

White, velvety patches
appear on the underside of
the leaves.

Texture: Velvety
Colors: White

Corn Rust Brown flecks appear on
the surface of the leaves.

Objects: Flecks
Colors: Brown

Grape Rot Brown lesions appear on
the leaves, eventually de-
veloping black.

Objects: Lesions
Colors: Brown,
Black

Tomato Black mold Presence of black or
brown lesions.

Objects: Lesions
Colors: Black,
Brown

120 types of plant diseases were studied to analyze their
semantics and visual features. Our examination revealed that
while each disease related to a specific crop has distinctive
characteristics, different diseases across various plants may
share similar visual traits. This pattern is evident in diseases
such as Blight disease in corn and Anthracnose disease in
grape plants exhibit spots with gray or brown coloration.
Powdery mildew disease appears as a white, powdery sur-
face on grape plants, whereas in apples, it manifests as a
velvety texture. Table I provides an overview of a few plant
diseases descriptions from the Plant Village website [5] and
the corresponding semantic characteristics they exhibit. Thus,
despite the vast number of plant leaf diseases, each disease can
be represented as a combination of a semantic feature and a
few colors from a limited set of colors and semantic features.
This structured representation significantly reduces the feature
space of the classification model, enabling it to classify a
large number of diseases more efficiently while improving its
generalization ability.

While CNN-based AI models rely heavily on data for
learning and classification, humans process images using their
cognitive abilities and domain knowledge to make informed
decisions. Human brains are embedded with cognitive skills
necessary to detect various objects in an image and se-
mantically understand it, as well as to identify entities and
objects in a known language. These cognitive abilities enable
the retrieval of the corresponding label for the image based
on acquired knowledge [6]. However, since the necessary
cognitive abilities are already present, adding a new class
requires updating only the knowledge.

By using CNN-based models to identify, localize the seman-
tic patterns present in leaf diseases and applying color filters to
detect the colors in the diseased area, meaningful textual-visual
features can be extracted. When combined with the crop name,
these features can effectively classify the disease by querying
an associated database that serves as a knowledge base. On the
other hand, integrating Natural Language Processing (NLP)
into the system will enable it to effectively identify entities
such as plant names, disease names, semantics, and colors
from the presented text. This capability allows the model
to extract disease-related information from text, accurately
associate it with its semantic features, and create a record in
the database, contributing to continuous knowledge updating.

Thus, this paper proposes mimicking human cognitive abili-
ties where by CNNs are utilized for cognitive computing while
NLP, and a Database serve as a knowledge base. This approach
leverages a knowledge-driven mechanism, as illustrated in Fig.
2, enabling the classification model to learn a new class from
a simple text input without requiring a large number of labeled
images. As a result, it significantly reduces computational
power requirements and minimizes human effort needed.

C. Novelty and Significance of the Proposed Solution
The novel contributions of Semantic-Search are as follows.
1) Semantic Understanding: The proposed approach em-

phasizes identifying patterns and objects within the
diseased area, along with the semantic description of
the disease, rather than rigidly coupling the model to
specific low level features of individual diseases.

2) Knowledge-Driven Approach: Instead of relying
solely on data, the classification method leverages
a knowledge-based system, allowing the addition or
removal of disease classes through simple text inputs
and database updates.

3) Interpretability and Explainability: The Semantic-Search
approach provides users with a description of the identi-
fied semantics, offering a transparent explanation for the
classification decision, unlike black-box methods [7].

4) Scalability: The proposed knowledge update mechanism
is simple and efficient, making it easy to scale to a
larger number of diseases without requiring extensive
computational resources.

III. RELATED PRIOR WORKS

Image classification and object recognition have attracted
significant interest from researchers, resulting in the develop-
ment of various classification methods. An image processing
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Figure 2: Proposed Semantic-Search (Knowledge driven approach).

Table II: Brief summary of relevant literature.

Research Year Method adopted Remark Comparison

Park et al. [8] 2004 Texture feature classification by
neural network.

Lacks semantic understand-
ing and requires retraining for
new classes.

Less adaptive than Semantic-Search,
which avoids retraining and incorporates
new classes via text inputs.

Agrawal et al. [9] 2011 Image histogram comparison using
an SVM classifier.

Does not consider shape or
texture, leading to potential
misclassification.

Semantic-Search leverages multiple se-
mantic cues (texture, color, crop type),
reducing misclassification risk.

Kai. [10] 2019 Classification using color, texture,
and shape features with an SVM
model.

Requires retraining when
adding new classes.

Semantic-Search eliminates retraining and
scales efficiently with knowledge base
updates.

Vailaya et al. [11] 2001
1999

Low-level feature extraction
combined with Bayesian networks
for hierarchical classification.

Requires retraining for new
classes.

Semantic-Search directly integrates high-
level semantics, offering more inter-
pretability and flexibility than Bayesian
classification of low-level features.

Yang et al. [12] 2007 Representing key points as text
using Bag of Visual Words and
classifying the word histogram
with SVM.

Lacks explicit semantic
meaning in classification.

Semantic-Search employs explicit seman-
tic features in knowledge base, leading to
better interpretability and adaptability.

Su et al. [13] 2012 Bag of visual words and semantic
attributes.

Improves interpretability but
still relies on feature vector
classification.

Semantic-Search extends semantic
attributes with structured knowledge
querying, enabling direct disease class
addition without retraining.

Marino et al. [14]
Menglong et al. [15]

2017
2018

Knowledge maps are built to model
relationships between objects in
images for classification.

Requires complex knowledge
map construction and traver-
sal.

Semantic-Search simplifies knowledge
modeling via direct semantic-keyword
matching, making updates easier and less
resource-intensive.

Jearanaiwongkul et al. [16] 2018 Ontology-based classification of
plant diseases using structured
knowledge from farmers.

Requires a structured ontol-
ogy, farmers have to input
their findings to classify.

Semantic-Search generalizes ontology-
based methods by using visual semantics
and knowledge bases, reducing reliance on
manual farmer input.

Semantic-Search 2025 Semantic understanding with
knowledge base search.

Does not require retraining,
new classes can be added
efficiently via text inputs.

NA

algorithm extracting texture features was proposed in [8] to
classify images by feeding the texture feature vector into a
neural network, rather than relying on fine-grained details as in
CNNs. To interpret image content, the authors of [9] computed
the image histogram and compared it with histograms of
images from known classes using an SVM. However, since
this approach does not account for shapes, the article [10]
incorporated color, texture, and shape features for classifica-
tion. In [11], the authors aimed to mimic human perception
of images by computing low-level features using color and
edge information. These features were analyzed hierarchically
through Bayesian networks, requiring retraining to incorporate
a new class.

While the above methods used content and semantics in the
image to classify them, the following methods try to represent
the findings in the image as text and classify them. Bag of
visual words has been used to classify scene in [12]. They

represented findings in the image as histogram of words and
is presented to a SVM classifier for classification. Authors
of [13] proposed usage of semantic attributes to overcome
the limitation of lacking explicit meanings in bag of words.
An image may contain multiple objects, and the relationships
between these objects can play a crucial role in classification.
This key characteristic of images has been explored in [14] and
[15], where knowledge maps were developed to capture rela-
tionships between real-world objects. These maps were then
traversed using identified objects to aid in image classifica-
tion. Similarly, [16] explored an ontology-based approach for
classifying plant diseases, leveraging insights gathered from
farmers. These methods either require retraining of the classi-
fier or rely on intricate knowledge maps, which are complex
to construct and traverse. To overcome these challenges, we
propose a semantic understanding framework wherein image
features are interpreted meaningfully and matched against a
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relational database serving as a knowledge base. This approach
enables the addition of new disease classes without retraining
the model and with minimal human intervention. A brief
overview of the related works, along with a comparison to
the proposed method, is presented in Table II.

IV. KNOWLEDGE-DRIVEN FEATURE ENGINEERING

From Table I, we observe that each plant leaf disease can be
represented as a combination of an object and specific colors.
Table III provides a consolidated list of the semantics derived
from the plant diseases studied. Colors with very similar hues,
where human perception may not reliably distinguish, were
merged. For example, orange was merged into brown due to
their close visual similarity.

Similarly, to add a new class to the model, a text input
describing the disease is provided, and the corresponding
entities are extracted using NLP methods. Table IV presents
the different types of entities to be identified in the given text.

Table III: Overview of engineered semantics.

Semantics Instances

Shape Spot (Spots, Lesions, Patches), Flecks, Curls, Stripes
Color Yellow, Black, Brown, White, Red, Gray, Pink
Texture Powdery, Mosaic, Velvety

Table IV: Types of entities to identify using NLP.

Entity Type Examples

Plant Apple, Tomato, Corn
Disease Powdery Mildew, Rust, Blight
Color Yellow, Brown, Dark Green
Semantic Spots, Stripes, Patches, Powdery

V. THE PROPOSED METHOD

The proposed knowledge-driven method consists of two
distinct paths: one for learning new classes and the other
for performing inference, both utilizing a common database.
The detailed construction and functionality of the model are
presented in the following subsections.

A. Learning

To emulate human learning, we propose training the model
using textual input from the user, where the disease is de-
scribed through semantic attributes and visual features. The
following subsections outline the methods employed for learn-
ing, as illustrated in Fig. 3.

1) Natural Language Processing: Analyzing human lan-
guage to extract meaning or context from a given text is known
as Natural Language Processing (NLP). Since our goal is to
recognize the entities listed in Table IV from a given text, we
incorporate Named Entity Recognition (NER) into our model.
The first step in Named Entity Recognition (NER) is tokeniza-
tion, where the input text is segmented into individual words
or subwords. After tokenization, embeddings for these tokens
are computed using spaCy’s Tok2Vec pipeline, which cap-
tures contextual relationships between words. These contextual
embeddings, are then processed by a neural network-based

Start

Stop

The input text is split into tokens (words/sub words)

Named entities are identified using contextual and learned patterns

The plant disease database is updated with INSERT using the identified 

Named Entities to add a new disease class to the database

Word embeddings are computed to group tokens with similar meanings

Figure 3: Learning workflow of the proposed method.

sequence labeling model. In this process, spaCy’s transition-
based approach [17] leverages a CNN feature extractor to
analyze the embeddings in the surrounding context and assign
each token to a predefined entity category, enabling the identi-
fication of relevant entities within the text. Thus, when a user
provides a textual description of a disease, the NER model can
accurately identify key entities such as the plant name, disease
name, disease’s semantic features, and associated colors.

2) Knowledge Updating: A database is a system that en-
ables structured storage, updating, and retrieval of information.
Among various types of databases, the Relational Database
Management System (RDBMS) [18] is the most widely used.
In an RDBMS, data is organized in the form of tables, where
each entry is referred to as a record. However, RDBMS does
not support storing lists directly, meaning multiple colors
related to a disease cannot be stored in a single column
efficiently. Additionally, spelling mistakes or extra spaces can
cause inconsistencies in data retrieval. To address this, colors
and semantic features are stored in separate tables, and these
child tables are linked to the parent plant diseases table using
foreign keys. Instead of storing color names directly, each
disease record references the corresponding color by its unique
ID, ensuring data consistency, normalization, and efficient
querying as illustrated in the Entity-Relationship Diagram
(ERD) in Fig. 4.

id value id value

1 Black 5 Pink

2 Brown 6 Purple

3 Yellow 7 White

4 Red 8 Gray

semanticscolors

disease_id color_id

1 1

1 2

2 1

2 2

3 Null

disease_colors

id plant_name disease_name semantics_id

1 Grape Leaf blight 4

2 Tomato Black mold 4

3 Apple Powdery mildew 1

diseases

id value id value

1 Velvety 5 Flecks

2 Powdery 6 Stripes

3 Mosaic 7 Curls

4 Spots

Figure 4: Entity-Relationship Diagram of the database.

The named entities identified by the NER model, as de-
scribed in Section V-A1, are used to construct an INSERT
query in Structured Query Language (SQL) as detailed in
Algorithm 1, facilitating the storage and persistence of the
disease’s semantic features in the database. This approach
enables incremental knowledge updates with minimal effort.
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Algorithm 1: Insert Disease Record
Require: plant name plant_name, disease name disease_name,

semantic label semantics, color list colors_list
Ensure: A new disease entry with linked colors is added
1: Execute SQL: SELECT id FROM semantics WHERE value =

semantics
2: if no row returned then
3: Raise error: Semantic not found
4: end if
5: Let semantics_id ← retrieved id
6: Execute SQL: INSERT INTO diseases (plant_name, disease_name,

semantics_id)
VALUES (plant_name, disease_name, semantics_id)

7: Let disease_id ← last inserted row ID
8: for each color in colors_list do
9: Execute SQL: SELECT id FROM colors WHERE value = color

10: if no row returned then
11: Raise error: Color not found
12: end if
13: Let color_id ← retrieved id
14: Execute SQL: INSERT OR IGNORE INTO disease_colors

(disease_id, color_id)
VALUES (disease_id, color_id)

15: end for
16: Commit database changes

B. Inference

To perform inference on an image in a manner similar to
human perception, the method first identifies key semantic
features and color attributes, these semantics serve as the basis
for classification. Fig. 5 and the following subsections provide
a detailed explanation of the processes involved in semantic
identification and classification.
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Individual instances of spots and stripes are localized using image 

segmentation with a CNN

If spots/stripes are present

Colors in the localized instances are identified using predefined filters

The plant disease database is queried with SELECT using the identified 

features to classify the disease and assign the corresponding label

Description of the identified features and presented to the user along 

with the assigned label

Yes

The leaf is classified using a CNN to identify the semantics present on it

No

Figure 5: Inference workflow of the proposed method.

1) Semantics Identification: As discussed earlier, spots and
stripes require further analysis beyond their initial identifica-
tion to ensure accurate classification. Therefore, for semantics
that do not require further analysis, we propose using a
classification model, while for those requiring more detailed
examination, we suggest segmentation in addition to classifi-
cation.

The image of the diseased plant leaf is fed into a shal-
low CNN classification model [19] summarized in Table V,
which consists of a convolutional feature extractor and a fully
connected classifier layer. This model predicts the features
at global level and outputs the label in text form. If the

Algorithm 2: Get Best Match for Disease
Require: plant, semantics, colors_list
Ensure: Best matching disease name or "No Disease Found"
1: Retrieve records with input plant and semantics

SELECT d.id, d.plant_name, d.disease_name,
s.value AS semantics_value, GROUP_CONCAT(c.value, ’,
’) AS colors
FROM diseases d
JOIN semantics s ON d.semantics_id = s.id
LEFT JOIN disease_colors dc ON d.id = dc.disease_id
LEFT JOIN colors c ON dc.color_id = c.id
WHERE d.plant_name = plant AND s.value = semantics
GROUP BY d.id

2: Assign weights to colors based on their order:
3: for i = 0 to |colors_list|−1 do
4: Let color← colors_list[i]
5: weight_dict[color]←max(0.1, 1.0−0.2× i)
6: end for
7: Initialize best_score ←−1, best_record ← None
8: for each record in SQL results do
9: Extract record_colors from record[4]

10: Compute union ← colors_list ∪ record_colors
11: Compute weighted_intersection:

weighted_intersection←∑weight_dict[color]

for color ∈ record_colors∩colors_list

12: Compute:

score← weighted_intersection

|union|

13: if score > best_score then
14: Update best_score and best_record
15: end if
16: end for
17: if best_record is None then
18: return "No Disease Found"
19: else
20: return best_record[2] {Disease name}
21: end if

feature identified needs segmentation, the image is fed into
a fully convolutional segmentation model presented in Table
VII, which generates masks to localize the relevant semantics
in the image. Predefined HSV color space filers presented in
Table VI corresponding to the colors listed in Table III are
applied to the identified semantic regions in the image. The
top 3 identified colors are listed in the descending order of
their occurrences in the region so that majority color is at the
top of the list.

2) Classification: The semantic features and colors iden-
tified in Section V-B1, along with the plant name provided
by the user, are used to retrieve the corresponding disease
name from the database as described in the Algorithm 2 using
SELECT query and Weighted Jaccard similarity. Thus, the
proposed method leverages a database as a knowledge base,
enabling dynamic knowledge updates and classification based
on semantics through simple queries in a knowledge-driven
approach.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Results

The proposed solution was implemented and validated on
11,000 images covering 21 different diseases across 11 plant
species, sourced from the PlantVillage [20] and PlantDoc [21]
datasets. A NER model, depicted in Fig. 6, was developed
using SpaCy’s tok2Vec and NER to identify named entities, as
presented in Table IV. The descriptions of 120 plant diseases
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Table V: Summary of classification model.

Layer
(Act: relu,
Kernel:3x3)

Output Shape Parameters

InputLayer (None, 256, 256, 3) 0
Conv2D (None, 256, 256, 32) 896
MaxPooling2D (None, 128, 128, 32) 0
SeparableConv2D (None, 128, 128, 64) 2400
MaxPooling2D (None, 64, 64, 64) 0
SeparableConv2D (None, 64, 64, 128) 8896
MaxPooling2D (None, 32, 32, 128) 0
SeparableConv2D (None, 32, 32, 128) 17664
MaxPooling2D (None, 16, 16, 128) 0
SeparableConv2D (None, 16, 16, 128) 17664
MaxPooling2D (None, 8, 8, 128) 0
SeparableConv2D (None, 8, 8, 128) 17664
MaxPooling2D (None, 4, 4, 128) 0
SeparableConv2D (None, 4, 4, 128) 17664
MaxPooling2D (None, 2, 2, 128) 0
GlobalAverage
Pooling2D

(None, 128) 0

Dense (None, 32) 4128
Dense (softmax) (None, 7) 231
Total
Parameters

87,207

Trainable
Parameters

87,207

Non-trainable
Parameters

0

Optimizer: adam
Loss Function: sparse_categorical_crossentropy

Table VI: HSV filters for color detection.

Color cv2.COLOR_RGB2HSV
Min Max

Red [0, 80, 80] [5, 255, 255]
Brown [6, 80, 80] [20, 255, 255]
Yellow [25, 80, 80] [30, 255, 255]
Pink [130, 80, 80] [160, 255, 255]
Gray [40, 30, 30] [55, 120, 120]
Black [0, 0, 0] [179, 255, 60]
White [0, 0, 210] [179, 30, 255]

Table VII: Summary of segmentation model.

Layer
(Act: relu,
Kernel:3x3)

Output Shape Params # Connected To

InputLayer (None, 256, 256, 3) 0 -
Conv2D (None, 256, 256, 64) 1,792 input_layer
Conv2D_1 (None, 256, 256, 64) 36,928 conv2d
MaxPooling2D (None, 128, 128, 64) 0 conv2d_1
SeparableConv2D (None, 128, 128, 128) 8,896 max_pooling2d
SeparableConv2D_1 (None, 128, 128, 128) 17,664 separable_conv2d
MaxPooling2D_1 (None, 64, 64, 128) 0 separable_conv2d_1
SeparableConv2D_2 (None, 64, 64, 128) 17,664 max_pooling2d_1
SeparableConv2D_3 (None, 64, 64, 128) 17,664 separable_conv2d_2
MaxPooling2D_2 (None, 32, 32, 128) 0 separable_conv2d_3
SeparableConv2D_4 (None, 32, 32, 256) 34,176 max_pooling2d_2
SeparableConv2D_5 (None, 32, 32, 128) 35,200 separable_conv2d_4
MaxPooling2D_3 (None, 16, 16, 128) 0 separable_conv2d_5
SeparableConv2D_6 (None, 16, 16, 256) 34,176 max_pooling2d_3
SeparableConv2D_7 (None, 16, 16, 128) 35,200 separable_conv2d_6
MaxPooling2D_4 (None, 8, 8, 128) 0 separable_conv2d_7
SeparableConv2D_8 (None, 8, 8, 512) 67,200 max_pooling2d_4
SeparableConv2D_9 (None, 8, 8, 128) 70,272 separable_conv2d_8
MaxPooling2D_5 (None, 4, 4, 128) 0 separable_conv2d_9
SeparableConv2D_10 (None, 4, 4, 512) 67,200 max_pooling2d_5
SeparableConv2D_11 (None, 4, 4, 128) 70,272 separable_conv2d_10
Conv2DTranspose_1 (None, 8, 8, 128) 65,664 separable_conv2d_11
Concatenate_1 (None, 8, 8, 256) 0 conv2d_transpose_1, separable_conv2d_9
SeparableConv2D_16 (None, 8, 8, 256) 68,096 concatenate_1
SeparableConv2D_17 (None, 8, 8, 256) 68,096 separable_conv2d_16
Conv2DTranspose_2 (None, 16, 16, 128) 131,200 separable_conv2d_17
Concatenate_2 (None, 16, 16, 256) 0 conv2d_transpose_2, separable_conv2d_7
SeparableConv2D_18 (None, 16, 16, 256) 68,096 concatenate_2
SeparableConv2D_19 (None, 16, 16, 256) 68,096 separable_conv2d_18
Conv2DTranspose_3 (None, 32, 32, 128) 131,200 separable_conv2d_19
Concatenate_3 (None, 32, 32, 256) 0 conv2d_transpose_3, separable_conv2d_5
SeparableConv2D_20 (None, 32, 32, 128) 35,200 concatenate_3
SeparableConv2D_21 (None, 32, 32, 128) 17,664 separable_conv2d_20
Conv2DTranspose_4 (None, 64, 64, 128) 65,664 separable_conv2d_21
Concatenate_4 (None, 64, 64, 256) 0 conv2d_transpose_4, separable_conv2d_3
SeparableConv2D_22 (None, 64, 64, 128) 35,200 concatenate_4
SeparableConv2D_23 (None, 64, 64, 128) 17,664 separable_conv2d_22
Conv2DTranspose_5 (None, 128, 128, 128) 65,664 separable_conv2d_23
Concatenate_5 (None, 128, 128, 256) 0 conv2d_transpose_5, separable_conv2d_1
SeparableConv2D_24 (None, 128, 128, 128) 35,200 concatenate_5
SeparableConv2D_25 (None, 128, 128, 128) 17,664 separable_conv2d_24
Conv2DTranspose_6 (None, 256, 256, 64) 32,832 separable_conv2d_25
Concatenate_6 (None, 256, 256, 128) 0 conv2d_transpose_6, conv2d_1
SeparableConv2D_26 (None, 256, 256, 64) 9,408 concatenate_6
SeparableConv2D_27 (None, 256, 256, 64) 4,736 separable_conv2d_26
Conv2D_2 (1,1)
(softmax)

(None, 256, 256, 2) 130 separable_conv2d_27

Total Parameters 1,451,778
Trainable Params 1,451,778
Non-trainable
Params

0

Optimizer: adam
Loss Function: sparse_categorical_crossentropy

were annotated for named entities to create a base dataset.
The disease descriptions were paraphrased, rephrased, and
jumbled, then corrected using ChatGPT APIs to generate
multiple variations of the same disease descriptions, resulting
in a dataset of 36,000 records. The developed NER model
achieved F1 score of 98%. The F1 scores for each entity are
shown in Fig. 7.

The proposed CNN classification model was trained on
7,000 images to identify the semantic shapes described in
Table III, achieving the accuracies presented in Fig. 8a.
Meanwhile, the CNN segmentation model was trained on
3,000 images from a different dataset [22] having images of
leaves from farm instead of the images taken under controlled

conditions, with results shown in Fig. 8b to test for the
generalizability of the model on unseen data. Color filters were
defined in HSV space for the color engineered as per Table
VI.

All these models operate behind the UI, with the Home page
(shown in Fig. 9) allowing users to input text to add a new
disease class and classify an image of a diseased leaf. The Add
screen (shown in Fig. 10) includes a guide to help the users
understand the semantics and colors the way the developed
model interprets, it accepts textual description of the disease
as input from users. Upon submission, the text is processed by
the NER model, which identifies the entities and sends them
to the Confirm screen for user confirmation, as shown in Fig.
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[ ]: nlp = spacy.load("/content/drive/MyDrive/output/model-best")
doc = nlp("in kiwi plants impacted by puka disease, symptoms manifest as brown␣

↪or black necrotic spots on the leaves, along with dieback affecting both␣
↪leaves and branches.")

print(doc.ents)

(kiwi, puka, brown, black, spots)

[ ]: nlp.pipe_labels['ner']

[ ]: ['COLOR', 'DISEASE', 'PLANT', 'SEMANTIC']

[ ]: doc.ents[0].label_

[ ]: 'PLANT'

[ ]: from collections import defaultdict

entities_by_label = defaultdict(list)
for ent in doc.ents:

entities_by_label[ent.label_].append(ent.text)

print(dict(entities_by_label))

{'PLANT': ['kiwi'], 'DISEASE': ['puka'], 'COLOR': ['brown', 'black'],
'SEMANTIC': ['spots']}

[ ]: nlp.pipeline

[ ]: [('tok2vec', <spacy.pipeline.tok2vec.Tok2Vec at 0x7806648e40b0>),
('ner', <spacy.pipeline.ner.EntityRecognizer at 0x7806649b80b0>)]
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Figure 6: Pipelines and Named Entities of the spaCy model.
print(f"ENTS_F: {metrics['performance']['ents_f']:.4f}")

Per-Entity F1 Scores:
PLANT: 0.9977
DISEASE: 0.9935
COLOR: 0.9834
SEMANTIC: 0.9927

Overall Model F1 Score:
ENTS_F: 0.9898

[13]: nlp = spacy.load("/content/drive/MyDrive/output/model-best")
doc = nlp("in kiwi plants impacted by puka disease, symptoms manifest as brown␣

↪or black necrotic spots on the leaves, along with dieback affecting both␣
↪leaves and branches.")

print(doc.ents)

(kiwi, puka, brown, black, spots)

[14]: nlp.pipe_labels['ner']

[14]: ['COLOR', 'DISEASE', 'PLANT', 'SEMANTIC']

[15]: doc.ents[0].label_

[15]: 'PLANT'

[16]: from collections import defaultdict

entities_by_label = defaultdict(list)
for ent in doc.ents:

entities_by_label[ent.label_].append(ent.text)

print(dict(entities_by_label))

{'PLANT': ['kiwi', 'puka'], 'COLOR': ['brown', 'black'], 'SEMANTIC': ['spots']}

[17]: nlp.pipeline

[17]: [('tok2vec', <spacy.pipeline.tok2vec.Tok2Vec at 0x7b42bc0c0050>),
('ner', <spacy.pipeline.ner.EntityRecognizer at 0x7b42bba10740>)]
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Figure 7: Metrics of the spaCy NER model.

[ ]: # prompt: print the class integers, label assigned to it and f1 score of each␣
↪class, total accuracy in a table

import pandas as pd

# Assuming you have y_true, y_pred, and unique_labels from the previous code

# Create a list of dictionaries, one for each class
data = []
for i in range(num_classes):

f1 = f1_score(np.array(y_true) == i, np.array(y_pred) == i) # Calculate F1␣
↪for each class individually
data.append({

'Class Integer': i,
'Class Label': unique_labels[i], # Use unique_labels to get the original␣

↪string label
'F1 Score': f1,

})

# Create the pandas DataFrame
df = pd.DataFrame(data)

# Add a row with total accuracy at the end
total_accuracy = accuracy # assuming this variable has accuracy value from␣

↪previous code
df.loc[len(df)] = ['Total', 'Accuracy', total_accuracy] #Add a row to the end␣

↪of the dataframe.

# Print the DataFrame as a formatted table
df

[ ]: Class Integer Class Label F1 Score
0 0 Curls 0.936170
1 1 Flecks 0.996785
2 2 Mosaic 0.945338
3 3 Powdery 0.969697
4 4 Spots 0.854599
5 5 Stripes 0.990596
6 6 Velvety 0.889632
7 Total Accuracy 0.930427

[ ]: # prompt: Using dataframe df: plot the F1 scores ad bar graphs, with name of␣
↪the class as labels on x and f1 on y

import altair as alt

# Create the bar chart

13

(a) Classification model.

print(f"Validation Accuracy: {accuracy:.4f}")

# Make predictions on the validation set
y_pred_logits = model.predict(val_dataset)
y_pred = np.argmax(y_pred_logits, axis=-1)

# Extract ground truth masks from the validation dataset
y_true = []
for images, masks in val_dataset.unbatch():
  y_true.append(masks.numpy())

y_true = np.concatenate(y_true, axis=0).astype(int)

# Reshape predictions and ground truth to 1D arrays for metrics calculation
y_pred_flat = y_pred.flatten()
y_true_flat = y_true.flatten()

# Compute Precision, Recall, and F1-Score
# Use 'weighted' average to account for class imbalance
precision = precision_score(y_true_flat, y_pred_flat, average='weighted', zero_division=0)
recall = recall_score(y_true_flat, y_pred_flat, average='weighted', zero_division=0)
f1 = f1_score(y_true_flat, y_pred_flat, average='weighted', zero_division=0)

print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")

# Compute IoU
# The MeanIoU metric in TensorFlow calculates the mean IoU across all classes.
# For binary segmentation, this will give the mean of IoU for class 0 and class 1.
# If you need the IoU for a specific class, you'd calculate it manually or
# use a different implementation.
iou_metric = MeanIoU(num_classes=NUM_CLASSES) # Use the correct number of classes
iou_metric.update_state(y_true, y_pred)
mean_iou = iou_metric.result().numpy()

print(f"Mean IoU: {mean_iou:.4f}")

94/94 ━━━━━━━━━━━━━━━━━━━━ 2s 24ms/step - accuracy: 0.9068 - loss: 0.2254
Validation Loss: 0.2196
Validation Accuracy: 0.9093
94/94 ━━━━━━━━━━━━━━━━━━━━ 3s 21ms/step
Precision: 0.9074
Recall: 0.9093
F1 Score: 0.9082
Mean IoU: 0.7336

# prompt: download this network as png

import matplotlib.pyplot as plt
from tensorflow.keras.utils import plot_model

tf.keras.utils.plot_model(model, to_file='segmentation.png', show_shapes=True, show_layer_names=True)
from google.colab import files
files.download('segmentation.png')

# prompt: for path in test_df['Image Path']:
# instead can we go throug each rec in df and get path from it

# Assuming 'test_df' is a pandas DataFrame loaded elsewhere in your code
# Replace 'Image Path' with the actual column name containing the paths

for index, row in test_df.iterrows():
  path = row['Image Path']
  # Process the path here
  print(f"Processing image at path: {path}")

5/24/25, 11:07 PM Semantic_Segmentation.ipynb - Colab

https://colab.research.google.com/drive/1_Z9w43QzGuXqiw8i4oJtfM6K9ZPHPTS_#scrollTo=gqpVbHBbIvqH&printMode=true 9/27

(b) Segmentation model.

Figure 8: Performance metrics of the CNN models.

Figure 9: Home page of the UI developed for Semantic-Search.

Add New Disease
Enter disease description:

apple crops affected by cedar rust disease have spots with brown, yellow colors

Submit

Guide for Semantics

Semantics Definitions

Flecks: Tiny scattered
specks on the leaf surface.

Spots: Circular or
irregularly shaped
discolorations.

Stripes: Linear streaks of
a different color.

Powdery: Dust-like
appearance, usually white
or gray.

Velvety: Soft, thick, and
plush texture on the
surface.

Mosaic: Patchy mix of
normal and discolored
areas.

Curls: Twisting or rolling of
leaf edges or entire leaf.

Color Spectrums

Red: Brown (includes Orange): Yellow: Pink (includes Purple):

Gray: Black: White:

Back to Home

5/24/25, 4:42 PM Add New Disease

https://e287-34-48-147-200.ngrok-free.app/add 1/1

Figure 10: Add page with guide and user’s text input.

Identified Entities
Plant Name:

apple

Disease Name:
cedar rust

Semantics:
spots

Colors (comma separated):
brown, yellow

Accept

Back to Add Page

5/24/25, 4:42 PM Identified Entities

https://e287-34-48-147-200.ngrok-free.app/entities 1/1

Figure 11: Confirm page with NER results for user’s text input.

else:
disease_predicted = "No matching disease record found"
print("No matching disease record.")

"""
print("Final Result:")
print("  Crop Selected:", crop_selected)
print("  Label:", record_found[3])
print("  Disease Predicted:", record_found[2])
print("  Colors (sorted by count):", record_found[4])
"""
os.remove(temp_path)

else:
predicted_label_text = "No image or crop selected"
disease_predicted = "N/A"
colors_found = "N/A"

result = {
"crop": crop_selected,
"label": labels_mapping.get(sorted_indices[0]),
"disease": disease_predicted,
"colors": colors_found

}
return jsonify(result)

def run_flask():
app.run(port=5022)

# Run Flask in a separate thread
thread = threading.Thread(target=run_flask)
thread.start()

WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate
WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate
 * Serving Flask app '__main__'

!./ngrok http 5022

more_horiz INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET / HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/spots.JPG HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/flecks.JPG HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/stripes.JPG HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/powdery.JPG HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/velvety.JPG HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/yellow.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/curls.JPG HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/brown.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/mosaic.JPG HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/white.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/pink.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/gray.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/red.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:30] "GET /static/images/black.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:31] "GET /favicon.ico HTTP/1.1" 404 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /add HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/spots.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/flecks.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/stripes.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/velvety.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/powdery.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/pink.png HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/black.png HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/curls.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/red.png HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/brown.png HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/white.png HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/mosaic.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/gray.png HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:41:35] "GET /static/images/yellow.png HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:42:14] "POST /entities HTTP/1.1" 200 -
Raw Text: apple crops affected by cedar rust disease have spots with brown, yellow colors 
Identified entity, Label: PLANT, Entity: apple
Identified entity, Label: DISEASE, Entity: cedar rust
Identified entity, Label: SEMANTIC, Entity: spots
Identified entity, Label: COLOR, Entity: brown
Identified entity, Label: COLOR, Entity: yellow
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:45:11] "POST /confirm HTTP/1.1" 302 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:45:11] "GET / HTTP/1.1" 200 -

Disease 'cedar rust' added successfully.
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:45:11] "GET /static/images/flecks.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:45:11] "GET /static/images/powdery.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:45:11] "GET /static/images/stripes.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:45:11] "GET /static/images/curls.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:45:11] "GET /static/images/velvety.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:45:11] "GET /static/images/spots.JPG HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:45:11] "GET /static/images/brown.png HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:45:11] "GET /static/images/gray.png HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:45:11] "GET /static/images/black.png HTTP/1.1" 304 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 21:45:11] "GET /static/images/yellow.png HTTP/1.1" 304 -

5/24/25, 4:45 PM TAFER1.ipynb - Colab

https://colab.research.google.com/drive/1WRqShCAqmei-10wovzfd8iz3cfeIbEX9#scrollTo=cdyVuh1BdIfF 16/17

Figure 12: Server-side logs for adding a disease by a text input.

Semantic-Search
Classify a Leaf Add a New Disease

Available Diseases

ID Plant Name Disease Name Semantics Colors

1 apple cedar rust spots brown,yellow

2 apple black scab spots black,gray

3 apple black rot spots brown

4 corn leaf blight stripes brown

5 cherry cherrymildew velvety N/A

6 corn rust flecks N/A

7 grape grape blackrot spots brown,red

8 squash squashmildew powdery N/A

9 tomato bacterialspot flecks N/A

10 tomato blight spots black,brown

11 tomato mosaic virus mosaic N/A

12 tomato mold spots yellow

13 tomato curl virus curls N/A

Guide for Semantics

Semantics Definitions

Flecks: Tiny scattered
specks on the leaf surface.

Spots: Circular or
irregularly shaped
discolorations.

Stripes: Linear streaks of
a different color.

Powdery: Dust-like
appearance, usually white
or gray.

Velvety: Soft, thick, and
plush texture on the
surface.

Mosaic: Patchy mix of
normal and discolored
areas.

Curls: Twisting or rolling of
leaf edges or entire leaf.

Color Spectrums

Red: Brown (includes Orange): Yellow: Pink (includes Purple):

Gray: Black: White:

5/24/25, 6:46 PM Semantic-Search

https://c1f0-34-48-147-200.ngrok-free.app 1/1

Figure 13: Home screen showing list of added diseases.

11. Upon user acceptance, a record is created in the database
with the identified entities, as shown in Fig. 12, updating the
system’s knowledge. The system then returns to the Home
page, displaying the list of added diseases, as represented in
Fig. 13. Since black spots on leaves may not be pure black but
rather a fusion of leaf colors, they can sometimes be inferred
as gray. Therefore, when black or gray is mentioned in the
text, both colors are added to the disease record.

Choosing to classify a leaf directs the user to the Classify
page, where they select the crop type from a list of available
plants retrieved from the database and upload an image of
diseased leaf, as shown in Fig. 14. Upon clicking classify, the
image is first analyzed to identify semantics and, if necessary,
undergoes segmentation to localize disease-affected areas and
detect colors. The extracted semantics, top 3 colors present in
the semantics are then used to query the database and classify,
as illustrated in Fig. 15, enabling classification based on the
stored knowledge. The developed model achieved an accuracy
of 90% in classifying diseased leaves. Confusion matrix of
the model is presented in Fig. 16 and detailed classification
metrics are shown in Fig. 17.



8

Classify a Leaf
Name of the Crop:

tomato

Attach Image:
Choose File 00117_2.jpg

Classify

Crop Selected: tomato

Semantics Identified: spots

Colors Identified: black, gray, pink

Disease Predicted: blight

Back to Home

5/24/25, 6:50 PM Classify a Leaf

https://c1f0-34-48-147-200.ngrok-free.app/classify 1/1

Figure 14: Classify page with classifi-
cation results.

INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
 * Running on http://127.0.0.1:5023
INFO:werkzeug:Press CTRL+C to quit

!./ngrok http 5023

more_horiz
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:46:25] "GET /static/images/powdery.JPG HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:46:25] "GET /static/images/curls.JPG HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:46:25] "GET /static/images/velvety.JPG HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:46:25] "GET /static/images/pink.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:46:25] "GET /static/images/mosaic.JPG HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:46:25] "GET /static/images/red.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:46:25] "GET /static/images/yellow.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:46:25] "GET /static/images/white.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:46:25] "GET /static/images/black.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:46:25] "GET /static/images/brown.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:46:25] "GET /static/images/gray.png HTTP/1.1" 200 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:46:25] "GET /favicon.ico HTTP/1.1" 404 -
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:48:59] "GET /classify HTTP/1.1" 200 -
Starting classification for crop: tomato
Using image: temp_image.jpg
Running classification model...
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 57ms/step
Prediction: [4.7992410e-09 7.4391610e-05 5.3481725e-13 6.1391772e-09 9.9966431e-01
 2.6128493e-04 2.8757546e-10]
Running segmentation for color extraction...
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 405ms/step
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:50:10] "POST /api/classify HTTP/1.1" 200 -
Color counts: {'red': 0, 'brown': 2169, 'yellow': 2558, 'pink': 0, 'gray': 195, 'black': 3690, 'white': 10}
Extracted colors (sorted by count): black, yellow, brown
Sorted prediction indices: [4 5 1 3 0 6 2]
Plant name:  tomato
Semantics:  spots
colors list: ['black', 'yellow', 'brown']
weighted dictionary : {'black': 1.0, 'yellow': 0.8, 'brown': 0.6}
normalized colors : ['black', 'yellow', 'brown']
Matching disease record found:
  Plant Name: tomato
  Semantics: spots
  Disease Predicted: blight
  Record Colors: black, brown
Starting classification for crop: tomato
Using image: temp_image.jpg
Running classification model...
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 60ms/step
Prediction: [1.6414066e-13 4.0870262e-05 7.4926800e-14 9.0081759e-10 9.9957711e-01
 3.8203711e-04 8.8334878e-10]
Running segmentation for color extraction...
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 368ms/step
INFO:werkzeug:127.0.0.1 - - [24/May/2025 23:50:35] "POST /api/classify HTTP/1.1" 200 -
Color counts: {'red': 3, 'brown': 83, 'yellow': 56, 'pink': 146, 'gray': 502, 'black': 1562, 'white': 1}
Extracted colors (sorted by count): black, gray, pink
Sorted prediction indices: [4 5 1 3 6 0 2]
Plant name:  tomato
Semantics:  spots
colors list: ['black', 'gray', 'pink']
weighted dictionary : {'black': 1.0, 'gray': 0.8, 'pink': 0.6}
normalized colors : ['black', 'gray', 'pink']
Matching disease record found:
  Plant Name: tomato
  Semantics: spots
  Disease Predicted: blight
  Record Colors: black, brown
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Figure 15: Server-side logs for the classification of an image.

[47]: # prompt: similarly find accuracy, f1 score, precision, recall for all classes␣
↪and whole model

from sklearn.metrics import accuracy_score, f1_score, precision_score,␣
↪recall_score

import numpy as np

# Ensure 'Disease Name' and 'Predicted Class' are strings for metrics
valid_predictions['Disease Name'] = valid_predictions['Disease Name'].

↪astype(str)

35

Figure 16: Confusion matrix of the developed Semantic-Search.
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Sorted prediction indices: [4 5 1 3 0 6 2]
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Semantics:  spots
colors list: ['black', 'yellow', 'brown']
weighted dictionary : {'black': 1.0, 'yellow': 0.8, 'brown': 0.6}
normalized colors : ['black', 'yellow', 'brown']
Matching disease record found:
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  Semantics: spots
  Disease Predicted: blight
  Record Colors: black, brown
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Figure 17: Per-class classification metrics

Class Id Accuracy F1
Score

Precision Recall

Apple
black rot

0 81.62 85.96 90.80 81.62

Apple
cedar rust

1 81.04 72.31 65.27 81.04

Apple
scab

2 84.81 88.35 92.19 84.81

Cherry
mildew

3 91.67 95.65 100 91.67

Corn blight 4 99.40 86.43 76.46 99.40
Corn leaf spot 5 69.20 81.79 100 69.20
Corn rust 6 100 99.67 99.34 100
Grape
black rot

7 72.20 74.82 77.63 72.20

Grape blight 8 85.40 79.59 74.52 85.40
Grape esca 9 95.14 97.51 100 95.14
Disease not
found

10 NA NA NA NA

Orange citrus 11 100 100 100 100
Peach
bacterial spot

12 93.80 96.80 100 93.80

Pepper
bacterial spot

13 100 100 100 100

Potato blight 14 99.60 99.79 100 99.60
Squash
mildew

15 98.00 98.99 100 98.00

Strawberry
scorch

16 84.23 91.43 100 84.22

Tomato
bacterial spot

17 93.40 96.19 91.51 99.40

Tomato blight 18 91.93 78.65 68.73 91.93
Tomato
curl virus

19 97.80 96.87 99.59 97.20

Tomato mold 20 61.04 72.04 87.86 61.04
Tomato
mosaic virus

21 100 99.01 98.04 100

Average 90 91 93 90

Figure 17: Per-class classification metrics.
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Table VIII: Comparison of the proposed model with existing approaches.

Approach Semantic Understanding Need for Retraining Scalability Retraining Cost Accuracy

CNN-based models Limited (pixel-level) Required for new classes Low High 97%
Histogram-based (SVM) models No Required Low Moderate 80%
Bag of Visual Words No Required Low Moderate 82%
Knowledge Graph-based methods Yes No, but complex graph

construction
Moderate Low 83%

Proposed model Yes (Object detection +
Color filters + NLP)

No (Database update instead) High Very Low 90%

B. Limitations

Since the proposed method classifies diseases based on color
and semantic features, precise localization of the diseased
region is critical. Inclusion of background or healthy parts
of the leaf around the diseased area as depicted in Fig. 18a
introduces additional colors, leading to incorrect labeling.Such
discrepancies arising from segmentation errors led to misclas-
sifications in cases such as tomato mold, thereby reducing the
model’s accuracy.

Furthermore, as the the segmentation and disease classifica-
tion pipelines are dependent on the label corresponding to the
detected semantics, which is the label with highest probability,
leaves exhibiting multiple diseases are labeled according to
the dominant disease as in case of image of corn leaf in Fig.
18b. Corn leaf exhibits a dominant stripe pattern in addition
to spots, which can lead to misclassification as blight disease.
These limitations collectively contributed to a 10% reduction
in the overall accuracy of the proposed model.

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 162ms/step
Predicted label: 4
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 729ms/step

labels_mapping = {
        0: "Curls",
        1: "Flecks",
        2: "Mosaic",
        3: "Powdery",
        4: "Spots",
        5: "Stripes",
        6: "Velvety"
    }

import cv2
import numpy as np
import matplotlib.pyplot as plt

5/24/25, 11:16 PM Semantic-Search.ipynb - Colab

https://colab.research.google.com/drive/1M7PulxZAfEAYdAGMS7y1kWTGDa4ME580#scrollTo=rGsf11M94STy&printMode=true 5/18

(a) Improper segmentation. (b) Multiple semantics.

Figure 18: Scenarios resulting in misclassifications.

C. Comparative Analysis

The proposed framework achieved a classification time of
1.8 seconds on an Intel Xeon CPU and 132 milliseconds on an
NVIDIA L4 GPU. In comparison, the earlier version presented
in [23] required 8.7 seconds on the Intel Xeon CPU and
2.1 seconds on the NVIDIA L4 GPU. The prior approach
employed a complex pipeline that involved contour fitting
around leaf edges for background removal, separate models
for texture identification, segmentation of the image into five
parts for classification, followed by localization and color
filtering prior to SQL-based classification. In contrast, the
current method utilizes a single model to detect all semantic
features and employs a deeper segmentation model for precise
localization.

By embedding the necessary cognitive abilities into the
model, new diseases can be incorporated through simple

textual updates, unless the disease exhibits rare or unseen
colors. This approach also enables rapid development of
localized classification models to address feature variability
arising from environmental conditions, rather than relying on a
single global model that may struggle to accommodate diverse
feature representations of the same disease.

To provide a fair comparison, we broadly categorized prior
works (Table II) into four representative methodological fami-
lies: CNN-based, histogram-based, bag-of-visual-words, and
knowledge-graph approaches. Since the original codes for
these methods were not publicly available, we re-implemented
representative baseline models following the principles de-
scribed in the respective literature. Each baseline was trained
and evaluated on the same dataset and under identical exper-
imental settings as our proposed method. Table VIII summa-
rizes the results, highlighting the novelty and effectiveness of
the proposed approach in terms of scalability and retraining.

VII. CONCLUSION

This article presents a knowledge-driven classification
model that leverages a database as a knowledge base to seman-
tically interpret and classify plant diseases, moving beyond the
reliance on low-level features typically used in convolutional
neural networks (CNNs). As the framework employs multiple
models operating in sequence, the accuracy and precision
of each component directly impact the final predicted label
and the overall model performance. This model demonstrates
its practicality in disease management within ACPS, where
classification aids in identifying the appropriate diseases and
pesticides for spraying systems [24], [25]. While the proposed
framework integrates NLP and database capabilities, it can
also be incorporated into existing automation systems to
autonomously learn new diseases from large language models
(LLMs) and leverage available database resources. Although
the model is scalable and efficient, it requires manual feature
engineering and database creation, and the user must select
the crop type, making it not fully autonomous. Models that
can map image features and text embeddings to the same
feature space, while incorporating color information, could
enable learning of new diseases and scalability without the
need for manual feature engineering, making them a promising
direction for future research.
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