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ABSTRACT

The rapid advancements in artificial intelligence (AI) have revolutionized smart healthcare, driving
innovations in wearable technologies, continuous monitoring devices, and intelligent diagnostic
systems. However, security, explainability, robustness, and performance optimization challenges
remain critical barriers to widespread adoption in clinical environments. This research presents an
innovative algorithmic method using the Adaptive Feature Evaluator (AFE) algorithm to improve
feature selection in healthcare datasets and overcome problems. AFE integrating Genetic Algorithms
(GA), Explainable Artificial Intelligence (XAI), and Permutation Combination Techniques (PCT),
the algorithm optimizes Clinical Decision Support Systems (CDSS), thereby enhancing predictive
accuracy and interpretability. The proposed method is validated across three diverse healthcare
datasets using six distinct machine learning algorithms, demonstrating its robustness and superiority
over conventional feature selection techniques. The results underscore the transformative potential
of AFE in smart healthcare, enabling personalized and transparent patient care. Notably, the AFE
algorithm, when combined with a Multi-layer Perceptron (MLP), achieved an accuracy of up to 98.5%,
highlighting its capability to improve clinical decision-making processes in real-world healthcare
applications.

Keywords Smart Healthcare, Healthcare Cyber-Physical System (H-CPS), Machine Learning, Genetic Algorithm,
Explainable Artificial Intelligence (XAI), Automatic Health Diagnosis

1 Introduction

The world has made medical illness analysis more and more critical [1]], leading to increased research and development
efforts in this area. Advances in technology, such as deep learning and machine learning [2]], have enabled researchers
to leverage the potential of healthcare data to create novel approaches that enhance human health outcomes. These
algorithms can anticipate outcomes reasonably. However, those algorithms frequently need to explain their forecasts
clearly, which reduces their effectiveness and reliability [3]]. "Black Box" is the term or issue discussed about the
reliability problem in [4]. Furthermore, these algorithms’ lack of interpretability presents severe difficulties in clinical
contexts where medical personnel need lucid explanations to comprehend and rely on the advice these models provide
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[S1[6]. The urgent need for specific procedures in medical illness analysis is highlighted by this opacity, which not
only makes adoption difficult but also raises questions about accountability and ethical issues [[7][8]. In response
to this difficulty, Explainable AI (XAI) has surfaced to clarify the decision-making procedure of machine learning
models, thereby offering discernment into the how and why of a given prediction [9]. In medicine, XAl is essential for
improving the dependability and comprehensibility of disease analysis models [[10].

The process starts with selecting an extensive healthcare dataset to guarantee data quality and integrity. Next, detailed
data analysis and preprocessing procedures are performed. The dataset is optimized for precise model training
by researchers through data cleaning, normalization, and transformation. After that, various deep learning and
machine learning methods are use to create the model. These are comprised, however, and are not restricted to neural
networks, decision trees, random forests, support vector machines, and ensemble techniques. By utilizing diverse
algorithms, scholars can investigate every methodology’s distinct advantages and drawbacks, consequently augmenting
the probability of pinpointing the optimal model for illness forecasting. Model explainability becomes the main concern
when the models are trained. Several Explainable Al strategies are use to clarify the models’ decision-making process.
These methods include attention processes in deep learning models, SHAP (SHapley Additive exPlanations) values,
feature importance analysis, and local interpretable model-agnostic explanations (LIME) [[11].

Inspired by natural selection, genetic algorithms are widely used to iteratively identify optimal feature subsets that
improve machine learning model performance. Likewise, permutation and combination techniques provide a thorough
method for feature selection by evaluating all possible feature subsets using a fitness function. Using these tech-
niques, researchers can obtain essential insights into the fundamental principles underlying the predictions, improving
comprehension and confidence in the model’s results.

Integrating XAI, GA, and PCT enhances model interpretation and refinement by identifying biases, outliers, and
confounding factors, thereby improving the robustness of disease analysis models. This iterative process enables
researchers to select the most suitable model for real-world healthcare applications, driving innovation toward more
reliable, transparent, and interpretable healthcare analytics systems. The proposed Adaptive Feature Evaluator (AFE) is
a novel algorithm designed to assess feature significance across various datasets. Through rigorous testing on diverse
datasets using both machine learning and deep learning algorithms, the AFE has consistently outperformed existing
feature selection methods. One of the critical strengths of AFE is its adaptability, making it compatible with any
algorithm and dataset. Our approach integrates three popular and highly effective feature selection strategies: XAl, PCT,
and GA. By combining these techniques, the AFE computes accuracy scores for each method individually, consistently
demonstrating superior performance compared to traditional feature selection algorithms.

The salient contributions of the proposed work are as follows:

* Development of the Adaptive Feature Evaluator (AFE): The paper introduces a novel AFE algorithm that
integrates Genetic Algorithms (GA), Permutation & Combination Techniques (PCT), and Explainable Al
(XAI) to improve feature selection, specifically enhancing Clinical Decision Support Systems (CDSS).

* Superiority in Performance: AFE consistently outperforms traditional feature selection methods, achieving up
to 98.5% accuracy across diverse datasets and algorithms, demonstrating its robustness and effectiveness.

* Versatility and Adaptability: The AFE’s adaptability allows it to be effectively applied across various algorithms
and datasets, broadening its utility in healthcare analytics.

* Impact on Healthcare: The work advances healthcare analytics by providing more reliable, transparent, and
interpretable systems for clinical decision-making, contributing to better patient care.

Overall, the contribution of this work lies in developing the AFE algorithm, which combines cutting-edge feature
selection techniques with XAl to enhance the accuracy, transparency, and robustness of clinical decision support
systems, thereby advancing the field of healthcare analytics.

The remainder of this paper is organized as follows: Section 2 outlines the unique contributions of our research
and Section 3 reviews related literature. Section 4 explores the challenges faced in implementing Explainable Al
(XAI). Section 5 provides the foundational background necessary for understanding our work along with the proposed
framework. Section 6 details the experimental procedures and presents the results. Lastly, Section 7 offers concluding
remarks on our study.
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Figure 1: System Model for Integrating Explainable Al in Clinical Decision Support Systems
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2 Contribution of the Work

2.1 Problems Addressed in the Current Work

A more thorough investigation and comparison of various algorithms must be conducted. Many existing studies rely on
one or two algorithms without validating their effectiveness comprehensively. Such implementations raise questions
about whether these algorithms are the most suitable for the task. The current work aims to fill these gaps by introducing
the Adaptive Feature Evaluator (AFE), which integrates multiple effective feature selection techniques and enhances
model interpretability, providing a more robust and transparent approach to medical data analysis. Fig. [T| provides a
concise summary of our study. The initial phase in the proposed paradigm is the gathering and preparation of medical
data. After processing, a machine learning (ML) model is trained using this data to produce predictions. By integrating
XAI, GA, and PCT, valuable insights and recommendations can be generated. The AFE algorithm is then applied to
select the most appropriate approach for clinical decision support.

2.2 Solution Proposed

The proposed study addresses the explainability issue by integrating GA, XAl, and PCT. This approach aims to enhance
understanding of the prediction processes by leveraging these methodologies to provide insights into the inner workings
of deep learning and machine learning algorithms. By combining, the study improves model transparency and simplifies
modifications, impacting the healthcare sector significantly.

Additionally, the study tackles the problem of limited algorithm exploration by introducing a novel algorithm that
leverages feature-based techniques. This new method utilizes various feature set algorithms to generate predictions
for the same objectives. It identifies the most suitable model for a given dataset through hyperparameter tuning
and comprehensive analysis, ensuring a thorough evaluation of algorithmic performance and enhancing healthcare
applications’ accuracy and predictive efficacy.

2.3 Novelty of the Work

The paper introduces the Adaptive Feature Evaluator (AFE), a novel algorithm that integrates Genetic Algorithms,
Permutation & Combination Techniques, and Explainable Al to enhance feature selection and improve Clinical Decision
Support Systems. The AFE achieves up to 98.5% accuracy across diverse datasets and algorithms, demonstrating
its robustness and effectiveness. Its adaptability allows for broad application across various algorithms and datasets,
expanding its utility in healthcare analytics.
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Additionally, the paper presents a novel approach to predictive modeling by employing six distinct machine learning
methods and neural networks rather than limiting the investigation to a few algorithms. This diverse methodological
approach provides multiple perspectives on the same dataset, offering subtle insights that can enhance the efficacy of
treatment plans and diagnostics. This strategy advances healthcare analytics and opens avenues for improved predictive
modeling through algorithmic diversity, contributing to better patient care.

3 Related Prior Research

The increasing demand for personalized healthcare solutions has driven significant advancements in smart healthcare
devices, offering continuous and automatic monitoring capabilities. Recent developments, such as MyWear, a novel
smart garment that enables continuous vital monitoring, demonstrate the potential of wearable technology in healthcare,
providing real-time health data with minimal patient intervention [12]]. The study employed post-hoc and agnostic
models, namely Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP),
to determine the most significant genes for classifying lung cancer types and subtypes [[13], as well as the most crucial
features for predicting lung cancer survival [14]. Intelligent devices like iKardo, an advanced ECG monitoring system,
enhance competent healthcare by automatically identifying critical heartbeats, thereby aiding in timely interventions
for cardiovascular conditions [15]. Additionally, continuous glucose monitoring technologies have evolved to provide
patients and healthcare providers with comprehensive and actionable insights into glucose levels, supporting diabetes
management with a high degree of accuracy and convenience [16]]. These innovations underscore the importance of
integrating advanced algorithms and smart devices in developing personalized and efficient healthcare solutions.

In recent times, the researchers discussed, for instance, and suggested utilizing SHAP and LIME in conjunction with
1AFPs-EnC-GA (GA (Fuzzy K-nearest neighbor (FKNN), Random Forest (RF), k-nearest neighbor (KNN), and Support
Vector Machine (SVM)) for fungal infection [[17]. The paper introduces a deep ensemble method that uses uncertainty
in relevance scores to improve the reliability and trustworthiness of predictions for clinical time series data with
explainable AT [18]].

Mediastinal Cysts and Tumors have also been detected using the Ensemble of Extreme Gradient Boosting (XGBoost)
and SHAP [19]. Recently, bloodstream infections with SHAP(XAI) have been found in [20] using XGBoost, RF, SVM,
and MLP. An SVM-based model for predicting lung cancer from an image dataset is proposed in [21]]. Using a dataset
from the University of California’s online repository, they performed preprocessing operations, such as eliminating
values that are not relevant. The work separated the dataset into training and testing sets and used the SVM model to
forecast using the features retrieved. With an accuracy of almost 98.8%, the model outperformed KNN, Naive Bayes,
and J48 models. The study introduces a scalable ML model using minimal cognitive tests for accurate and explainable
dementia risk prediction in aging populations. [22].

The study employs DNN and XAI (SHAP) to predict postprandial glucose levels in Type 1 diabetes, enhancing artificial
pancreas systems and decision-making tools. [23]. The researchers propose a histopathology image gathered from
the LC25000 dataset to construct a CAD system for lung and colon cancer analysis [24]]. Hu invariant moments and
the GLCM method extract features from the pictures. The authors have classified lung and colon cancer using MLP,
XGBoost, RF, SVM, and LDA models. Furthermore, the expected results of the ML models are explained using the
SHAP technique. With 98.8% and 99% accuracy, respectively, XGBoost has the highest F1 score and accuracy out
of the five models. The author on the domain in recent times [25] suggested a technique for early-stage lung cancer
diagnosis that uses three picture datasets and machine learning models. Using CNN for classification and U-Net CNN
for lung nodule segmentation, they obtained an AUC of 0.6459.

Generative Al has been explored as a means to enhance data quality, demonstrating its effectiveness as a complementary
tool to traditional methods. It has been shown to improve accuracy and streamline workflows. Integrating Generative
Al into data quality processes can yield substantial long-term organizational benefits, including increased efficiency and
enhanced decision-making capabilities [26]]. Feature selection is essential for removing irrelevant features, enhancing
model accuracy, and reducing costs, as reviewed in key literature [27]. The Integrate-RF approach, a hybrid feature
selection method combining multiple models with random forests, addresses dimensionality reduction and overfitting
by selecting optimal features based on Out-of-Bag (OOB) classification error rates [28]. A novel neural network-based
feature selection method employing a weighting approach is proposed to highlight critical features, significantly
enhancing algorithm speed and accuracy [29]. Another study presents a correction method for feature importance bias
in RandomForest models using permutation-based p-values, which improves interpretability and prediction accuracy by
identifying significant variables in simulated and real-world datasets [30]. Using data from 5,601 COVID-19 patients
in South Korea, an Al model is developed to predict clinical severity levels—categorized as low or high—based on
20 critical features identified through feature importance analysis. The model, constructed with a 5-layer deep neural
network, was evaluated using metrics such as accuracy, specificity, and AUC [31]]. A two-stage surrogate-assisted
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evolutionary approach is introduced to reduce computational costs in Genetic Algorithm (GA)-based feature selection
for large datasets. The approach utilizes a qualitative meta-model, for instance, selection, with CHC-QX and PSO-QX
algorithms achieving faster convergence and greater accuracy, especially with datasets exceeding 100K instances [32].

Table 1: Review of the literature in reference to the proposed study

Work Dataset Name Algorithm Used Accuracy
Y.Li et al.(2020)[33]] LUNAI16 Lung CNN with 82.15%
Cancer Dataset Resnet-18
Ansari et al.(2011)[34] UCI Heart Bayes Net 87%
disease dataset
Beyene at al.(2018)[35]] UCI Heart ANN and SVM 81.82% and
disease dataset 80.38%
Riaz at al.(2018)[36] UCI Heart KNN and Decision 78% and 80%
disease dataset Tree
Gularia et al.(2022)[37] Cardiovascular LR, SVM and 81.2%, 82.5%
Disease Dataset KNN with XAI and 75.9%
Patro et al.(2018)[38]] Heart Disease RF with 87%
Test of XAI(SHAP and LIME)
Batista et al.(202)[39] Covid-19 pandemic LR, RF Near about
Dataset and SVM 85%
Mahdy et al.(2020)[40] Covid-19 Multi-level Thresholding 95%
pandemic dataset with SVM
Ahmad et al.(2023)[41] Lung Cancer DT, LR, 95%, 97%,
Dataset RF and Naive Bayes 97% and 92%
with XAI(SHAP & LIME)
Malafaia et al.(2021)[42] LIDC-IDRI CNN with help 89.60%
Lung Cancer of XAI

4 Challenges in Deploying XAI for Healthcare Applications

The development of Al systems that can provide clear, understandable justifications for their choices and actions is
known as Explainable Artificial Intelligence (XAI). Incorporating XAl in the healthcare setting presents many obstacles
[43]][44]).

Data related to healthcare is, by its very nature, complex, multifaceted, and derived from multiple sources. It is tough to
integrate and interpret the data in a way that makes sense to build transparent Al models [45].

Because of their complex structures, advanced artificial intelligence models, such as those based on deep learning,
frequently serve as "black boxes." One major challenge is explaining these models’ decision-making procedures in a
way that medical professionals can comprehend [46].

A key component of interpretability is recognizing and displaying the most important factors affecting a choice.
Understanding which patient characteristics the AI model considers and how it affect predictions is critical in the
healthcare industry [47].

The healthcare industry operates in a highly regulated space, XAl systems must abide by strict laws like the Health
Insurance Portability and Accountability Act. Applying models in many domains becomes more challenging when
achieving regulatory criteria while ensuring model correctness and interpretability [48]. It might be easier to create inter-
faces that efficiently tell healthcare professionals about Al-generated insights by overloading them with data. Achieving
effective human-Al engagement requires finding the ideal balance between offering comprehensive explanations and
preserving simplicity [49]].
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5 The Proposed Novel EasyDiagnos Framework

This section outlines the foundational components of our study, including the architecture of XAl, various Machine
Learning (ML) frameworks, and the EasyDiagnos framework. Fig. 2 illustrates the workflow of the proposed
EasyDiagnos framework, detailing the entire implementation process. It begins with data augmentation, progresses
through ML implementation and feature importance evaluation using the proposed Adaptive Feature Evaluator (AFE)
algorithm, and concludes with the selection of the optimal model.
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Figure 2: Workflow framework of the proposed approach

5.1 Whatis XAI?

Explainable AI (XAl is the term used to describe a group of artificial intelligence systems that have the ability to
explain their own activities, revealing their advantages, disadvantages, and possible future behaviors. XAI’s main
philosophy is to use a variety of approaches. These methods are meant to provide future developers with a wide range of
design choices that compromise explainability and performance. Essentially, XAI aims to improve artificial intelligence
system transparency by providing insights into algorithms’ decision-making processes, making it easier to understand
their outputs, and building user and stakeholder trust.

5.2 Genetic Algorithm and PCT for Feature Selection

A genetic algorithm for feature selection is a search heuristic that uses principles of natural selection and genetics
to find the optimal subset of features that improves the performance of a machine learning model. Permutation and
combination algorithms are exhaustive search methods used for feature selection. They involve generating all possible
subsets of features and evaluating their performance using a fitness function. Algorithm [I] represents the working
process of the GA process, and Algorithm 2] provides the approach for the PCT.

5.3 Exploration of Classification Techniques
5.3.1 Logistic Regression

A statistical technique for examining a dataset where one or more independent factors influence a result is called logistic
regression. It does this by fitting data to a logistic curve, which estimates the likelihood that an event will occur. The
logistic function is given by:

1

P(ZJ:1|$):1+7 Y]
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Algorithm 1 Adaptive Feature Selection Using Genetic Algorithm (GA)
Input: Dataset D with features {A, B, C, D, E} and target T’

Output: Best subset of features Spes¢

Initialize: Set population size IV, top solutions k, crossover rate P, mutation rate P,,, maximum iterations MaxIter
Generate initial population P = {51, Ss,...,Sn} where S; C {A, B,C,D, E}

Evaluate Fitness: For each S; € P, compute the fitness (e.g., accuracy)

Selection: Sort population P by fitness, select the top k subsets to form Psjected

Crossover: For each pair (.5;, Sj) € Pseected, perform crossover with probability P, to generate new subsets Scqp
Mutation: For each 5,,.,,, mutate by adding or removing a feature with probability P,

Replacement: Evaluate fitness of .S,,.,, and replace the least fit subsets in P with the new ones

Termination: If MaxIter or a satisfactory fitness level is reached, stop; otherwise, repeat

Output: Return the subset Sp.s; with the highest fitness from the final population

where
z=wlz+b 2)
w are the weights, x is the input features, and b is the bias term.

5.3.2 Decision Tree

Models such as decision trees are utilized for both regression and classification. The dataset is divided into smaller
subsets according to the most important attributes, resulting in a structure resembling a tree.

5.3.3 Gaussian Naive Bayes

Naive Bayes is a probabilistic classifier that relies on the premise of feature independence and is based on the Bayes
theorem. The mathematical expression is given by:
P(x]y)P(y)
P = ——"—""
wln) = =P
where P(y|z) is the posterior probability, P(x|y) is the likelihood, P(y) is the prior probability, and P(x) is the
evidence.

3

5.3.4 Random Forest

During training, the Random Forest ensemble learning technique creates a large number of decision trees and outputs
the class mode. Random Forest combines multiple decision trees, each built using a random subset of features and data
samples.

5.3.5 Multi-layer Perceptron (MLP) classifier

Multiple layers of nodes make up the MLP kind of feedforward neural network, which may learn non-linear correlations.
The mathematical expression for hidden layer activations is given by:

hi=o0 wajl)x] + bgl) @)
j=1

where o is the activation function, wfjl) are the weights, x; are the inputs, and bgl) are the biases.

5.3.6 Gradient Boosting

Gradient Boosting is an ensemble strategy in which errors caused by previously trained models are corrected by adding
weak learners one after the other. The mathematical expression is given by:
N
Fp(z) = Fp_1(z) + arg mgnz L(yi, Frn—1(x;) + h(x;)) (5)
i=1

where F,, () is the model at iteration m, h is the weak learner, and L is the loss function.
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Algorithm 2 Feature Selection Using Permutation and Combination Technique

Input: Dataset with features {4, B, C'} and target variable.

Output: Best subset of features for predicting the target variable.

Permutation Generation: Generate all possible permutations of features { A, B, C'}:

Permutations: {4, B,C},{A,C, B}, {B,A,C},{B,C, A}, {C, A, B}, {C, B, A}

Combination Generation: Generate all possible combinations of features { A, B, C'}:

Combinations: {A}, {B}, {C}, {A, B}, {A,C},{B,C},{A,B,C}

Fitness Evaluation: Evaluate the fitness of each permutation and combination using a fitness function (e.g., accuracy):
Compute fitness for each subset.

Selection: Select the subset with the highest fitness score as the best subset.

Output: The best subset of features for predicting the target variable.

5.4 Description of Interpretable Models

Contextual Importance and Utility (CIU), Gradient-Weighted Class Activation Mapping (Grad-CAM), SHapley Additive
exPlanations (SHAP), and Local Interpretable Model-agnostic Explanations (LIME) are key approaches in XAI that
enhance understanding DL and ML algorithms. Among these, SHAP and LIME are particularly recognized for their
ability to improve model accuracy and clarify model behavior. In this work, we employ both SHAP and LIME as the
primary part of the AFE. By leveraging these advanced XAl techniques, our objective is to deliver clear and interpretable
model outputs, thereby fostering stakeholder confidence, enabling informed decision-making, and bridging the gap
between complex Al models and human understanding.

5.4.1 SHapley Additive exPlanations (SHAP)

For individuals working on machine learning models or Al interpretation, SHAP (Shapley Additive Explanations) is
essential for understanding model predictions. Because SHAP is flexible and can explain predictions from any model, it
is a well-liked option in XAI libraries. SHAP provides a thorough approach to interpretation, drawing on contributions
from other XAI approaches like LIME, SHAPely, Sampling Values, and DeepLift. Fundamentally, SHAP works by
calculating Shapley values for every feature in the dataset used to train and evaluate the machine learning model being
examined. These Shapley values provide essential insights into the model’s decision-making process by quantifying the
impact of each feature on the predictions it generates.

In a simplified form, the SHAP value for a feature ¢ in a prediction x can be expressed as equation 7.
[SI'(p — |S] = 1)!
]

bi(z) = p

[fo(SUA{i}) = fa(5)] (©)

SC{1,2,....p}\{¢}

Here, ¢;(z) represents the SHAP value for feature ¢ in prediction « and f,,(.S) represents the model’s output when
considering only the features in subset S. p represents the total number of features.

The SHAP library offers a variety of explainers, each designed to fit particular model types and data properties. A
suitable explainer must be chosen for AI models and datasets to be effectively interpreted. Among these explainer
kinds are: i)shape.Explainer ii)Treeshape. explainers. iii)Shape.Elucidators.Linear iv)Explainers of shape.Alternation
v)Shape.Elucidators.Deep

5.4.2 SHAP Value Explain By An Example

Shapley’s values are rooted in cooperative game theory, which assesses each player’s contribution to a game. This idea
involves allocating prizes to 'n’ participants in an equitable manner according to each player’s unique contribution,
much to Shapley Value. The average marginal contribution of a characteristic for a particular instance, across all
conceivable combinations inside the sample, is calculated by the Shapley value. This method guarantees a sophisticated
comprehension of every feature’s influence on the result.

Let us consider an example where a group of people (A, B, C, D, and E) work together on a project to make money (P)
for their company. To guarantee that the team members receive an equal share of the company’s profit according to their
contributions to its achievement, it becomes necessary to determine each member’s Shapley Value inside the group.
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Figure 4: Calculating the shapley value for a feature

Simply put, the difference between the profit made when a person *A’ participates in the team and when they don’t is
how one determines the person’s Shapley Value. This computation provides information on the individual contribution
of every team member, such as deciding Shapley values for features within a dataset. Fig. [3]shown the process clearly.
Fig. [ represents the calculation of different parameters for the Shapley values calculation. The SHAP value of member
‘A‘ is given by eqution 8, and the § values are calculated as shown in Fig[]

01 + 02 + 03 + 04 + 05 + 06
6

This discrepancy represents the "marginal contribution" of member ’A’ to the group dynamics or ongoing coalition.
The coalitions under discussion in this context are the different group configurations in which member ’A’ participates.
As such, the computation entails ascertaining member *A’s marginal contributions throughout every scenario for which
a coalition could form. After averaging these marginal contributions, member ’A’s Shapley Value is determined, and
their impact on the group is thoroughly evaluated.

)

Asgap =

Fig. 2 illustrates the complete workflow of our study, detailing the data journey from import to model evaluation.
Initially, the raw data is imported to ensure accurate predictions, followed by necessary preprocessing and data cleaning.
The processed data is then divided into training (70%) and testing (30%) sets. Subsequently, different models are
constructed and trained using the training dataset. Hyperparameter tuning is performed to optimize model performance
by iterating through various parameter values for optimal results.
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After training the models, we use the test dataset to predict outcomes and evaluate their accuracy. We introduce an XAl
method,namely SHAP, combined with GA and PCT based feature importance technique, to propose a novel feature
evaluator algorithm AFE. AFE identifies key features and offers important explanations for the models. Since AFE is
trained on testing data, it provides insights into the decision-making process of our best-performing model. Finally, the
most suitable deployment model is selected based on comprehensive evaluation criteria and AFE’s interpretability.

5.5 Adaptive Feature Evaluator

The Adaptive Feature Evaluator (AFE) is a novel algorithm designed to determine feature significance across various
datasets. AFE consistently outperforms existing feature selection algorithms in comparative tests when applied to
machine learning (ML) and deep learning (DL) models. Due to its global adaptability, AFE integrates seamlessly with
any algorithm and dataset.

AFE combines three effective feature selection strategies: Explainable Al (XAI), Permutation & Combination Tech-
niques (PCT), and Genetic Algorithms (GA). It computes accuracy scores independently for these methods and
synthesizes them, resulting in consistently higher accuracy. The robustness of AFE was assessed using six different
algorithms, including Gradient Boosting, Multi-layer Perceptron Classifier, Gaussian Naive Bayes, Decision Tree, and
Logistic Regression, and validated on three healthcare datasets: Covid-19, Heart Disease, and Lung Cancer. AFE
demonstrated superior performance and flexibility in all cases compared to state-of-the-art methods.

Through rigorous testing and validation, AFE establishes itself as a highly adaptive and accurate feature selection
system, surpassing conventional techniques. Fig. [5]and Algorithm [3] clearly discuss the proposed AFE algorithm
through flowchart and algorithm consecutively.

Algorithm 3 Proposed Adaptive Feature Evaluator Algorithm

Step 1: Input

Dataset X (features), Target variable y

Step 2: Data Preparation

Split data into training set (Xtrqin, Ytrain) and testing set (Xiest, Ytest)
Step 3: Permutation & Combination Technique (PCT)

3.1 Compute permutation importance on X

3.2 Select features where importance > median importance
3.3 Train classifier using selected features

3.4 Compute accuracy PFI,ccuracy 0N Xiest

Step 4: SHAP Values

4.1 Compute SHAP values for Xy,qn

4.2 Select features where SHAP value > median SHAP value
4.3 Train classifier using selected features

4.4 Compute accuracy SH AP ccuracy 0N Xtest

Step 5: Genetic Algorithm (GA) for Feature Selection

5.1 Apply Genetic Algorithm for feature selection on X¢,qin
5.2 Select features based on GA output

5.3 Train classifier using selected features

5.4 Compute accuracy G Agccuracy ON Xyest

Step 6: Calculate Weights

6.1 Compute total accuracy: Totalgceuracy = PFloccuracy + SH AP ccuracy + GAaccuracy
6.2 Compute individual weights:

. PFluceurac
Weightpor = o
. SHAP,ecour
Weightsyap = Froar et
. GAaceurac
Weightga = 7 osiraci

Totalgceura cy

Step 7: Combine Feature Importances

7.1 Normalize and combine feature importances from PCT, SHAP, and GA using the calculated weights:

gzmbin(adimp)ortance = (WeightPCT X PCE?erorta,nce + Weightsgap % SHAPi'mpO'rtance + Weightga x
importance

Step 8: Output

8.1 Sort features by Combined;mportance in descending order

8.2 Display the sorted feature importance ranking

=0

10



A PREPRINT - SEPTEMBER 25, 2024

¥ ¥ ¥
Permutation Feature Importance Explainable Al Feature Importance Genetic Algorithm Feature Importance
Train the model by train data Train the model by train data Train the model by train data
o~ o] o~
= S = . T - 3 z =
Calculate Feature | | Calculate Feature Calculate Feature
Importance by test data | Importance by test data Importance by test data
~ 3 ~ ' ~
v _ _ z _ _ ¥ .
Calculate Accuracy Score | | Calculate Accuracy Score | | Calculate Accuracy Score |

total_accuracy = pfi_accuracy +
¥ai_accuracy + gs_accuracy

combine_feature_importance =
(weights[0] * (pfi_feature_importance/
np.sum(pfi_feature_importance})) +
(weights[1] * (xai_feature_importance [
np.sum(xai_feature_importance))) +
(weights[2] * (gs_feature_importance [
np.sum(gs_feature_importance)))

weights = [

pfi_accuracy [ total_accuracy,
xai_accuracy / total_accuracy,
gs_accuracy [ total_accuracy

]

Figure 5: AFE (Adaptive Feature Evaluator) algorithm flowchart

6 Experimental Results

In this work, we propose and investigate the critical role of feature explainers using Explainable AI (XAI), in
conjunction with the well-known Genetic Algorithm (GA) and Permutation Combination Technique (PCT), to enhance
the performance and interpretability of machine learning algorithms. The evaluation is conducted across three distinct
healthcare datasets—COVID-19, heart disease, and lung cancer, representing various medical conditions. This
comprehensive assessment demonstrates the efficacy of the proposed Adaptive Feature Evaluator (AFE) across various
healthcare domains.

6.1 Simulation Setup

The data visualization and manipulation experiment is in a Python 3.12 environment using packages like matplotlib,
pandas, numpy, and seaborn.

The implementation uses the scikit-learn (SKLearn) toolkit for predictive modeling, employing ten distinct algorithms to
improve the accuracy of our predictions. We investigate many methods in the proposed studies because each algorithm
is implemented by importing the required customized library to meet its particular needs. We utilize the SHAP libraries
and GA and PCT methods to provide our models with interpretability and insights. With the help of these libraries,
we clarify the predictions made by our models, illuminating the underlying causes of the results and improving the
transparency of our research.

6.2 Dataset Overview

The proposed work use three different types of datasets for this investigation. The Lung Cancer online repository
from the University of California, Irvine [50]. The entire dataset consists of one class attribute, 32 instances, and 57
characteristics. There are one label feature and fifteen input features in this dataset. Total 16 features and 309 data
samples are available in the dataset.

The UCI Machine Learning Repository provided one of the datasets use in our study, which is centered on heart disease
[51]]. The output features in this dataset indicate several kinds of cardiac disorders. Total 12 features and 918 samples
are available in the dataset.

One of the most extensive compilations of current COVID-19-related data is the Google Health COVID-19 Open Data
Repository. Including information from over 20,000 sites globally, it offers a wide range of data formats to support
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Figure 6: AFE feature explanation for Lung Cancer Data

researchers, policymakers, public health experts, and others in understanding and managing the virus. Total 11 features
and 278848 samples are available in the dataset.

6.3 Detailed Discussion

This paper explores the role of feature importance in enhancing the performance and interpretability of machine learning
algorithms across three diverse healthcare datasets—COVID-19, heart disease, and lung cancer. These datasets represent
a broad spectrum of medical conditions, allowing for a comprehensive evaluation of the effectiveness of Explainable
Artificial Intelligence (XAI) across different healthcare domains.

We employed six distinct classification algorithms: Logistic Regression (LR), Decision Tree (DT), Gaussian Naive
Bayes (GNB), Random Forest (RF), Multi-layer Perceptron Classifier (MLP), Gradient Boosting (GB). By leveraging
this diverse set of algorithms, we aim to capture the variation in model performance across different healthcare datasets
and conditions. Given that each algorithm offers unique strengths and weaknesses, this comprehensive approach is
essential for thoroughly evaluating the models’ performance and interpretability.

The proposed model ensemble consists of six algorithms, where the LR is with random_state=0 (default parameters
otherwise), Decision Tree with entropy criterion and random_state=0, Gaussian Naive Bayes, Multinomial Naive Bayes,
Random Forest are using default configurations. Additionally, we include an MLP Classified with a hidden layer
size of 100, ReLU activation (f(x) = max(0, x)), Adam optimizer, and a learning rate of 0.001. Finally, the ensemble
incorporates Gradient Boosting with log_loss function, a learning rate of 0.1, and the friedman_mse criterion.

The result matrices for COVID-19, heart disease, and lung cancer datasets are presented in Table [2| where only data
preprocessing was applied, without any feature importance techniques. These tables provide a baseline performance
metric, enabling us to evaluate the impact of feature importance strategies in subsequent analyses. By comparing these
initial results with those obtained after applying feature selection methods, we aim to demonstrate improvements in
model accuracy, robustness, and interpretability. Performance is measured using accuracy and F1 score, with accuracy
reflecting overall performance and F1 score balancing recall and precision as its harmonic mean.

The accuracy metrics after applying Permutation Feature Importance, Explainable Al (XAI) techniques, and the Genetic
Algorithm (GA) feature importance technique are presented in Table[3|using lung cancer data. While these methods
improved the accuracy of specific models, they did not enhance performance across all algorithms. We introduced
our proposed Adaptive Feature Evaluator (AFE) algorithm to address this limitation, consistently improving accuracy
across all models and delivering more reliable and precise outcomes. By leveraging the strengths of multiple feature
importance techniques, the AFE algorithm ensures robust performance and enhanced interpretability across diverse
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Figure 7: Accuracy score comparision for Lung Cancer with AFE features
Table 2: Performance prediction metrics without features importance consideration
S1I No Algorithm Lung Cancer Heart Deasease Covid-19 Data

Accuracy FI Score Accuracy F1 Score Accuracy FI1 Score

1 Logistic Regression 89.855 94.117 83.478 86.619 92.363 92.526
2 Decision Tree 91.304 94.915 80.869 83.823 93.395 94.452
3 Gaussian Naive Bayes ~ 91.304 94.827 83.478 86.713 90.452 91.352
4 Random Forest 91.304 94915 83.043 85.920 93.399 94.459
9 Multilayer Perceptron 88.405 93.333 84.782 87.632 92.396 94.452

10 Gradient Boosting 89.855 94.117 88.043 86.021 93.399 94.457

healthcare applications. Comparing the results obtained using the AFE technique, as shown in the final column of Table
[3] with the baseline metrics in Table 2] it is evident that the AFE algorithm outperforms the other six models.

The Adaptive Feature Evaluator (AFE) was validated using two additional datasets: Heart disease and COVID-19. The
accuracy metrics for these datasets are shown in Table[d] In both cases, AFE consistently outperformed other feature
significance techniques. This comprehensive evaluation demonstrates that AFE is a valuable tool for enhancing the
performance of machine learning models in healthcare applications. It maintains robustness across diverse datasets and
methods and significantly improves accuracy.

The feature selection process of the Adaptive Feature Evaluator (AFE) algorithm provides a relevance score for
each feature, ranked in descending order, as shown in Table[5] These feature importance scores are expressed as
probabilities ranging from O to 1. The table ranks features by importance based on the Adaptive Feature Evaluator
(AFE) algorithm. ANXYELFIN is the most significant feature (weight: 0.203), followed by COUGHING (0.136) and
CHRONIC DISEASE (0.129). Features like FATIGUE (0.104) and ALCOHOL CONSUMING (0.100) are moderately
important, while WHEEZING (0.017) is the least influential. This probabilistic representation offers an intuitive and
straightforward understanding of each feature’s relative importance, facilitating informed decision-making during model
development. Figure[6|shows the feature importance overview of lung cancer data. By highlighting the most critical
features, the AFE algorithm enhances the interpretability and performance of machine learning models across various
healthcare applications.
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Table 3: Performance prediction metrics with features importance consideration for Lung Cancer

SINo  Algorithm PCT XAI GA AFE
Accuracy FI Score Accuracy F1 Score Accuracy FI1 Score Accuracy F1 Score
1 LR 89.955 94.308 89.855 94.214 89.855 94.308 92.753 95.934
2 DT 91.804 95.915 89.855 94.017 92.753 95.798 94.753 96.726
3 GNB 86.956 92.307 86.956 92.307 86.956 92.307 92.754 95.945
4 RF 89.855 94.117 92.753 95.867 92.753 95.798 95.304 97.915
9 MLP 89.855 94.117 91.304 95.081 88.405 93.548 91.304 95.161
10 GB 89.855 94.117 89.855 94.017 92.753 95.798 92.314 94916

Table 4: Performance prediction metrics with AFE features importance consideration

SI No Algorithm Heart Deasease Covid-19 Data
Accuracy FI Score Accuracy F1 Score

1 Logistic Regression 84.478 86.330 94.347 96.234
2 Decision Tree 82.434 83.985 95.956 97.586
3 Gaussian Naive Bayes 86.217 87.857 92.782 95.719
4 Random Forest 89.521 91.967 97.652 99.421
9 Multilayer Perceptron 87.217 88.943 98.517 99.943

10 Gradient Boosting 90.521 92.888 96.391 98.975

Table 5: Features important of Lung Cancer Dataset

Sl. No Features Name Feature weight
1 ANXYELFIN 0.203482
2 COUGHING 0.135953
3 CHRONIC DISEASE 0.129164
4 FATIGUE 0.103765
5 ALCOHOL CONSUMING 0.099770
6 PEER_PRESSURE 0.072191
7 YELLOW_FINGERS 0.064810
8 ANXIETY 0.064340
9 CHEST PAIN 0.050378
10 ALLERGY 0.031955
11 SWALLOWING DIFFICULTY 0.027210
12 WHEEZING 0.016981
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Figure 9: Recall score comparision for Lung Cancer with AFE features

6.4 Comparative Analysis with Existing Research

The model proposed in the work achieves a prediction accuracy of 98.5% on the Covid-19 Dataset using the MLP,
outperforming the other models. Similarly, on the UCI Heart Disease Dataset, our model achieves an accuracy of 90.52%
using the GB algorithm, matching the performance of previous models. For the Lung Cancer Dataset, the proposed
model acquires an accuracy of 95.5% using the RF algorithm, demonstrating competitive performance compared to
prior studies. Figure[7|represents the effect of AFE features on others regarding accuracy. The comparison between
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Figure 10: Precision score comparision for Lung Cancer with AFE features

the prediction accuracy of our proposed model and other existing models is shown in Table [6] The table presents a
performance comparison between the proposed work and previous research across different datasets and algorithms.

Figure [§]illustrates the effect of AFE features on other models concerning F1 score. The comparison between the
F1 score of our proposed model and other existing models is shown in the table. The table provides a performance
comparison between the proposed work and previous research across various datasets and algorithms. Figure ]
demonstrates the effect of AFE features on other models with respect to Recall. The comparison of the proposed
model’s Recall against other existing models is displayed in the table. This table compares the Recall performance of
the proposed work and prior studies across different datasets and algorithms.

Figure [T0]shows the effect of AFE features on other models in terms of Precision. The table presents a comparison of
the Precision of the proposed model versus other existing models, providing a performance comparison across various
datasets and algorithms.

The proposed work demonstrates notable improvements in accuracy for each dataset and algorithm combination.

7 Conclusion

The work underscores the vital role of feature importance in enhancing the performance and interpretability of machine
learning algorithms within the healthcare sector by evaluating various feature selection techniques across three distinct
datasets: lung cancer, heart disease, and COVID-19. We identified the strengths and limitations of each method. The
proposed Adaptive Feature Evaluator consistently surpasses traditional techniques, offering superior accuracy and
robustness across diverse algorithms and datasets. This algorithm identifies key features with probabilistic importance
and ensures their interpretability and relevance. The comprehensive evaluation validates the Adaptive Feature Evaluator
as a transformative tool for advancing machine learning applications in healthcare, leading to more accurate, reliable,
and actionable insights. As healthcare data grows in complexity, the Adaptive Feature Evaluator presents a promising
solution for refining predictive models and enhancing clinical decision-making.

Prospective research will broaden the AFE algorithm’s role in personalized medicine, particularly in oncology and
complex healthcare domains, by integrating it with advanced machine learning models like deep learning and ensemble
methods to enhance predictive accuracy and interpretability. Expanding AFE’s application to diverse datasets, including
real-time clinical and genomic data, will further assess its robustness. Incorporating explainability techniques such
as SHAP and LIME alongside AFE could provide deeper insights into model predictions, which are essential for
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Table 6: Performance comparison of proposed and previous research

Work Dataset Algorithm Accuracy
Ahmad et al.(2023)[41]] Lung Cancer Random Forest 97
Dataset
Naseer et al.(2019)[52] Lung Cancer ANN 96.67
Dataset
Dangare et al.(2012)[153]] UCI Heart KNN 87.5
disease dataset
Dwivedi et al.(2018)[54]] UCI Heart KNN 80
disease dataset
Batista et al.(2020)[39]] Covid-19 SVM 84.85
pandemic dataset
Mahdy et al.(2020)[40] Covid-19 SVM 95
pandemic dataset
Lung Cancer Random Forest 95.5
Dataset
Proposed Work UCI Heart GB 90.52
disease dataset
Covid-19 pandemic MLP 98.5
dataset

personalized treatment planning. Evaluating AFE with multi-modal data, including imaging, genetics, and electronic
health records, may lead to more effective, patient-centric decision support systems, advancing precision medicine.
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