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Abstract In this research paper, we propose an unsupervised framework for
feature learning based on an autoencoder to learn sparse feature represen-
tations for EEG-based person identification. Autoencoder and CNN do the
person identification task for signal reconstruction and recognition. Electroen-
cephalography (EEG) based biometric system is vesting humans to recognize,
identify and communicate with the outer world using brain signals for inter-
actions. EEG-based biometrics are putting forward solutions because of their
high-safety capabilities and handy transportable instruments. Motor imagery
EEG (MI-EEG) is a maximum broadly centered EEG signal that exhibits
a subject’s motion intentions without real actions. The Proposed framework
proved to be a practical approach to managing the massive volume of EEG
data and identifying the person based on their different task with resting states.
The experiments have been conducted on the standard publicly available mo-
tor imagery EEG dataset with 109 subjects. The highest recognition rate of
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87.60% for task-based identification and 99.89% recognition rate for resting-
state has been recorded using the Autoencoder-CNN model. The outcomes
imply that the overall performance of our proposed framework is similar or
advanced to that of the state-of-the-art method. The shape is a realistic tech-
nique to control the full-size extent of EEG data and to pick out the individual
based totally on their specific task.

Keywords Electroencephalography (EEG) · Biometric Authentication ·
Person Identification · Autoencoder · Convolutional Neural Network

1 Introduction

Despite the general studies of MI-EEG in latest years, it is miles nevertheless
hard to elucidate EEG signals efficiently because of the considerable noises in
the EEG signals (e.g., low signal-noise ratio and incomplete EEG signals) and
problems in capturing the discreet relationships among EEG signals and cer-
tain specific brain activities. Most current works [26, 20, 25] only consider EEG
as chain-like sequences neglecting complicated dependencies among adjoining
signals or appearing easy temporal averaging over EEG sequences. It is vital
to accurately investigate and identify the individual based on EEG signals and
for an extended time. Researchers have tried to extract new features from the
signals for Person recognition [28, 29, 30, 31]. However, it is not easy to choose
beneficial features from a massive variety of them on this EEG-based biomet-
ric security application [32]. As per the progress and improvement of artificial
intelligence, unsupervised feature learning based on the deep learning model
[33] can gain features that can better describe identified objects from unla-
beled data. Biometrics characteristics are distinct. They are used to identify
and authenticate [34, 35, 36, 37, 38] persons. Brain neurons carry informa-
tion required for a particular activity and communicate using electrical spikes
forming a vast neural network. Electroencephalogram (EEG) is the standard
means we record neural signals with specific features [39, 40, 41]. These signals
are captured by placing several electrodes on the scalp’s surface. Electrical in-
terference is one of the primary challenges in recording the EEG signal that
will result in noisy EEG. Sometimes the signal recorded with electrical activity
needs to be reacquired as it is entirely corrupted. Noncerebral actions can also
cause noisy EEG signals from external physiological activities like muscle and
limb movements. External environmental disturbances are also an essential
factor for noncerebral activities. The quality of the EEG signals degrades be-
cause of the noise generated by cerebral and noncerebral activities. The quality
of the captured EEG signal is vital in different domains of EEG applications.
This paper proposes an unsupervised framework for feature learning based
on an autoencoder to learn sparse feature representations for EEG-based per-
son identification. We proposed an autoencoder-CNN-based biometric system
with EEG motor imagery inputs for dimensionality reduction and denoising
(extracting original information from noisy data). The autoencoder extracts
essential features from input EEG and ignores the noises during the training
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Fig. 1 Flow diagram of the proposed EEG-based person identification model.

because the labels have no noises. A denoising autoencoder is trained to recon-
struct the original input from the noisy version. Autoencoders are data-specific
and best capable of compressing data like they had been trained. Autoencoder
and CNN do the person identity venture for signal reconstruction and recog-
nition [42]. The outcomes imply that the overall performance of our proposed
framework is similar or advanced to that of the latest method. The simple flow
diagram of the proposed version is depicted in Fig. 1.

Novelty in the proposed scheme:
1.To develop a personal identification system using MI-EEG data.
2.This work is about an Autoencoder-CNN-based biometric system with EEG
motor imagery inputs for dimensionality reduction and denoising (extracting
original input from noisy data).
3. The designed Autoencoder-CNN-based biometric architecture to model MI-
EEG signals is efficient for cybersecurity applications.

The rest of the paper is structured as follows: Section 2 describes the re-
lated work, and section 3 presents the novel contributions of this paper. section
4 presents the adopted methodology for EEG-based person identification, Sec-
tion 5 describes the experimental setup and simulation results. We concluded
along with future possibilities of this research in Section 6.

2 Related Work

Handcrafted features are derived features mainly used for some machine learn-
ing algorithms for the available data, but learned features by CNN signifi-
cantly outperform the handcrafted ones. It also beats most computer vision
approaches. It acts as a feature extractor and classifier and has been used
widely for its excellent performance. CNN is already used for many person
identifications and recognition work using EEG brain signals of a different
person. We here propose an EEG signal-based new person identification bio-
metric system. This work deals with EEG-based person identification using
different motor imagery movements using a vast dataset having 109 subjects.
Some studies have presented EEG-based biometrics using a different method-
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Table 1 Summary of Related Work

Author Name & Year Approach (Feature & Classifier) Subjects State & Accuracy

Poulos et al. [23], 1999 ANN 4 EC with 80%

Poulos et al. [24], 1999 Computational geometry algorithms 4 EC with 95%

Paranjape et al. [27], 2001 Autoregressive 40 EO and EC with 80%

Palaniappan et al. [11], 2007 KNN,ENN 102
(EO) Snodgrass and Vanderwart data
set with 95-98%

Marcel and Millan et al. [9],
2007

GMM 9 Thee imagery task with 93.4%

Napflin et al. [9], 2007 PSD, Linear regression 55 EC with 88%

Riera et al. [14], 2008
AR(100th order)+PSD+MI+COH
+Correlation, Linear Classifier

51 EC with EER 3.4 -5.5%

Cecotti et al. [2], 2008 CNN 2
Motor imagery classification with Ac-
curacy 53.47%

HU Jian-feng [43], 2009
Multilayer backpropagation neural
networks

3 Satisfactory TAR and FAR

Abdullah et al. [1], 2010 AR(21st order), k-NN 10
EC with 97%
EO with 96%

Kostilek et al. [6], 2012 FZ-AR(7th order), Mahalanobis dist. 9 EC with 87.1%

Su et al. [18], 2012 PSD, MMSE 40 EC with 95%

La Rocca et al. [7], 2014 AR(10th order), Linear Classifier 108
EC with 100%
EO with 97.5%

Thomas et al. [19], 2016 PSD, Cross Correlation 109 EO/EC with 90.21%

Nurse et al. [10], 2016 CNN 1 BCI with Accuracy 81%

Schirrmeister et al. [16],
2017

CNN 109
EEG Decoding and Visualization with
89.8%

Spampinato et al. [17], 2017 CNN 6
Discriminate brain activity with Accu-
racy 86.9%

Barjinder et al. [4], 2017 DWT, SVM,RF 109

SVM-EO with 96.88%
EC with 96.02%
RF-EO with 95.78%
EC with 93.21%

Yingnan Sun et al. [46],
2019

CNN-LSTM 109
Person Identification with accuracy
99.58%

Wilaiprasitporn T et al.
[47], 2019 CNN-GRU 32

Person Identification with accuracy
99.10%

Mari Ganesh Kumar et al.
[45], 2021 IX-VECTOR 30

Person Identification with accuracy
86.40%

Proposed approach CNN, Autoencoder-CNN 109

CNN-EC Vs EC 83.44% ,
EOEC Vs Task1 80.95%
Autoencoder-CNN-EC Vs EC 99.89%
EOEC Vs Task1 87.60%

ology. This approach is more secure and challenging as the EEG signal features
are highly person dependent and unique with variable parameters. Poulos et
al. (1999) [12, 24] observed around 80% and 95% performance accuracy, re-
spectively, with a data set of four subjects and 255 EEG trials using two
classification algorithms (artificial neural network and computational geom-
etry algorithms (convex polygon intersections)). Paranjape et al. (2001) [27]
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obtained a classification accuracy of around 80% by using a data set of 40 sub-
jects and 349 EEG trials. Palaniappan and Mandic (2007) [11] analyzed 102
subjects’ EEG data based on visually evoked potentials and experimented with
personal identification. The author got the performance accuracies around 95-
98%. Marcel and Millán (2007) [8] observed a person identification accuracy
of 93.4% by using a data set of nine subjects appearing mental imagery tasks
of left-hand movements, right-hand movements, and phrase technology start-
ing with the identical letter. Napflin et al. (2007) [9] proposed a model with
55 subjects’ eye-closed resting-state data and obtained a recognition accuracy
of 88% using PSD and linear regression approach. HU Jian-feng (2009) [44]
used a dataset of BCI competition 2003 with three subjects and proposed
multi-feature fusion architecture for an authentication system based on EEG
signals. He used Multilayer back-propagation neural networks to classify dif-
ferent persons. He observed the model’s performance by noting other True
Acceptance Rate (TAR) and False Acceptance Rate (FAR) thresholds. Ab-
dullah et al. (2010) [1] modeled an authentication system using four-channel
EEG recording data of ten subjects and got 70-97% accuracy using a multi-
layer neural network and AR model. Su et al. (2012) [18] experimented with
eye-closed state data of 40 subjects using PSD and MMSE approach and re-
ported recognition accuracy of 95% Kostilek et al. (2012) [6] have designed a
person identification method using the autoregressive model and Mahalanobis
distance-based classifier and noted the performance accuracy of 87.1% by uti-
lizing the eye-closed state data of nine subjects. La Rocca et al. (2014) [7]
have modeled a person authentication system based on power spectral den-
sity and spectral coherence-based features by using a dataset of 108 subjects
and obtained 97.5% and 96.26% accuracy in eye closed and eye open resting
state respectively. Some researchers have experimented with the most emerg-
ing deep-learning methods for the processing and application of EEG data. For
example, Cecotti et al. (2008) [2] have modeled motor imagery classification
with CNN and observed classification accuracy of 53.47% by using two sub-
jects’ EEG data in different trials. Nurse et al. (2016) [10] used one subject’s
data to develop a BCI application using CNN and noted an accuracy of 81%.
Spampinato et al. (2017) [17] designed a model using six subjects’ EEG. The
author has modeled CNN with different subjects’ discriminated brain activity.
Schrimster et al. (2017) [16] used CNN for EEG decoding and visualization
on a dataset of 109 subjects and obtained an accuracy of 89.8%.EEG signals
for motor imagery actions are used in many studies of Brain-computer inter-
faces. This paper offers further perspective on the possibility of using EEG
signals of motor imagery movements in biometric applications. Yingnan Sun
et al. (2019) [46] designed a EEG-based user identification model and noted
the accuracy of 99.58% with convolutional long short-term memory neural net-
works. Wilaiprasitporn T et al. [47] (2019) modeled an affective EEG-based
person identification system and observed accuracy of 99.10%. They explored
a deep learning approach with CNN and GRU (Gated Recurrent Unit). The
summary of the related work is presented in Table 1. The related work con-
cluded that research is carried out on EEG-based person identification and
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EEG signal analysis. As per the author’s knowledge, this is the first work to
use the weights of the autoencoder and classification done by CNN using those
weights for EEG-based person identification.

3 Novel contributions of the current paper to the state of art

The current paper addresses a unified design of the person identification mod-
els using multi-task and emotion-based EEG signals. Motor imagery EEG (MI-
EEG) is a maximum broadly centered EEG signal that exhibits a subject’s
motion intentions without real actions. This work proposes an unsupervised
framework for feature learning based on an autoencoder to learn sparse feature
representations for EEG-based person identification. Autoencoder and CNN
do the person identification task for signal reconstruction and recognition for
different models. The outcomes imply that the overall performance of our pro-
posed frameworks is similar or advanced to that of the state-of-the-art method.
The shape is a realistic technique to control the full-size extent of EEG data
and pick out the individual based totally on their emotions, resting states, or
specific tasks.

3.1 Research Question and Challenges Addressed in the Current Paper

EEG-based biometric system has been proven to be a growing research interest
over the past few years. However, a decay in performance has been noticed
when more subjects are enrolled in the system. The performance of a person
identification system can also be explored by using emotion and task-based
approaches for Person Identification with efficient deep learning algorithms
that help in dimensionality reduction. These discussions raised many research
questions, and the authors tried their best to address these challenges in this
paper.

3.2 Proposed Solution of the Current Paper

This research proposes unsupervised frameworks for feature learning based
on autoencoder to learn sparse feature representations for EEG-based per-
son identification. Emotion-related EEG signals will be used here to create
the Biometric Identification System. One cannot manipulate the EEG signal
according to their will. It depends on various parameters like the external con-
ditions and the internal mindset of the person. Hence, they will not be able
to escape the identification system. We explored different person identification
models using task-based EEG signals with autoencoder and CNN.
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3.3 Novelty of the Proposed Solution

In this research for dimensionality reduction and denoising (extracting origi-
nal input from noisy data), we have also proposed an autoencoder-CNN-based
biometric system with EEG motor imagery inputs. The autoencoder extracts
essential features from input EEG and ignores the noises during the training
because the labels have no noises. Denoising autoencoders create a corrupted
copy of the input by introducing some noise. This helps to avoid the autoen-
coders to copy the input to the output without learning features about the
data. These autoencoders take a partially corrupted input while training to
recover the original undistorted input. The model learns a vector field for map-
ping the input data towards a lower dimensional manifold which describes the
natural data to cancel out the added noise. Convolutional Autoencoders learn
to encode the input in a set of simple signals and then try to reconstruct the
input from them. We have used the concept of Convolutional autoencoder with
CNN to explore the effectiveness both in transformation and classification. In
reconstructing the original information from the noisy version, denoising au-
toencoders are proved to be more efficient. Autoencoders are data-specific and
best capable of compressing data like they had been trained. Autoencoder and
CNN do the person identity venture for signal reconstruction and recognition.
The outcomes imply that the overall performance of our proposed framework
is similar or advanced to that of the latest method. To address the security is-
sues in different applications, a robust and secure person identification system
is designed.

The novel contributions of this paper are summarized as follows:

• Identifying individuals based on different states using deep learning tech-
niques.

• Two deep learning model in a single architecture to design a biometric au-
thentication system for EEG-based person identification.

• Implementation of autoencoder-CNN architecture for person identification
was intensely successful with improved recognition performance with most
notable autoencoder architecture.

4 Proposed Model

This section elaborates on the detailed methodology adopted for identifying
people based on different states using deep learning. For this, we have trained
the autoencoder and CNN in two phases. In the first phase, the first autoen-
coder reconstructs the input EEG signal. The reconstruction of signals has
been done using the weights of the first autoencoder. In the second phase, we
used the weights of the starting layers of the first autoencoder to initialize
the weights of starting layers of CNN. Afterward, CNN was used to recognize
or identify a different person. The detailed architecture is depicted in Fig 2.
The following subsection describes the details of the autoencoder and CNN
architecture used to reconstruct and recognize EEG signals.
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Fig. 2 Architecture of EEG-based Autoencoder-CNN model.

4.1 Architechture of Autoencoder

The primary aim of the convolutional autoencoder network is to minimize the
reconstruction error by learning the compressed features from high dimen-
sional feature space. The number of nodes in the input layer is the same as
that of the output layer. Autoencoder is also used to reduce data dimension
by reconstructing the feature descriptor set of the hidden layers having fewer
nodes. To reconstruct the EEG signal inputs, the intuition behind the design
of the autoencoder is that the autoencoder is best suited to rebuild the in-
put data, and its weight is best suited for recognition task learning in place
of random initialization of the weight. In this work, we use an autoencoder
network consisting of two stages, encoding, and decoding. The autoencoder
architecture is depicted in Fig.3, consisting of fifteen convolution layers, two
max-pooling, and two upsampling layers. We have used 3x3 receptive fields for
all the convolutional layers and 2x2 receptive fields for the max-pooling and
upsampling layers. Input and output layers are of size 32x64. We have used
zero padding for each convolutional layer to maintain the output size with
the input size. After two max-pooling, the feature map size reduces to 8x64,
and after two upsampling, it grows to the original size of 32x64. Each convolu-
tional autoencoder layer, except the last convolutional layer, is embedded with
a Relu activation function. The sigmoid activation function follows the final
convolutional layer to output the probabilities of belongingness for classes.
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Fig. 4 Architecture of convolutional neural network (CNN) with reconstructed EEG as
input.

4.2 Architechture of CNN

The convolutional neural network is used for classification and recognition
purposes, and the derived weights of the first autoencoder are used in the layers
of CNN. Eight convolution layers increase the depth of the CNN. Zero padding
has been added to make the input and output sizes identical. The kernel size
of each layer is 3x3, which helps to reduce the number of parameters and adds
nonlinearity to the network. ReLu is connected with each convolutional layer
and fully connected layers except the last layer embedded with softmax that
transforms all the net activations in the final output layer to a series of values
that can be interpreted as probabilities. To achieve this, the softmax function
is applied to the net outputs (without an activation function or bias). The
overall architecture of CNN with reconstructed input is depicted in Fig.4.

An n-D convolution is when two functions or tensors are convolved along
n axes. Standard CNNs (i.e., 2D CNNs) are typically used for classifying two-
dimensional inputs. Using a 2D CNN rather than other neural network struc-
tures, we aimed to capture many hidden spatial features. This approach guar-
antees the correctness of the generated features: the more hidden layers gener-
ated, the more hidden attributes developed in CNN to identify quickly. A 2-d
convolution ‘convolves’ along two spatial dimensions. It has a minimal kernel,
essentially a window of pixel values, that slides along those two dimensions.
Based on the weight dimension, whenever we use Conv2D, one filter of weights
has an equal number of channels as the previous layer, so one filter outputs
one 2D channel. While in Conv3D, one filter has dimensions that are lesser
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than the input channels of the last layer; therefore, it forms more channels in
the output layer.

5 Experimental Results and Discussion

The modeled network architecture experiments discussed in the previous sec-
tion have been done on the system with 64 GB RAM. We have used Keras
(Chollet (2015)) for various experiments. To evaluate the performance of the
EEG-based person identification model, we have used motor imagery EEG
data of 109 subjects. Resting-state data (eye open, eye closed ) and four dif-
ferent tasks (motor imagery)are taken for training and testing, proving the
biometric system’s robustness. We have conducted various experiments by
taking resting-state versus resting-state and resting-state versus different tasks
(motor imagery) for training and testing our proposed model alternately.

The identification results are computed using the CNN without weights,
which is the only CNN architecture, and CNN with weights, which is the
autoencoder-CNN architecture, where the autoencoder network was trained
with the mean squared function for the reconstruction of inputs. The au-
toencoder’s mean squared error loss function is used to measure the close-
ness of reconstructed input and original input. Mean Squared Error (MSE)

J(x, z) = ∥x− z∥2, where x and z are the original and reconstructed input,
respectively. The subsection presents the dataset’s details, results with exper-
iment steps, and details of training the autoencoder and CNN.

5.1 Dataset Description

The dataset used for this study was collected from the publicly available phy-
sionet database [3]. The original recordings of Brainwave EEG motor imagery
signals were gathered by using 64 channels of the BCI2000 system [15] with
a sampling rate of 160 Hz. The brain signals were collected from 64 elec-
trodes arranged with the international 10-10 standard as depicted in Fig.5.
The dataset consists of two minutes of EEG recordings by 109 healthy and
alcohol-free subjects. They performed different tasks in 14 runs, including two
1-minute baseline runs with resting state and three 2-minute runs (each of
four various motor/imagery tasks). In this paper, we have considered baseline
resting states separately for training and testing in one part and four different
motor imagery tasks as described in Table 2 for testing along with resting-
state training. Every recording lasts one minute for the resting state and two
minutes for each of the four tasks. We have segmented the EEG data into
multiple files (approximately 300) for the same subject for training. For this,
a non-overlapped window is utilized, and the corresponding EEG recorded is
segmented into equal parts for both EO and EC states for training.
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Table 2 Description of the dataset used for the Proposed Model.

State Description

Resting States Eye Open (EO) and Eye Closed (EC)
Task1 open and close left or right fist
Task2 imagine opening and closing left or right fist
Task3 open and close both fists or both feet
Task4 imagine opening and closing both fists or both feet

Fig. 5 Representation of 64 electrodes following the international 10-10 system.

5.2 Training of Autoencoder

Unsupervised learning was adopted to train the autoencoder. The input data
was also considered as a target. The trained autoencoder was able to recon-
struct the input EEG signals. The RMSprop gradient descent optimization al-
gorithm [48] (proposed by Geoffrey Hinton) was used to train the autoencoder.
The advantage of using RMSprop is that it dynamically adapts the learning
rate and quickly adopts various architectures for selecting hyper-parameters.

5.3 Training of CNN

The CNN was trained with a definite loss function for classification and person
identification. Here, we used this loss to train a CNN to output a probability
over the classes for each signal. It is mainly used for multi-class classifica-
tion. The softmax activation function is applied before the cross-entropy loss
computation. The loss function is also known as the objective function. We
want our neural networks to optimize their weights according to it. Therefore,
it is task-specific and empirical. Out of the total data,90% and 10% of data



13

were used for training and testing, respectively. The training of the model was
terminated when we observed constant validation loss.

5.4 Training and Testing on Same State

We have variously explored our models to find their efficiency. We have noted
the results with the same train data and test data, for example, EO used for
training and testing and the same for EC. We achieved train and validation
accuracy of 99.63% and 99.45%, respectively, for eye open (EO) data using
the autoencoder-CNN-based person identification model. We have noted train
and validation accuracy of 99.53% and 98.27% eye closed (EC) data. We have
also modeled the data using CNN to test the robustness of our model and
noted train and validation accuracy of 100% and 77% for EO data, respec-
tively. Likewise, we observed train and validation accuracy of 98.66% and 86%
for EC data, respectively, as noted in Table 3. The highest person identifica-
tion accuracy has been achieved up to 86% with EC Vs. EC in CNN. In the
autoencoder-CNN model, the highest person identification accuracy has been
achieved up to 99.63% with EO Vs. EO. The perfermance metrics in terms
of train and validation loss plot for both the models have been observed as
depicted in Fig. 12.

Table 3 Observation of Performance [Accuracy] with EO Vs EO and EC Vs EC.

Model

Accuracy(%)
EO VS EO
Train/
Validation/
Test

Accuracy(%)
EC Vs EC
Train/
Validation/
Test

CNN 100/ 77.00/ 81.00 98.66/ 86.00/ 83.44
Autoencoder+CNN 99.76/ 99.63/ 99.45 99.53/ 98.27/ 99.89

5.5 Training and Testing on Different States

To prove the robustness of our model, we have used the different training and
testing data of the dataset. Firstly, we alternately used eye open and closed
state for training and testing and observed person identification accuracy of
77.58% and 73.76% respectively, as noted in Table 8. The plot of train and
validation accuracy of both the models CNN and Autoencoder-CNN is de-
picted in 6 and 7 respectively. We have also experimented by using EO and
EC separately as train data with four different tasks as test data to observe
the identification accuracy of the proposed model as recorded in Table 5 for
EO Vs. Tasks and Table 6 for EO Vs. Tasks. We have noted the train, val-
idation, and test accuracy for both the CNN and Autoencoder-CNN model.
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(a) (b)

Fig. 6 Performance [Accuracy] with number of epochs using CNN.: (a) EC Vs EC (b) and
EO Vs EC.

(a) (b)

Fig. 7 Performance [Accuracy] with number of epochs using Autoencoder-CNN Model.:
(a) EO Vs EO (b) and EO Vs EC.

The highest performance noted for EO Vs. Task2 as depicted in Fig. 8 and
9 for Autoencoder-CNN and CNN model respectively.We have also observed
the performance of both the models interms of train and validation loss as
depicted in Fig.13. Likewise, we have noted the highest performance for EC
Vs. Task1 for Autoencoder-CNN and EC Vs. Task2 for CNN model as shown
in Fig. 8 and Fig.9 respectively.Secondly, we have used the whole resting-state
data EO, and EC combined for training our proposed model and four different
motor imagery tasks for testing one by one and noted the accuracy as shown
in Table 7. The highest person identification accuracy has been achieved up
to 87.93% with task1 (open and close left or right fist) for Autoencoder-CNN
model as depicted in Fig.10. We have used the CNN model to observe the
performance of the model with the same states and got the highest accuracy
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(a) (b)

Fig. 8 Performance [Accuracy] with number of epochs with different states using
Autoencoder-CNN Model.: (a) EO Vs Task2 (b) and EC Vs Task1.

(a) (b)

Fig. 9 Performance [Accuracy] with number of epochs with different states using CNN
Model.: (a) EO Vs Task2 (b) and EC Vs Task2.

of 81.84% with Task1 (open and close left or right fist) as mentioned in Table
7 and shown in Fig. 10. We have also observed and noted the performance of
both the models interms of train and validation loss as depicted in Fig.14.We
have also compared and analyzed the performance with the EO, EC, and
EOEC with increased number of training data in EOEC with different tasks
as testing data and noted the highest accuracy with different motor imagery
tasks for the two different model as depicted in Fig 11.
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(a) (b)

Fig. 10 Performance [Accuracy] with number of epochs with different states using : (a)
EOEC Vs Task1 in Autoencoder-CNN (b) and EOEC Vs Task1 in CNN.

Table 4 Observation of Performance Accuracy with EO VS EC and EC Vs EO Tasks .

Model

Accuracy(%)
EO VS EC
Train/ Validation/
Test

Accuracy(%)
EC Vs EO
Train/ Validation/
Test

CNN 98.87/ 69.45/ 67.23 98.56/ 66.00/ 65.38
Autoencoder+CNN 99.63/ 77.58/ 75.33 97.34/ 73.76/ 72.91

Table 5 Observation of Performance [Accuracy] with EO (Train Data) Vs Tasks (Test
Data).

Tasks

Accuracy(%)
with weight(Autoencoder-
CNN)
Train/ Validation/ Test

Accuracy(%)
without
weight(CNN)
Train/ Validation/
Test

Task1 99.55/ 65.65/ 65.13 99.13/61.77/61.25
Task2 99.44/ 68.91/ 66.79 98.67/62.31/61.98
Task3 99.60/63.27/ 63.11 99.27/60.63/60.28
Task4 99.49/ 67.39/ 66.54 97.21/59.56/60.19

5.6 Comparative Analysis

We have compared the proposed framework of EEG-based person identifica-
tion with existing techniques. The authors in [21], used CNN for user identi-
fication, and obtained 94.01% and 97.00% accuracy using two different data
sets the Dreamer and BCIT EEG datasets, respectively.Thomas et al. [19]
have proposed a biometric recognition system to improve the recognition per-
formance using EEG signals. They have applied the band-pass filter method
on EEG data to remove the artifacts and considered Individual Alpha Fre-
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Table 6 Observation of Performance [Accuracy] with EC (Train Data) Vs Tasks (Test
Data).

Tasks

Accuracy(%)
with weight(Autoencoder-
CNN)
Train/ Validation/ Test

Accuracy(%)
without
weight(CNN)
Train/ Validation/
Test

Task1 99.71/68.29/67.33 98.11/58.89/ 59.12
Task2 99.32/62.97/62.88 99.37/ 61.17/ 61.00
Task3 99.57/64.78/63.41 97.72/59.76/ 59.27
Task4 99.23/65.21/64.98 98.69/ 60.98/ 60.11

Table 7 Observation of Performance [Accuracy] with EOEC (Train Data) Vs Tasks (Test
Data).

Tasks

Accuracy(%)
with weight(Autoencoder-
CNN)
Train/ Validation/ Test

Accuracy(%)
without
weight(CNN)
Train/ Validation/
Test

Task1 99.96/ 87.93/ 87.60 99.63/ 81.84/80.95
Task2 99.90/ 82.56/ 82.74 99.82/78.28/79.09
Task3 99.89/ 85.79/ 84.99 99.92/ 77.63/78.40
Task4 99.91/ 83.88/ 83.71 99.87/75.12/76.90

Fig. 11 Pictorial representation of the Highest performance [Accuracy] with Tasks for EO,
EC and EOEC.

quency Peak (IAF), IAF power (IAFP), and Delta Band (0.5- 4 Hz) Power
(DBP), respectively, for making six subject-specific templates in both EO/EC
conditions. Similarly, the authors in [4] have modeled the EEG signal using
both Random Forest (RF) and Support Vector Machine (SVM). They have
extracted some features using DWT analysis of feature extraction. ChiQin Lai
et al. [22] proposed a CNN model combined with a majority voting set of
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(a) (b)

Fig. 12 Performance [Loss] with number of epochs for resting states using : (a) CNN (b)
and Autoencoder-CNN.

(a) (b)

Fig. 13 Performance [Loss] with number of epochs for EO vs. Task2 using : (a) CNN (b)
and Autoencoder-CNN.

error-correcting output codes of support vector machines (CNN-ECOC-SVM)
for EEG-based biometrics architechture, and noted recognition accuracy of
98.49%. Keshishzadeh et al. [5] have used Autoregressive (AR) coefficients as
the feature set, selecting the features using a statistical-based method and us-
ing an SVM classifier to propose an EEG-based person authentication system.
The authors in [7] have designed the authentication connectivity using a Ma-
halanobis distance-based classifier. They have applied a proper anti-aliasing
low-pass filter to restrict the available frequency range up to 50 Hz. The PSD
of the EEG signals was extracted from each segmented epoch (10s) by comput-
ing Welch’s averaged modified periodogram. The authors in [20] have designed
a spatio-temporal model for person identification using CNN and LSTM lay-
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(a) (b)

Fig. 14 Performance [Loss] with number of epochs for EOEC vs. Task1 using : (a) CNN
(b) and Autoencoder-CNN.

ers with different time segments and observed notable performance with EEG
data for identification.

For biometric identification, the proposed identification model includes au-
toencoder and CNN layers using EEG signals to enhance the performance of
recognition accuracy with a large number of subjects. Comparison between the
state-of-the-art biometric authentication systems using captured scalp EEG is
presented in Table 8. These works used one publicly available popular large mo-
tor imagery EEG dataset. Some author used their own created EEG dataset for
measuring performance. In Table 8, all use baseline state (eye closed and open
state) for performance evaluation. The proposed biometric system provides
better comparable performance with many subjects, a step toward realistic
application in the biometric identification and verification.

6 Conclusion

This paper explored the capability of two deep learning models in a single ar-
chitecture to design a biometric authentication system for EEG-based person
identification. Here we have used the encoder and decoder of the autoencoder
model to extract the features of the reconstructed EEG signals. The CNN
model uses the saved weights of the autoencoder model to classify the recon-
structed EEG signal for person identification. We have used more profound
CNN architecture here, which proved reliable and got better performance. It
was observed that implementing the autoencoder-CNN architecture for person
identification was intensely successful, with improved recognition performance
with the most notable autoencoder architecture. We have used eye open and
closed resting state data as training data, while four different motor imagery
tasks have been considered test data in this biometric model. Training and
testing of variable state data of the same person have been proven to be the
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Table 8 Comparison between the state-of-the-art biometric authentication systems using
non-invasive EEG signals.

Reference Subjects Classifier
Number
of
channels

Time
Seg-
ment

Performance[Accuracy(%)]

[19] 109 Mahalanobis distance 19 10 90 (EC/EO)
[4] 109 RF 64 2 95.78(EO) 93.21(EC)
[4] 109 SVM 64 2 96.88(EO) 96.02(EC)
[5] 104 SVM 64 0.5 97.43 (EO,EC)
[7] 108 Mahalanobis distance 56 10 96.26(EO) 97.5(EC)
[21] 23 CNN 64 1 94.01
[22] 109 CNN-ECOC-SVM 64 1 98.49 (EO,EC)
[20] 109 CNN+LSTMs 64 4 95.00 (EO) 95.33 (EC)
[20] 109 CNN+LSTMs 64 8 96.2 (EO) 97.00 (EC)
[20] 109 CNN+LSTMs 64 16 92.5 (EO) 93.2 (EC)
Proposed 109 Autoencoder-CNN 64 8 99.45 (EO) 99.89 (EC)

most robust and versatile EEG-based biometric system. In the future, different
deep learning and machine learning methods can be merged to explore bet-
ter performance in this EEG-based security field and other signal processing
areas.
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