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Abstract The world population is anticipated to in-
crease by 2 billion by 2050 causing a rapid escalation of
food demand. A recent projection shows that the world
is lagging behind in accomplishing the “Zero Hunger”
goal, in spite of some advancements. Socio-economic
and well-being fallout will affect food security. Vulnera-
ble groups of people will suffer malnutrition. The agri-
cultural industry must be upgraded, smartened, and
automated to serve the growing population. Adopting
existing technologies can make traditional agriculture
efficient, sustainable, and eco-friendly. In this survey,
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we present Agriculture 4.0 and its applications, tech-
nology trends, available datasets, networking, and im-
plementation challenges. We concentrate on Artificial
Intelligence (AI) and Machine Learning (ML) technolo-
gies that support automation, as well as the Distributed
Ledger Technology (DLT) which provides data integrity
and security. Following an in-depth investigation of sev-
eral architectures, we also provide a framework for smart
agriculture that relies on the location of data process-
ing. Open research problems of smart agriculture have
been discussed from two perspectives - technology and
communications. AI, ML, DLT, and Physical Unclon-
able Function (PUF) based hardware security fall un-
der the technology group, whereas any Internet-based
attacks, fake data injection and similar threats fall un-
der the network research problem group. The survey
aims to provide an in-depth study on recent works, chal-
lenges, and open research problems of smart agriculture
to the researchers in this domain.

1 Introduction

By the end of the 21st century, world population is ex-
pected to reach 11 billion [9] and food consumption
will surge at an unprecedented rate. Though a “Zero
Hunger” goal by 2030 has been set, we are lagging be-
hind the target [10]. It is estimated that about 800 mil-
lion people are starving across the globe as of now [64].
Population increase makes the situation worse. To feed
the world, food production is required to increase to
170% by 2050 [11].

A number of other factors are aggravating this situ-
ation: Firstly, urbanization is changing our diet. People
now eat more animal protein than before. Annual con-
sumption of animal protein per person from 1997 to
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1999 was 36.4 kg and is expected to increase 20% by
2030. Secondly, natural resources are exhausted. Agri-
cultural lands are becoming unsuitable for farming. Twenty-
five percent of the current arable land is not at all suit-
able and 44% is reasonably not suitable as of now. Due
to water scarcity, 40% of the arable land is turning to
unproductive land. Thirdly, urban expansion and de-
forestation for new arable lands also lead to rapid de-
pletion of groundwater. Over-cultivation has also led to
shorter fallow periods and reduced crop rotation whereas
overgrazing leads to soil erosion. Food waste is another
issue. 33% - 50% of the food is wasted worldwide. Fi-
nally, climate change is progressing very fast. It started
affecting every aspect of food production. Over the last
50 years, greenhouse gas emissions have doubled with
unpredictable rainfall and more instances of droughts
and floods.

To combat these problems, the food and agro in-
dustries embrace “Agriculture 4.0”, a smart and green
movement, centered on science and technology [148].
Traditional farming is changing to viable, intelligent, ef-
ficient and environmentally friendly farming. New terms
such as “smart farming,” “digital farming,” and “pre-
cision farming” are emerging. “Smart farming” is the
same as “Smart Agriculture”. Smart farming focuses on
accessing data and using it to optimize complex systems
and improve crop quality and yields. It also reduces hu-
man labor whereas precision farming targets optimiza-
tion, precision, and crop specific solutions. The combi-
nation of the two is “digital farming.” Fig. 1 shows the
advantages of smart agriculture over traditional agri-
culture.
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Fig. 1 Smart Agriculture Benefits Over Traditional Agricul-
ture.

The majority of the survey works on smart agri-
culture address a specific area of research, e.g. either
cybersecurity or AI. However, an overall idea of the
research domain that provides a complete picture of
smart agriculture is necessary for driving research in
this important area of high social impact. In this survey

we discuss “Agriculture 4.0” a.k.a. “smart agriculture”
and its applications, trends, technologies, networking,
datasets, challenges, and open research problems. This
survey will provide a holistic information perspective
on smart agriculture to researchers.

The rest of this survey is organized into eight sec-
tions. Internet-of-Agro-Things (IoAT) based Agricul-
ture Cyber Physical Systems (A-CPS) are discussed
in Section 2. Section 3 presents the smart agriculture
architecture. Various applications of smart agriculture
are described in Section 4. Challenges in implementing
smart agriculture are presented in Section 5. Section 6
describes different technologies adapted in smart agri-
culture, whereas Section 7 discusses available datasets
in the agricultural industry. Section 8 talks about the
open research problems for the future and finally Sec-
tion 9 concludes the paper.

2 IoAT based A-CPS

The Internet of Things (IoT) refers to physical things
and devices with unique id connecting and sharing data
through the Internet. Incorporating IoT in physical sys-
tems creates cyber physical systems (CPS). CPS is a
mixed system of hardware and software. Defining any
problem through CPS makes the process robust, seam-
less, and risk free and solves the problem optimally.
The idea of CPS can be applied to any industry. When
it comes to the agricultural industry, problems are de-
fined through agricultural cyber physical systems (A-
CPS) [149,151]. Any IoT based smart agricultural sys-
tem comprises of the stages described in Table 1. Loca-
tions of the occurrence of various stages have changed
before and after the tinyML era [241].

3 Smart Agriculture Architecture

After careful consideration of various architectures [66,
67,78,112,118,156,186,235] in the literature, we present
the architecture of smart agriculture with three main
layers and two connecting layers. Fig. 2(a) shows this
architecture. Here, layers are defined according to the
location (proximity to the occurrence) and their con-
nections.

3.1 Layer-1

Agriculture Device Layer is the first layer or the bot-
tom most layer. It consists of sensors, animal paddocks,
greenhouse, UAV, agro robots, automated tractors [5,
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Table 1 A-CPS Workflow Information.
Stages Descriptions Before TinyML Era TinyML Era
Data Collection Things collect data. Sensor level. Sensor level.

Data Processing Makes the collected data usable to the model. Edge level Edge level

Prognostic Analyze the processed data using preset rules. Cloud/Edge level. Edge level

Solution Solution of the issue is suggested. Cloud/Edge level. Edge level

Measures Taken As per the solution, measures are taken. IoT device level. IoT device level.

6]. Data is collected and sensed in this layer. The de-
vices, also known as distributed source nodes, moni-
tor physical parameters and collect data in real time
and transmit it to the gateway node at the next tier
via the connectivity layer, thereby creating a Wireless
Sensor Network (WSN). Fig. 2(b) depicts the informa-
tion gathered by numerous sensors and cameras in vari-
ous smart agriculture applications. For example, under-
ground sensors and cameras on UAVs can gather data
in a rice field and deliver it to the edge for analysis.

3.2 Layer-1a

This layer is in between layer-1 and layer-2. It is called
Connectivity Layer-1. Layer-1 sends data to layer-2 through
this layer. Different networks are used for different cov-
erage areas as in Fig. 2(c). Depending on the applica-
tion, various long and short range networks are cho-
sen. For example, near range ZigBee, Wi-Fi, Z-Wave,
Bluetooth, RFID, and NFC are used to send data from
agriculture devices to the edge computing layer, while
SigFox, LoRaWan, and NB-IoT are utilized for longer
ranges [71]. Z-Wave is a good solution for a small farm
in a distant community with restricted network con-
nectivity. LoRaWan’s low energy use and long distance
transmission suit larger farms. Bluetooth low power is
utilized for monitoring soil, air, and water management
systems [84] and ZigBee for irrigation [131]. RFID tech-
nology is employed in smart agriculture for various pur-
poses [80,116,175,189,208,233]. The work in [255] used
LoRa for water management purposes.

3.3 Layer-2

Edge Computing Layer is the second layer from the bot-
tom. It consists of edge nodes. Data processing and en-
cryption are performed in this layer. Because of the
resource constraints at the edge layer, the prognostic
and solution components were previously handled in
the next layer. However, trained ML models can now
compute and predict at this layer because of current

hardware and AI edge developments. Both prognosis
and inference can be done in the next layer if the work
is resource intensive or not time sensitive. The edge
computing layer, for example, performs the appropri-
ate measures and notifies the farmer if a cow leaves its
supposed territory in a livestock farm or needs milking.

For edge-AI initiatives, prognosis and solutions are
also performed here. Various hardware boards are used
for processing the data [71] at this layer e.g., Arduino
UNO in [201] for a greenhouse application, Raspberry
Pi in [136] for hydroponic systems, ESP8266 in [113]
for connecting smart agricultural components, ESP32
in [37] for smart irrigation, Intel Edison in [34] for ver-
tical agro warehouses, and BeagleBone in [18] for agro-
chemical process monitoring.

3.4 Layer-2a

This the second connectivity layer. It is called Connec-
tivity Layer-2. The edge computing layer sends data
to layer-3 through this layer. Different networks are
used for data transmission depending on the application
needs. Fig. 2(c) lists the networks used in this layer. Cel-
lular technologies including GPRS, LTE, 3G/4G, and
5G are used to send processed data from edge com-
puting to the cloud. 5G features low latency, high de-
pendability, wide coverage, fast data rate, and new fre-
quency bands [235]. These features may boost commu-
nications capability of the smart agriculture. In [128],
GPRS has been used for irrigation. New 5G initiatives
have been presented in [15,65]. 6G cellular technology is
the 5G network’s successor. It’s faster than current mo-
bile networks. Smart agriculture will benefit from flex-
ible decentralized models in edge computing, AI, and
blockchain. Cloud management, framework, and inte-
gration with applications have been discussed for smart
agriculture in [202]. A general smart cloud based sys-
tem has been presented to facilitate smart farm remote
sensing [104]. UAVs are being used as flying edge com-
puting platforms to provide connectivity as and when
needed [224]. Federated learning based approaches are
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Fig. 2 Smart Agriculture Architecture Details.

also being used to address security and data privacy
violation issue [119].

3.5 Layer-3

This is the topmost layer. It is called Cloud Comput-
ing Layer. It stores data for future use. This layer is

accessible through the Internet [78]. It was the com-
puting and decision taking layer until recently [112,
128, 156], specially before tinyML. The cloud’s high
computational capacity enables it to complete a vari-
ety of complex jobs in an acceptable amount of time.
However, cloud computing’s limitations necessitate the
emergence of new computing paradigms. Latency, high
Internet bandwidth needs, data security and privacy
are some of the limiting problems that impede the time-
sensitive monitoring and management of intelligent agri-
culture.

4 Smart Agriculture Applications

In this section, application areas of smart agriculture
are discussed. Fig. 3 shows some application areas of
smart agriculture.

4.1 Crop Management

Analysis of economic, ecological, and social factors that
go into crop selection, growing, and marketing is re-
ferred to as “crop management.”

Cropping patterns are influenced by elements such
as crop growth, water availability, labor, insurance, and
environmental conditions. Changes in cropping patterns
are influenced by environmental conditions. Traditional
crop like rice, which requires a lot of water, cannot be
grown in locations where water supplies are drying up
and groundwater tables are decreasing. Different coun-
tries’ export and import rules, as well as the agricultural
product’s market, all have an impact on crop selection.
Once a crop has been chosen, the following step is to
cultivate the crop. The IoT provides farmers with the
most up-to-date technologies and sensors in the field
to monitor plant growth. As an example, pests and in-
sects that harm plant growth can be detected using
ultrasonic sensors placed in the field. High-frequency
sound waves are generated to eradicate pests after they
have been detected, and the farmer is advised of their
presence for additional assistance [238].

4.2 Soil Monitoring

Farming relies heavily on the availability of soil mois-
ture. When a plant is growing it uses photosynthesis,
respiration, transpiration, and mineral transport as a
means of transporting nutrients. Farm decision-making
relies heavily on soil monitoring. There are many ele-
ments that influence cropping patterns, including water
availability and soil salinity.
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Fig. 3 Applications of Smart Agriculture - Crop Management, Pest Control, Smart Irrigation, Livestock Monitoring Smart
Greenhouse, UAV [1].

Soil health can be evaluated with the assistance
of these variables. Field sensors collect soil tempera-
ture and humidity data, which is then uploaded to the
cloud for further analysis. Based on the salinity content,
soil nutrient level and soil humidity and temperature,
cropping patterns are studied and determined. Water
is required for photosynthesis, temperature regulation,
and transport of food and nutrients for plant growth,
hence soil moisture is an important consideration in the
growth process.

For optimal plant growth, humidity governs the de-
livery of nutrients and the rate of transpiration. The op-
timal humidity for growing vegetables is between 50%
and 60% [251]. A soil moisture sensor embedded in a
plant’s root analyzes soil moisture levels to ensure that
water resources are optimally utilized [130, 182]. Soil
conductivity has been measured along with soil mois-
ture at low cost using RF propagation in available Wi-
Fi bands [57]

4.3 Smart Irrigation

The use of cutting-edge irrigation technologies to im-
prove crop quality and quantity is known as “smart ir-
rigation.” It saves water by watering plants in the most
efficient way possible. There are two types of irrigation
systems: (1) weather-based and (2) soil moisture sensor-
based. An irrigation controller receives data from a lo-
cal weather station and adjusts the amount of water.
Sensors embedded in trees/grass correctly measure soil
moisture. This sort of irrigation necessitates the use of
precise humidity and air temperature measurements, as
well as weather monitoring and knowledge of the field’s
cropping pattern. Sprinklers, for example, are actuated
when data is transferred to the cloud [191].

The irrigation schedule for each farm area is de-
termined by the sensor readings from the soil moisture
probes. Optimal crop growth and 100% water efficiency
can be achieved by precise irrigation scheduling and ef-
ficient actuation [158]. The irrigation system may be
controlled by farmers using a smartphone app. Temper-
ature, humidity, soil moisture and ultrasonic sensors in
the field all feed into this irrigation system [163]. Farm-
ers may activate the irrigation pumps to water their
farms using a user-friendly mobile app on their smart-
phones, which connects to the cloud for analysis and
control.

4.4 Livestock Monitoring

An important component of smart agriculture is live-
stock management. Farmers can monitor herd health,
track grazing animals, and optimize breeding methods
with an IoT-enabled livestock health monitoring sys-
tem. Wearable collars or RFID tags can be used to mea-
sure vital signs like heart rate, blood pressure, and res-
piration rate in cattle. This serves two purposes: it saves
labor while also treating animals in a timely manner,
preventing the sickness from spreading further. GPS
tracking is used for this purpose in [191]. It also serves
to prevent any type of accident from occurring. Using
RFID tags for animal identification and tracking is also
common practice [240].

4.5 Remote Sensing

Farmers can use remote sensing to acquire real-time
agricultural data utilizing drones to map farm lands.
Using crop health and agricultural information, they
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can also check crop yield. Remote sensing can map soil
conditions and help farmers choose the best soil for a
crop. Weeds and pests can be identified and controlled.
Remote sensing’s most essential use is weather forecast-
ing. It can track rainfall, drought conditions, and water
resources, notifying farmers on water availability and
weather capital and crop planning can be done in ad-
vance [207]. When it comes to predicting production
and plant growth, one of the most crucial metrics in
crop cultivation, the Normalized Difference Vegetation
Index (NVDI), has been used in [220]. Abiotic stress
factors are monitored with the finest spatial resolu-
tion possible using remote sensing sensors on the farm
field [95].

4.6 Smart Greenhouse

In the wake of global climate change and dwindling
natural resources, the agricultural business welcomes
farming approaches assisted by technology. The smart
greenhouse is among them. It is an indoor environment
specifically designed for the plants. It is a self-contained
environment for agricultural monitoring that integrates
IoT and AI/ML technologies. It safeguards the farm
against wind, storm, and flooding. It boosts produc-
tion without requiring manual involvement. Inside the
greenhouse, solar-powered IoT-sensors are installed to
monitor the health of the vegetables, fruits, and other
horticultural crops. Using soil moisture sensors installed
within the tree’s root system, automatic drip irriga-
tion can be carried out. If a predetermined threshold is
met, the in-field actuators will water the farm accord-
ingly. LED lighting can better serve the demands of
plants. A regulated illumination of a certain wavelength
and intensity can improve plant development and yield
throughout the year.

Utilizing drip fertigation techniques, suitable amounts
of minerals such as potassium, phosphorus, and others
are applied to plants for optimal growth and health.
As more technologies become available to farmers and
the demand for organic fruits and vegetables grown
with smart green techniques increases, greenhouse hor-
ticulture is becoming smarter [117]. In [223], a deci-
sion support-based IoT-friendly smart greenhouse sys-
tem for enhancing rose plant productivity has been
demonstrated.

4.7 Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs), a.k.a. drones, are
becoming increasingly prevalent in the contemporary
agricultural economy. They are used for mapping crops,

monitoring fields, remote sensing, fertigation, and weed
detection. Drones can be a lifesaver when photograph-
ing vast agricultural tracts, mountainous regions, or re-
mote locales.

To assess crop health, the Normalized Difference
Vegetation Index (NVDI) is computed using photos cap-
tured by a drone. It determines the plant’s water level,
stress level, nutrient status, and pest infestation. It may
steer the entire cultivation process of crops [72,155,183].

4.8 Autonomous Tractor

Innovative technologies are transforming the agricul-
tural sector. Industrial IoT (IIoT) has advanced from
crop management, soil monitoring, and smart irriga-
tion to pest control, livestock management, and agri-
marketing. In the near future, we can anticipate au-
tonomous, intelligent, and smart farming equipment.
An autonomous tractor is an integral component of
these tools. This is a programmable autonomous vehi-
cle. It can perform cultivation and fertilizer application.
They are outfitted with GPS, lasers, and cameras and
can operate autonomously without the need for farmer
supervision.

Together with these smart tractors, an autonomous
drone is employed for weed detection, pesticide spray-
ing, field monitoring, and surveillance for sustainable
agriculture [76]. The autonomous tractors used in or-
chards for spraying and mowing are equipped with a
remote-assisted guide for conducting agricultural op-
erations and perception systems for detecting impedi-
ments. The perception system employs cameras for ob-
stacle detection and path identification based on geom-
etry [153,237].

4.9 Urban / Vertical Farming

In densely populated cities, the growing urbanization
rate poses a serious problem. In these regions, a new
way to farming has arisen to provide a sustainable farm-
ing option. Consequently, urban or vertical agriculture
has gained popularity among urban residents. It oc-
cupies three-dimensional (3D) area for agriculture us-
ing controlled water, nutrients, minimum herbicides,
and artificial lighting. The practical restriction of verti-
cal farming systems is the generation of artificial light
sources for plant development, as well as the associated
high costs [83].

Hydroponics, as the name suggests, is a water-based
system in which plants obtain all of their nutrition from
a solution rich in elements. Continuous nutrient input
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is required in hydroponic systems. Using an app, a mi-
crocontroller can water the plants in a hydroponic sys-
tem, as in in [234]. Aeroponics is similar to hydropon-
ics but roots are misted instead of erupting in water.
Aeroponic plants have been found to have a higher con-
centration of nutrients than hydroponic plants, accord-
ing to research. This method is used to cultivate plants
on board the International Space Station. Aquapon-
ics, a relatively new agricultural method, is a hybrid
of hydroponics and aquaculture in which the nutrients
(e.g. phosphorus and nitrogen) are not added exter-
nally. Those nutrients are produced by the fish in the
same tank.

4.10 Agriculture Marketing

An essential component of the expansion of a society’s
economy is the effective distribution of its goods and
services. Inflation is caused by the presence of middle
men, and as a result, both consumers and farmers suffer
losses. Smart agriculture alters this dynamic. Using a
variety of agro-marketing apps, farmers are now able to
engage in direct consumer sales of their products.

A blockchain based on Ethereum has been utilized
as a platform for the purpose of conducting trade talks
between farmers and end consumers [187]. With the as-
sistance of blockchain, a food supply chain has been
established [41], beginning with the updating of a dis-
tributed ledger during the production phase and con-
tinuing all the way through to the distribution phase.

4.11 IoT Infrastructure

This area covers the IoT infrastructures e.g., various
IoT sensors, cameras, connecting networks, efficient data
collection, connectivity, low power and low cost de-
vices. Efficient infrastructure increases the yield of a
farm. An agricultural IoT platform has been presented
in [232] for uninterrupted data collection though various
agricultural things like sensors, cameras and UAVs. An
asynchronous and reliable Sensor Network over White
Spaces is presented in [193]. This bidirectional commu-
nication method sends different data to different sensor
nodes at the same time and asynchronously receives
the data from the nodes sent concurrently. In [188] a
life cycle framework for energy efficient IoT in agricul-
ture and its effects on various operational factors have
been discussed.

5 Smart Agriculture Implementation
Challenges

The processes of Smart Agriculture have modernized
and facilitated traditional farming methods. However,
developing a system for smart agriculture might not
be as simple as putting few sensors out in the field to
monitor conditions. Precision agriculture comes with a
number of advantages, but it also poses a number of
challenges for farmers and owners of agricultural busi-
nesses. These challenges need to be conquered if in-
creased productivity and profits are to be realized as a
result of precision agriculture. In this section, challenges
of smart agriculture in modernizing the processes are
discussed.

5.1 Power Issues

The majority of “smart” agricultural activities involves
the use of many machines, the operation of which re-
quires significant quantities of power. It is not uncom-
mon for farms to have quite high power requirements
given their typically large land areas and the large num-
ber of required electronic components. This has been a
significant barrier to the widespread adoption of au-
tomated procedures of this kind on large farms. Some
of the proposed solutions include the use of clean en-
ergy derived from renewable sources such as solar, wind,
and hydro, which would supply the machinery with
continuous power that would not be interrupted [125].
Numerous researchers have shown an interest in this
topic, and work is currently being done to adopt and
improve the effectiveness of various renewable energy
sources for smart farming [90,184]. Inconsistent energy
needs at various locations across the farm are just one
of the challenges presented by these alternative power
sources. Other energy or power related challenges in-
clude storing and transmitting the power that is gen-
erated. To solve these problems, an effective microgrid
design must be developed. Research has been conducted
in this field to develop an effective smart microgrid
which can operate in conjunction with renewable en-
ergy sources [56,61].

5.2 Power Consumption

IoT devices are connected through the Internet and
generate huge amounts of data. This data is stored at
the data centers which consume enormous amount of
energy. Manufacturing of IoT devices like sensors, ICs,
micro-controllers, and other semiconductor embedded
devices also requires a lot of power. Additionally, some
IoT devices are battery operated, hence they are re-
quired to consume low power. IoT devices are low power
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devices but transmission of data from machine to ma-
chine is one of the major sources of power consumption.

5.3 Hardware Availability

A large number of sensors need to be interconnected for
a successful IoT process. Once data is collected through
“things” in the IoT network, they need to be processed
and computed. Hence, hardware availability is another
major challenge.

5.4 Hardware Security

The number of IoT devices is anticipated to be 50 bil-
lion by 2050 [55]. However, security of the hardware
is compromised when low price is demanded. For IoT
devices, two major security issues are Trojan and Side
Channel Attacks (SCA). Hostile hardware modifications
by the attacker are performed to manage the device se-
cretly in the case of Trojan attacks. In [50], electron
microscope scanning is performed on chips for detect-
ing any additional gates present after comparing with a
reference picture. A power efficient device specific Phys-
ically Unclonable Function (PUF) is proposed for IoT
friendly embedded devices [195]. In the case of SCA,
side channel signals e.g., electromagnetic emanation,
power profiling and timing analysis, are utilized to ob-
tain secret information like cryptographic keys. In [219],
a real life SCA has been presented. Various solutions on
hardware-assisted security (HAS) have been proposed
in [33,43,103].

5.5 Physical Security of IoT Devices

Physical security of the hardware is another important
challenge. IoT devices are prone to various physical at-
tacks as they are installed outside, sometimes with-
out any surveillance. Signal jamming, replication at-
tack, eavesdropping, and physical damage of the device
are some of these attacks [249]. Recently, due to the
advancement in edge computing devices, edge initia-
tives in smart agriculture are gaining attention. Vari-
ous physical security and safety issues of the IoT de-
vices are addressed and safety measures are proposed
in [12,27,74,164].

5.6 Networking and Communication

Machine-to-Machine (M2M) communication plays a sig-
nificant role in IoT based smart agriculture. They work

collectively towards a final task. Data is shared through
varied networks and communication protocols e.g., Zig-
Bee, Wi-Fi, LoRA, SigFox, LTE, GPRS, and 5G. For
a large agricultural farm, it is not a viable option for
setting up and maintaining such networks due to the
large cost. Various alternative but efficient methods are
being proposed in different papers [49, 192, 254]. Other
initiatives like SIL-IOT [246] have also been proposed.
It is an agriculture thing, made by integrating Solar
Insecticidal Lamps (SIL) with WSN for seamless com-
munication. In [98], a LoRa based image transmission
system has been proposed which can send the images
from field camera.

5.7 Connectivity Issue

Unavailability of high bandwidth Internet connection
in villages hampers the cloud-centric computation and
halts the progress of smart agriculture. Mountains and
vast forests obstruct the line-of-sight (LOS) GPS com-
munication [8].

5.8 Data Security and Privacy

To maintain data security and privacy, data encryption
is a good practice. But due to the simple design of IoAT
devices, data encryption is not always a viable option as
encryption is a resource intensive process. As a result,
smart automated agricultural solutions are vulnerable
to various attacks. Yield and quality of the production
can be affected negatively.

5.9 Scalability and Reliability

The size of agricultural farms varies from small to large.
Depending on the size of the farm, the number and
types of sensors also vary. As a result, a vast hetero-
geneous data set is generated from each farm. Hence,
scalability plays an important role in smart agricultural
solution. Reliability is another important factor. High
reliability can reduce the number of redundant devices
hence decreases the cost involved.

5.10 Big Data Challenge

In smart agriculture, the sensor nodes or cameras col-
lect enormous amounts of data that may be broken
down into many different categories. The conventional
methods of processing such a vast amount of data are
insufficient, which is where big data analysis comes in.
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Big data provides the capability to investigate very
large datasets. It mitigates food security issues [46],
provides predictive analysis and real time decision mak-
ing, and it introduces new business models [178, 242].
All of these benefits can be attributed to the fact that
the efficiency of the end-to-end supply chain in smart
agricultural systems is improved.

Support Vector Machines (SVM) and Artifical Neu-
ral Networks (ANN) have been applied in order to inte-
grate a big data platform in order to ensure the safety
of the milk production chain [110]. The big data work-
flow in a smart agriculture system is depicted in Fig.
4 [46, 242]. It begins with the gathering of data at a
variety of sensor nodes and finishes with the use of a
variety of methodologies for data analysis, which can
include both conventional and big data analysis.

Data Generation

• Enormous and 
Wide Variety of 
Data from Smart 
Agriculture

Data Acquisition

• Collection
• Transmission
• Preprocessing

Data Storage

• Direct Attached 
Storage (DAS) 

• Network 
Attached 
Storage (NAS)

• Storage Area
Network (SAN)

Traditional 
Analysis

• Cluster
• Factor 
• Correlation 
• Regression 
• Bucket Testing
• Statistical
• Data Mining

Big Data
Analysis

• Hashing
• Index
• Triel
• Parallel 

Computing

Data Analysis

Fig. 4 Big Data Work Flow in the Context of Smart Agricul-
ture.

5.11 Challenges of AI

For sustainable, efficient, and automated agriculture,
AI is a relevant choice. However, certain factors present
challenges to employing AI in agriculture. The commu-
nication gap between the AI community and farmers is
one of the major challenges. Multidisciplinary research
can reduce this gap. Absence of regulations and policies
is another challenge in applying AI. As sensors collect
data from various regions, questions regarding data pri-
vacy and security come up. Cloud based solutions are
also prone to cyber attacks. For edge-AI solutions, pro-
cessing and computation of data is done locally. It re-
duces the chance of various attacks and solves the data
privacy and regulation problem.

5.12 Technical Malfunction

Technical malfunction can impact a system negatively.
Damaged sensors can wrongly sense data and errors can
occur during decision making. It eventually can cause
huge losses. For example, if the sensors in a crop field
are damaged by hail, they sense wrong moisture data.

As a result, the irrigation system may not work prop-
erly.

5.13 Lack of Initial Capital Investment

Establishing new technologies in the cropland needs
huge initial capital investment. However, in developing
countries, where farmers have very thin profit margins,
large capital investment is not a viable option. It stalls
the extensive use of technologies in agriculture.

5.14 Unavailability of Uniform Standards

There is no uniform standard across the globe for smart
agriculture solutions. It makes the solutions complex
and expensive. A uniform standard is needed worldwide
[8].

These aforementioned challenges pose significant bot-
tleneck in implementing IoAT systems at various levels.
The majority of them are common to any IoT system.
However, each IoT system is impacted by these chal-
lenges at different degrees. For example, for IoAT sys-
tem connectivity, huge amount of data generation, and
awareness of the farmers about the available state-of-
the-art technologies are major barriers in modernizing
agriculture. Theses challenges must be conquered in or-
der to assure increased efficiency and maximized profits.

6 Technologies for Smart Agriculture

In 2021, when the world was struggling through the
pandemic, a digital and sustainable ecosystem was wel-
comed by the world’s industry sectors. Industry 5.0
arrived with digital transformation. The relationship
of “human” and “machine” is re-defined. Industry 5.0
speeds up the advent of Agriculture 5.0. Two main tech-
nologies, (1) artificial intelligence (AI) or machine learn-
ing (ML) and (2) distributed ledger technology (DLT),
along with other technologies mentioned in Fig. 5 will
guide this transition from Agriculture 4.0 to Agriculture
5.0.

6.1 Artificial Intelligence and Machine Learning

Machine intelligence that resembles human intelligence
is referred to as artificial intelligence (AI). Progress
in AI/ML technologies has shown great potential in
variety of industries and research domains e.g., mar-
keting [213], computer vision [141], multimedia foren-
sics [139, 142, 144], healthcare [99], social media fake
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Fig. 5 Various Technologies for Smart Agriculture.

image and video detection [140,143], gaming [167,209],
autonomous cars, and farming.

When used in agricultural applications, AI increases
the efficiency of agricultural systems. Fig. 5(b) shows
various AI tools applied in agriculture. These tools from
different publications are being used in various areas of
agriculture, as discussed in Table 2.

Varied AI technologies are being proposed based on
the location of the computation. Research is ongoing
to create deep neural network models with higher ac-
curacy and fewer training parameters for edge AI ini-
tiatives, where the AI model operates on the restricted
resource embedded system itself [137]. MobileNet [89],
SqueezeNet [93], and EfficientNet [218] are examples
of networks that execute depth wise convolution, data
down sampling, and uniform model scaling down, re-
spectively. The DNN size is reduced via quantization
[47,101,247,257] and pruning [23,77,81,86,152,248,250].
The right hardware is just as crucial as the right algo-
rithms.

AI has the potential to revolutionize the way we
think about agriculture, making it possible for farmers
to accomplish more with less work while also offering
a variety of other benefits. However, artificial intelli-
gence is not a stand-alone technology. It can serve as a
bridge between traditional farming and the next stage
of agricultural innovation. It collects and evaluates large

amounts of data on a digital platform, determines the
most effective course of action, and even executes that
course of action when integrated with other forms of
technologies. It facilitates improved decision-making,
reduces the cost, limits the use of fertilizers and pes-
ticides, brings higher profits, improves harvest quality
and yield, monitors weather and soil health, and pro-
vides faster and accurate solutions from smart irriga-
tion to vertical farming.

6.2 Distributed Ledger Technology

Distributed ledger technology consists of distinct nodes
that help record, share, and synchronize the data trans-
actions in their respective electronic ledgers instead of
using central storage servers. Some examples of this
technology include blockchain, DAG, Holochain, Tempo,
and Hyperledger Fabric. Some ledger technologies, lim-
itations, and applications are discussed here.

6.2.1 Blockchain

One of the recent digital technologies which has proved
disruptive in the field of finances [40, 159] eliminating
the need for centralized authorities and managing digi-
tal assets is the blockchain. Even though starting as fi-
nancial solution, the blockchain has shown potential use
cases in many industries like Real-time Secure IoT sys-
tems [94, 204], Smart Governance applications [75, 87],
Digital Asset Copyright technologies [245, 252], Smart
Healthcare [26,30,181] including Smart Agriculture and
many other industries. Blockchain characteristics like
hash linked data structure, cryptography verification,
consensus based transaction processing helps in remov-
ing centralized authorities and provides more data se-
curity in an untrusted P2P network. IoT is another
technology which has been a driving factor for smart
agriculture systems in which using the IoT to make
the farms climate resistant and also helps in achieving
predicted yield even in case of environmental param-
eter fluctuations [127]. IoT three layered architecture
consists of sensing layer, edge layer and cloud layer.
Edge devices which are responsible for collecting data
from sensing layer and process them form Edge Data
Centers (EDC). They form a P2P network of EDCs
to communicate and collectively work to process the
information [180]. This machine-to-machine communi-
cation happening between EDCs can be made more se-
cure and robust to network attacks by implementing
the blockchain as solution. The relevance between ap-
plication of blockchain in smart agriculture can be seen
clearly in Fig. 6. Different applications of blockchain in
smart agriculture can be seen in Table 3.
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Table 2 AI Technologies of Smart Agriculture.

Applications Descriptions Works

Crop Management Yield prediction, crop growth, dam-
age estimation, and food supply chain
researches come under crop manage-
ment research. Varied AI/ML meth-
ods e.g., Support Vector Machine
(SVM), Gaussian Naive Bayes, vari-
ous artificial neural networks (ANN),
regression models, and clustering
have been used.

SVM has been used in [185] to count the number of coffee
fruits in a plant branch, rice yield prediction in [214], and in
[198] to detect green immature citrus fruit. Gaussian Naive
Bayes has been used to estimate cherries in a branch [21].
To estimate biomass of the grassland [17], to predict wheat
[169], corn and soybean [109], corn [226], rice in hilly area
[97], cotton [138, 253], wheat [190], maize [205], tea [211],
general crop [53] yields, crop yield from soil parameters [124],
crop nutrition disorder detection [212], and effect of crops
on soil salt and water content [54]. Clustering is used in
[199] for tomato detection from UAM images. Crop growth
monitoring is done in [120].

Soil Management Smart agricultural systems include
soil property management, such as
soil moisture, temperature, and nutri-
ent content. It has two advantages: it
increases crop output while also con-
serving soil resources [63]. However,
the procedure is time-taking and ex-
pensive. Hence, a variety of low-cost
and self-contained machine learning
algorithms have been presented in or-
der to develop a dependable soil man-
agement system [122]. Sensor data,
satellite photos, and UAV images are
commonly used as input to machine
learning models. In predictive anal-
ysis, ANN, SVM, and autoencoders
have been used.

For soil suitability evaluation, ANN and Multi-Layer Per-
ceptrons (MLP) have been applied [236]. ML models have
been used to forecast phosphorus in soil [59]. To extract
geo-parcels from high-resolution photos, Deep Neural Net-
works (DNN) were used, while MLP was used to forecast
phosphorous content. The water retention capacity of soil
in Brazilian coastal areas has been predicted using a radial
basis function neural network [42]. Soil moisture may also
be predicted from UAV-taken pictures using Boosted Re-
gression Trees (BRT) [24] and ANN [25]. SVM was used to
estimate the health and condition of soil moisture sensors,
as well as the stage of degradation using Naive Bayes classi-
fication [96]. From satellite pictures, autoencoder and SVM
have been used to predict soil salinity [115].

Smart Irrigation Smart agriculture systems include
water management as a key com-
ponent. Climate change is causing
changes in rainfall patterns around
the planet. Evapotranspiration is an
important factor to consider when
evaluating water supplies. In smart
water management, a variety of AI
technologies have been used.

In a crop field, deep reinforcement learning was applied for
smart water management [39]. The water required for green-
house organic crops was calculated using a multiple linear re-
gression method, and then water valves were automatically
operated using a LoRa Point-to-Point (P2P) network [44].
In [161], a study in Dehradun, India was used to suggest
an ANN method for predicting evapotranspiration. Daily
evapotranspiration has been predicted using ANN and the
Penman-Monteith equation [22]. In an Edge-Fog-Cloud en-
vironment, a smart irrigation system based on Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU)
models has been presented [52]. Another LSTM based ir-
rigation system has been presented in [108] for precision
agriculture. A neuro-drip irrigation system’s spatial water
distribution was predicted using ANN in [85].

Pest/Disease Control Disease, pest, and weed control are re-
quired to get the highest yield from an
agricultural field. An automated sys-
tem can help save time and expense.
AI approaches are being proposed in
several papers from this standpoint.

In the recent decade, rule-based systems [28,29,132,173,196]
were developed, which were followed by Fuzzy Logic based
systems [177, 206, 222, 228]. Various ANN have been used
to detect various pests in a crop field [126] or to detect dis-
eases in different crops [69,79,107,210]. For example, a chan-
nel–spatial attention module, incorporated with a backbone
CNN and a Region Proposal Network (RPN), has been uti-
lized for detecting different pests in a crop field [126]. Apple
leaf disease is identified in [100] using the GoogleNet Incep-
tion network and Rainbow concatenation and in [145] using
Mask R-CNN. For identifying pests in a tea plant, an incre-
mental back propagation network was used with Correlation-
based Feature Selection (CFS). The pest Tessaratoma Pa-
pillosa was localized using the CNN-based object detection
model YOLOv3, and pest incidence was predicted with 90%
accuracy using LSTM analysis of environmental data [45].

Continued on next page
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Table 2 – Continued from previous page

Applications Descriptions Works

Anthrax on apple surface in an apple orchard was also de-
tected using the YOLOv3 and YOLOv3-Dense models [239].
Single Seed Descent (SSD) has been shown to have an ac-
curacy of 84% in detecting pests and 86% in classifying
pests [134]. Using k-means clustering and a correspondence
filter, pest detection and recognition were achieved [68]. In
crop disease identification, various CNN-based models have
been employed in [146,168,225]. Google object detection API
with customized convolutional neural network has been used
to detect good and bad coffee beans [91]. Recently, in [147],
YOLOv5 and YOLOv8 have been used to detect pear, rice
and wheat diseases in real time. In [58], the authors explored
different light-duty computing platforms in IoAT-edge AI for
plant disease detection.

Weed Control Weed has a negative impact on yield.
Weed control is thus another crucial
aspect of smart agriculture. Weeds
can be a nuisance at times. It’s dif-
ficult to tell them apart from crops.
Artificial intelligence (AI) was first
used in weed management in the early
2000s.

Hebbian synaptic modification was used with ANN to differ-
entiate weeds from crops [14], and the accuracy gained was
acceptable given the hardware present at the time. In [172],
YOLOv3 was employed for less expensive weed manage-
ment. To detect weeds, researchers used Counter Propa-
gation (CP)-ANN with multi-spectral pictures [171] and a
combination of auto encoder and SVM with hyper spectral
images [170]. SVM was used in detecting weeds in grassland
cropping in [35]. [111] uses a semi-supervised method to de-
tect weeds.

Livestock Manage-
ment

Animal welfare and livestock produc-
tion have both benefited from AI/ML
strategies in livestock management
[122].

Authors in [60] used bagging ensemble learning for cattle, de-
cision tree and C4.5 algorithm for calf [176], and Gaussian
Mixture Models for pigs well-being [135]. AI aids in the opti-
mization of livestock production efficiency. The work in [51]
employed an ANN with back propagation to predict cattle
rumen fermentation patterns from milk fatty acids. Faces
of pigs were identified with 97 percent accuracy using CNN
in [82]. SVM has been used to discover and warn about prob-
lems in egg production for commercial hens [154], to estimate
cattle weight trajectories for evolution [20], and to predict
beef cattle skeletal weight [19]. In a robotic cow farm, ANN
with Bayesian Regularization were utilized to forecast qual-
ity milk output and lower cow heat stress levels [73]. In [165],
a fully connected neural network was utilized to forecast cow
illnesses.

Alternative Farming Greenhouse farming and hydroponics
are examples of alternative farming.
In those systems, machine learning
and deep learning approaches are em-
ployed to provide superior and more
accurate manage with less manpower.

Fully linked ANN and Root Mean Square Error (RMSE) are
used to anticipate greenhouse air temperature [48]. ANN has
been used to increase yield and growth for tomato [62] and
basil yield in the greenhouse [166], greenhouse gas emissions
and energy usage of wheat [114], and watermelon yield [157].
The humidity and temperature of a solar powered green-
house were predicted using a Recurrent Neural Network
(RNN) with back propagation [88]. RNN-LSTM has been
used for climate prediction in [105]. In hydroponic systems,
ANN and Bayesian Networks have been employed to fore-
cast the required job [136].

6.2.2 Directed Acyclic Graph (DAG)

A Distributed Ledger with a directed acyclic graph (DAG)
is used in IOTA Tangle, where each point represents a
single transaction, and the arrows are authorizations.
Each individual transaction is directed toward the pre-
vious parent transactions and is responsible for approv-

ing child transactions directly or indirectly as in Fig. 7.
The IOTA Tangle is immutable by its novel consen-
sus mechanism. Every transaction has a small Proof
of Work (PoW) activity for consensus, making it im-
possible for the hacker to attack. An algorithm called
Random Walk Monte Carlo is used for authentication.
The Tangle grows and moves forward to increase the
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Table 3 Blockchain Technologies in Smart Agriculture.

Applications Description Works
Secure Real-time Data
Sharing

Data security and privacy is one of
the important issues in IoT systems,
robust cryptography is not a fea-
sible solution considering resource-
constrained IoT devices. Injection
of false data and Denial-of-Service
(DoS) are most common security at-
tacks on IoT systems. There is a
need for robust mechanism to share
data between P2P network formed by
EDC’s

Blockchains as secure data sharing systems in smart agricul-
ture is proposed in [129,200,244,256]. A robust identity man-
agement system is proposed in [244] which will make use of
private blockchain and prevent DOS attacks. A combination
of SDN and blockchain networks is proposed in [200] which
provides minimal overhead and provide robust security in
agriculture systems. Work in [256] proposed an ethereum
platform based system and made use of Practical Byzantine
Fault Tolerant (PBFT) consensus mechanism. Key manage-
ment system to securely share data is proposed in [129] which
provides a secure, reliable and scalable key-management sys-
tem which can be adapted in smart agriculture with numer-
ous number of sensing nodes. The work in [31] proposes a
distributed ledger based crop monitoring system which is a
scalable blockchain environment in real-time data sharing
and equip participating entities with decision support tools.

Community Farming
and Local Markets

Community farming helps in sharing
key data like weather, crop disease
or product demand which can help
as means for farmer to understand
which crop should be cultivated. Lo-
cal markets not only make fresh pro-
duce available to the consumer di-
rectly but also remove middle-men in-
volved in the supply chain in order to
maximize the profits of farmers. Pro-
viding these two can make farming a
profitable venture and lead more in-
dividuals to participate in irrigation
thereby increasing yield and provide
food security.

A blockchain framework has been proposed which is imple-
mented using Ethereum platform and can help in adapting
ethical supply chains into farming [174]. Thereby, realizing
profits to the farmers.

Supply-Chain Trace-
ability

Food supply chains is a major com-
ponent of Agriculture-CPS systems
which enables the food products avail-
able to all the corners of the world and
also leverages collective working of or-
ganizations which are geographically
placed apart. Due to involvement of
multiple entities and complex interac-
tions between them, supply chain has
become more complex and can lead
many issues like Difficulty in tracking
and tracing, processing delays leading
to degradation of produce, resolving
conflicts, lack of consumer confidence
and recalls which increases unneces-
sary wastage of produce.

Hyper ledger Fabric based systems are proposed in [133,243]
as a case study to check the blockchain based supply chains.
RFID has been integrated with blockchain systems to pro-
vide a transparent supply chain solution in [221]. A smart
contract based solution for solving Single Point of Failure
(SPOF) in centralized systems like ERP is proposed in [106].
The work in [32] proposed a system which uses ethereum
platform to build a transparent supply chain for organic
foods to increase customer confidence while consuming. A
method integrating EPIC and blockchains is proposed by
[123].

Farm Insurance Farming yield majorly depends on
the environmental parameters and cli-
matic changes. This can lead to finan-
cial in-stability of the farmers which
may drive awsy many people from
practicing farming as livelihood. Farm
insurance is a financial setup where
farmers will pay a fixed premium to
a company and will be compensated
with insured amount in case of dam-
age to the crop from adverse climatic
changes. These farm insurance com-
panies need to assess the damage on
the crop by following certain indexes
pertaining to the weather parameters,
blockchain can help in securely assess
such parameters and provide a holis-
tic indexes for computing the com-
pensations.

A fraud detection and avoidance system for farm insurances
based on blockchain is proposed in [160]. A drought based in-
surance payout system is proposed and implemented in [162].
Authors of [16] proposed a blockchain based solution which
leverages smart contracts on ethereum and hyperledger fab-
ric platforms to design a insurance service system.
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weight to reach the consensus, and the transactions
with light weight are orphaned and are not involved
in the new consensus. Tangle can be more advanta-
geous than blockchain for evading high fees, energy,
and double spending vulnerabilities [230]. It has built-
in two-layer solutions with MAM and STREAMS for
data security and authentication and works on the prin-
ciple of cryptography. It supports the concept of zero-
valued transactions and can work with off-chain storage
to skirt higher data volumes on the tangle [230].

6.2.3 Limitations of Blockchain

Blockchain has clearly shown many applications which
can benefit the different smart agricultural operations
but still adapting such technology in large scale and
resource constrained smart agriculture systems is dif-
ficult. Blockchains as such consume large amounts of
power and need large computational tools which is a
major problem in IoT based smart agriculture systems.
Hence, blockchains should be modified either by the
structure or mechanisms in order to make them more
feasible, reliable and scalable solutions for smart agri-
culture. A lightweight consensus mechanism Proof-of-
Authentication is proposed in [179] which is IoT friendly
and consumes much lower power compared to other

consensus protocols used in leading blockchain plat-
forms. Another problem in implementing blockchain
technologies in smart agriculture is the amount of data
generated from the IoT networks, as the farms gener-
ate large amounts of data points will be collected ev-
ery minute and analyzed. There is large constraint on
blockchains on the amount of data that can be included
in each block. Hence, efficient distributed off-chain so-
lutions are on the rise. One such application which
makes use of off-chain storage is the Inter-Planetary
File System (IPFS) along with ethereum platform and
leveraging smart contracts is proposed in [229]. Access
management is also a major issue, a method to provide
multi-level data access policies which is scalable and
can be adapted into smart agriculture systems can be
seen in [36].

Taking advantage of blockchain features of the in-
centive layer, an application for saving resources while
farming is developed. This layer defines the minimum
amount of transaction fees needed to perform actions
on the blockchain. However, the paper proposes a novel
idea using the same transactions as incentives to the
farmers in the form of insurance once the electricity and
water units are equaled to a prior condition to minimize
carbon footprint, thus enhancing smart agriculture fea-
tures through robust security [231]. To improve the
security features for integrity and authentication and
avoid central and blockchain limitations, IOTA Tangle
is implemented to send the smart agricultural data in
a secured method [230].

7 Datasets for Smart Agriculture Research

Smart devices are used in precision farming to collect
data and analyze the yearly crop yields, supply chain
transactions, and livestock management. The data stored
using modern techniques in smart agriculture is then
utilized for further research to ensure the availability of
resources for future generations. Table 4 gives different
datasets of various formats that were used for study in
the current survey paper.

7.1 Crop Yield and Production

Many different sensors are used for gathering data on
crop conditions, acreage, and yearly yields of the land.
The total amount of crop yield data can be estimated
by the ratio of the amount of produce to the harvested
area, which is in terms of tonnes per hectare. The an-
nual reports that the USDA gives have information re-
garding the yield, production estimates, costs in agri-
culture, livestock, plants, and agriculture census. The
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Table 4 Datasets for Smart Agriculture.

Dataset
Format

Dataset Purpose Source Link

.php Crop Yield & Production USDA & NASS https://www.nass.usda.gov/Charts and Maps/

.gis Crop Condition & soil moisture Crop-CASMA https://nassgeo.csiss.gmu.edu/CropCASMA/

.jpg PlantVillage Mendeley Data https://data.mendeley.com/datasets/
tywbtsjrjv/1

.mdb Soil Health & characterization NCSS https://new.cloudvault.usda.gov/index.php/
s/7iknp275KdTKwCA

.php, .txt Pesticide use in agriculture USGS https://water.usgs.gov/nawqa/pnsp/usage/
maps/

Tableau Water use in Agriculture USGS https://labs.waterdata.usgs.gov/
visualizations/water-use-15

.jpeg Groundwater nitrate contamina-
tion

USGS https://prd-wret.s3.us-west-
2.amazonaws.com/assets/palladium/
production/s3fs-public/thumbnails/image/
wss-nitrogen-map-us-risk-areas.jpg

.png, .pdf Disaster analysis USDA & NASS https://www.nass.usda.gov/
Research and Science/Disaster-Analysis/

USDA: U.S. Department of Agriculture. NASS: National Agricultural Statistics Service.

NCSS: National Cooperative soil Survey. USGS: U.S.Geological Survey.

prices, labor values, and production values change monthly
and annually and are presented in [13].

7.2 Crop Condition and Soil Moisture

The crop yield can depend on many different factors,
one of which is soil moisture. With humidity sensing,
water availability, predicting weather disasters, and plan-
ning yearly crops can be performed easily. For different
stages of agriculture to be realized quickly, soil data
plays a vital role for the farmers to act accordingly.
The NASA and USDA-NASS collaboratively have de-
veloped an application that collects the data in Geo-
graphic information system mapping format (.gis) [227],
called Crop-CASMA, which is a web-based geospatial
application used to measure the moisture of the soil and
cropping conditions. The data of the moisture level and
the state of the crops is given in Fig. 8(a).

7.3 Plant Diseases

Infections and diseases can change the core genetics and
nutritions present in the crops, which can be harmful
to consumers. Each plant species has its unique pattern
and condition. Specific datasets of different plant infec-
tions is available in [3,92]. Fig. 9(a) and Fig. 9(b) show

the images of healthy crops and crops infected with dis-
eases. These images are used for training and testing of
applications for predicting crop sickness to improve the
harvest yield and productivity. Sample pomegranate
images of different grades and qualities from the Pomegranate
Fruit Dataset are shown in Fig. 9(c) [7].

7.4 Soil Health and Characterization

Survey conducted to know soil characteristics explain
the features and properties of the soil. Farmers, engi-
neers, and land agents are the end gainers of the soil
survey data.

The classification of the soil database is provided by
the National Cooperative Soil Survey (NCSS) with a
pedon number associated with each report. The pedon
gives a three-dimensional structure of the soil and ex-
plains the components present inside the ground. The
properties of the earth like phosphorous, sand, water
content, rock fragments, salt, pH levels are collected
from the primary data characterization. Each report
can be downloaded directly from the site in the form of
graphs and text format by giving key details of country,
state, and county.
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(a) Dated November 07, 2021

(b) Dated March 18, 2022

Fig. 8 Crop Condition and Soil Moisture in the United States
[227].

7.5 Pesticide Use in Agriculture

For controlling weeds, insects, and fungi, many pesti-
cides are used, but excessive usage can pollute ground-
water and kill other microorganisms that are necessary
for the health of the soil. The USGS creates a database
in the form of tables, graphs, and maps annually for
showing the amount of pesticide used in farming [217].
The map gives a more detailed view of how much of the
pesticide is used on the agricultural land in pounds per
square mile, and graphs illustrate the estimated usage
of fertilizers in millions of pounds each year.

7.6 Water Use in Agriculture

For farming livestock and crops, water plays an impor-
tant role. Water is available for agriculture from both
surface and groundwater [215]. Rivers and lakes are
the primary sources for forming surface water, whereas
groundwater resides in the sand cracks, rocks, and soil.
The data for water usage are collected and updated ev-
ery five years by the USGS in terms of billion gallons
per day. The data collected illustrates that most of the
water usage is in agriculture and industry [216].

(a) Healthy Plant Leaves - Potato [3], Peach [3],
and Chinese Cabbage [2] (From Left to Right)

(b) Infected Plant Leaves - Potato [3], Peach [3],
and Chinese Cabbage [2] (From Left to Right)

G1-Q1 G1-Q2 G1-Q3

G2-Q1 G2-Q2 G2-Q3

(c) Pomegranates of Different Grades and Differ-
ent Qualities. G represents Grade and Q represents
Quality [7].

Fig. 9 Sample Images from Various Plants and Fruits Datasets

7.7 Groundwater Nitrate Contamination

Nitrate is an oxidized form of nitrogen that helps in
growing plants and crops. It is a compound that can
be found naturally in the soil, but this compound can
decrease if the land is extensively farmed. In order to
increase the nutrients in the earth, different artificial
nitrogen chemicals are used for growing crops. These
nitrogen fertilizers can be harmful when they go inside
crops, livestock, water, and groundwater. The USGS
has designed a model to analyze how much groundwater
is contaminated through the nitrate [197].

7.8 Disaster Analysis

As the global temperatures, changing landscapes, and
uncertain risks increase, the agriculture sector is fac-
ing adverse effects and threats. The disasters should be
analyzed and estimated before they occur because the
farmer has to be prepared for planning the crops accord-
ingly. USDA and NASS are conducting research studies
for disaster analysis in real-time. Most of the datasets
are collected using sensors and geospatial methods to
study the time when the disaster arises [4]. Sentinel-1,
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a Synthetic Aperture Radar is a modern tool that is
used for studying and monitoring floods [38].

8 Smart Agriculture Open Research Problems

The open research problems of Agriculture 4.0 and Agri-
culture 5.0 are discussed in this section. Depending on
the research objective, we can divide them into two ma-
jor subgroups.

8.1 Technology Perspective

As aforementioned in Section 5, smart agriculture faces
a number of implementation challenges. These issues
must be addressed by the adaptation of existing and
future technologies. Most smart agricultural AI models
were cloud-based, cloud-edge-based, or cloud-fog-edge-
based up until now. The shift in computing paradigm
has been aided by hardware advancement. According
to [203], adding intelligence to IoT devices is the new
trend. Network availability, latency, and bandwidth are
no longer obstacles in the operation of a viable, unin-
terrupted agriculture system. This opens up a new path
to researches. The use of edge AI in smart agriculture
is a huge deal that will become increasingly popular in
the coming years. Fig. 10(a) depicts a variety of open
research challenges in the context of technology. The
following fields of study offer a lot of promise:

– Exploring tinyML devices with low power and low
latency and solar powered devices.

– Low computing methods for IoT devices.
– Extreme temperature operable sensors.
– Data compression techniques.
– Quantization and pruning methods for deep learn-

ing models.
– Research on unsupervised and semi-supervised learn-

ing.
– Real time data processing and computation.
– More public dataset generation.
– UAV taken images accessible by the public.
– Thermal and Infrared image dataset.
– Annotated dataset for image segmentation.

These aren’t the only research areas available. Other
topics to work with include blockchain-based data pri-
vacy and integrity, as well as service-based smart agri-
culture applications, hardware security include the fol-
lowing:

– Blockchain-enabled IoT applications that emphasize
immutable data storage techniques.

– Optimizing computing capabilities, lowering design
time, and increasing efficiency are on the list too.

– Research on PUF, a hardware signature [102, 121],
is a significant area of study.

– Vulnerability of PUF to environmental factors such
as rain, herbicides, fertilizers, and chemicals.

– Reliability and tamper resistance of PUF.

8.2 Network Perspective

Network connectivity of smart agriculture is a critical
component that uses various ICT to connect remote
equipment, devices, and facilitates data transfer. Var-
ious security vulnerabilities have arisen as a result of
developing unprotected network layer protocols for re-
stricted resource IoT devices. Fig. 10(b) shows a classi-
fication of research difficulties from network perspective
needs to be addressed including the following:

– Research on alternative networks in case of natural
disasters.

– Methods for real time data processing even if the
network is congested.

– Robust and resource friendly data privacy and se-
curity techniques.

– Minimize the blind spots by expanding the coverage
area of the network.

– Cost effective methods for easy maintenance of in-
struments.

– Preventive approaches to counteract physical dam-
ages of the devices by adversaries [249].

– Improved network routing algorithm to avoid vari-
ous network attacks.

– Efficient encryption and hardware authentication al-
gorithms.

– Making troubleshooting mechanisms simple.
– Affordable equipment.

9 Conclusions

We regard “Let food be thy medicine” more than ever
in today’s environment since good food strengthens our
immunity. Agriculture, food security, and the food sup-
ply chain have all become more vital in recent years.
This article provides a comprehensive overview of cur-
rent smart agriculture research efforts. It covers every-
thing from the latest technological advances to open
research concerns in this field. The authors anticipate
that this paper will provide a broad overview of smart
agriculture technology, challenges, and research issues.

Traditional agriculture has been changed into a smart,
intelligent, and automated agriculture as a result of
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Fig. 10 Open Research Problems of Smart Agriculture.

technological breakthroughs and the rapid rise of ICT.
By implementing sustainable, green farming, decreasing
the use of pesticides and fertilizers, and maximizing the
use of natural resources, smart agriculture decreases the
carbon footprint. It will also address other issues such
as climate change and diseases such as cancer.

Agriculture 5.0 [194] will arrive in the agricultural
industry soon. This will increase production while also
ensuring the system’s long-term viability. The same trend
will be seen in developing countries as in wealthy coun-
tries. Humanity will welcome the production and de-
livery of food in a way that is both economically and
environmentally efficient like never before [70].
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