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Abstract

Cardiovascular Disease is one of the most contributing diseases to premature mortality around the
globe. Low- and middle-income countries like India account for almost 80% of global CVD fatalities.
Predicting cardiovascular diseases at an early stage can improve the quality of life. Electrocardiography
(ECG) is one of the non-invasive methods to assess the disorders of heart functioning and hence CVDs.
The paper presents the prediction of conduction disturbance or disorders (CD) through a 12-lead
electrocardiogram (ECG) that leads to chronic heart failure or cardiac arrest. Three ensemble machine
learning models i.e., Random Forest (RF), XG boost, and the Support Vector Machine (SVM), are
used to classify the Conduction Disturbance subjects from the ’normal’ subjects. In addition to this,
the paper also presents a comparative study to show the effect of two demographic features, ’age’ and
’sex’ on the prediction of Conduction Disturbance’s subjects. The performance of the classifiers’ is
measured in terms of Accuracy, Precision, Recall, and F1 score. 10-fold cross-validation is utilized, and
the Receiver Operating Curve (ROC) is traced for each of the combinations of 10-fold cross-validation.
The performance is measured with a confusion matrix for all three classifiers. The performance with
Random Forest(RF) and XG boost performance is similar in terms of accuracy, whereas the total
number of true predictions is higher in the case of RF. The proposed model would be useful for
continuous monitoring and prediction conduction disturbance in the Smart Healthcare framework.

Keywords: Machine Learning, Cardiovascular Disease, Health Failure, Conduction Disturbance,
Electrocardiography(ECG), Smart Healthcare

1 Introduction

According to WHO, Cardiovascular Disease
(CVD) ranks as the world’s primary reason of pre-
mature deaths. It is estimated that 31% of all
fatalities worldwide—or around 17 million annu-
ally—are caused by CVD[1]. The World Heart

Federation (WHF) published a report on May
20, 2023 stating that the number of fatalities
attributable to cardiovascular disease increased
from 12.1 million in 1990 to 20.5 million in 2021
[2]. The heart is one of the most crucial compo-
nents of the circulatory system in humans. Several
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variables, including smoking, hypertension [3], and 
CVDs, cause a steady decline in heart function.

In India, cardiovascular problems are very 
common for people in the age group more than 45 
years old [4]. Due to the absence of visual signs, 
early detection of CVD is difficult [5 ]. He re, we 
propose the prediction of Conduction Disturbance 
in the human heart using ECG, which can be 
acquired by wearable devices or Holter monitor, 
along with two demographic features. A simpli-
fied approach is depicted in Figure 1. The main 
contribution of the presented work is as follows:

• We are predicting the conduction disturbances 
of the heart using a non-invasive method, i.e., 
Electrocardiograph.

• Two demographic features that can be uti-
lized with raw ECG to improve classification 
efficiency are also presented.

• A comparative analysis of three classifiers, i.e., 
Support Vector Machine (SVM), Extreme Gra-

dient Boosting (XGBoost), and Random Forest 
(RF)

Further, the organization of the paper is as
follows: The background and work related to the
prediction of conduction disturbances is discussed
in section 2. Research gaps and novel contribu-
tions of the work are provided in section 3, and
the application of the proposed work in smart
healthcare is discussed in 4. While the detailed
proposed methodology is discussed in section 5,
that includes the information of the dataset in
section 5.2, data preparation in section 5.3, and
modelling in section 5.1. Following this, experi-
mental results are discussed in section 6, including
validation of the model in section 6.1 and compar-
ison with state-of-the-art in section 6.2. Finally,
the conclusion is provided in section 8.

2 Background and Related
Work

In a human heart, conduction pathway is the path
the electrical impulse takes that propels the heart-
beat. Normally, the Sinoatrial (SA) node’s impulse
stimulates the atria. The left and right ventri-
cles eventually contract concurrently due to the
conduction routes, which continue to bundle the
left and right bundle branches (LBB and RBB)
[6]. One heartbeat is produced by one impulse,

whereas a normal heart beats 60 to 100 times per
minute, depending on the person’s age. Figure 2
depicts the heart’s conduction system.

A barrier in the conduction channels causes
conduction disturbance (CD), a heart condition.
Conduction problems lead to chronic heart fail-
ure. Conduction anomalies can be categorised into
three fundamental categories: first degree, sec-
ond degree, and third degree heart block [7].
The heart’s atrioventricular (AV) node beats more
slowly than usual in first-degree heart block, with
no symptoms at all [5]. Only a portion of the
electrical impulses go from the upper heart cham-
ber, the atria, to the lower heart chamber, the
ventricles, in a second-degree heart block. The
heart may skip beats, beat irregularly, or beat
slowly under this circumstance. It manifests as
chest discomfort, breathlessness, and palpitations
in the heart, among other symptoms. The elec-
trical impulse cannot go from the heart’s upper
chamber to the lower chamber of the heart in a
third-degree heart block, also known as a full heart
block. However, the ventricles continue to contract
and pump blood, albeit more slowly. Although the
blood pumping is inefficient and the contraction
is improper. The patient needs immediate assis-
tance since cardiac arrest is a serious possibility.
The ECG is a useful tool for predicting CD [8][9]
because CD alters the heart’s electrical impulse,
which is reflected in the ECG. It can even predict
the different types of heart block and arrhythmic
risk in young patients with Kearns-Sayre syn-
drome (KSS) [10]. The following section discusses
some CD-related researchers. The Electrocardio-
gram represents the heart’s electrical activity
using a time-voltage heartbeat chart. The ECG is
an important part of clinical diagnosis and treat-
ment as it offers crucial information. A reliable
technique for early-stage CVD prediction is the
electrocardiogram (ECG) or features of it [11].
The paper presents an ECG signal to predict the
Conduction Disturbances in a human heart.

Several researchers have applied machine
learning models to predict cardiovascular diseases
(CVDs) [12]. The [13] offered an overview of car-
diovascular disease risk prediction models and
provided the traditional and machine learning-
based approaches for CVD classification. To pre-
dict CVD, the Multilayer Perceptron (MLP) and
K-Nearest Neighbours (KNN) models were tried
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Fig. 1 Conceptual Diagram of Proposed Methodology

Fig. 2 Pathway of human heart conduction system

[14][15]. [16] has presented a study to identify
the risk factors for predicting the complete heart
block. The prediction of CVD is provided using a
variety of supervised machine learning (ML) mod-
els, including Random Forest (RF), Decision Tree
(DT), K-Nearest Neighbour (KNN), and Sup-
port Vector Machine (SVM) is presented by [17].
[18] predicted CVD using an adaptive boosting
classifier based on UCI repositiory database of
heart disease. While [19] predicted CVD employ-
ing SVM and Ensemble of Naive Bayes with
memory-based learner Decision Tree Induction
using Gini Index on Ricco and UCI repository
data bases. While [15] provided a classifier for pre-
dicting cardiovascular disorders based on Random
Forest. The authors of [20] investigated several
deep learning machine learning algorithms and
concluded that fusion model-based classifiers out-
perform separate classifiers. Numerous researches

are emerging on the subject of CD prediction. It is
noted that first and second-degree heart blockages
don’t present with peculiar symptoms that allow
for accurate diagnosis. Mortality can be reduced
via early CD prediction. After Transcatheter aor-
tic valve replacement (TAVR), conductance dis-
turbances are relatively prevalent [21] [22]. [23]
compares machine learning algorithms and neural
networks to predict atrioventricular block with a
single lead ECG. An ML-based model for patient-
specific monitoring was reported in [24] to prop-
erly predict the CD following TAVR. Conduction
disturbances, atrial fibrillation, sudden coronary
mortality, and device infection risk factors were
evaluated by [25]. On the other hand, [26] stud-
ied the arrhythmia and conduction abnormalities
connected to the septal defects. The other research
was focused on systemic sclerosis patients’ conduc-
tion disturbances [27]. Table 1 summarises some
of the prior work.

3 Research Gap and Novel
Contribution

3.1 Problem Statement

Most researchers have explored CD prediction
or development of conduction abnormalities after
TAVR. However, further research is required to
investigate 12-lead ECG, a clinical standard for
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Table 1 Summary of some prior work

Study Type of CVD or
Conduction Dis-
turbance

Data Source Classifier(s)
included in
study

Proposed Classi-
fier/outcome

Al-Naami et-al,
2022 [28]

Complete LBBB MIT-BIH
dataset

Adaptive Neural
Fuzzy Inference
system (ANFIS)

ANFIS

Kammath et-al,
2022 [29]

MIT-BIH Left Bundle
Branch Block
(LBBB) and
Right Bundle
Branch Block
(RBBB)

SVM, KNN, LDA KNN

Kirti Singh et-al,
2022 [23]

Atrioventricular
block (AV block)

KURIAS-ECG
database

Gaussian Naive
Bayes, Random
Forest, Neural
Network

Random Forest
classifier

Valeria Galli et-al,
2021 [24]

Right or Left Bun-
dle Branch Block
after TAVR

Private data of
151 cohort

SVC+SGD, RF,
KNN, Gaussian
Naive Bayes,
Extreme gradient
boosting, Deci-
sion Tree, Logistic
Regression

K-Nearest Neigh-
bour (KNN) classi-
fier

Rasel et-al, 2020
[30]

1st degree AV
block, LBBB,
RBBB

Cardiology
department
of Chittogong
Medical college
(CMCH)

DT, RF, KNN,
SVM

DT, RF

Matthew R.
Williams et-al,
2018 [26]

Sinus and AV
node conduc-
tion abnormality
associated with
Autism spectrum
disorder(ASD)

PRAETORIAN
trial patient
data

NA Analysed CD asso-
ciated with ASD

Vincent Auffret et-
al, 2017 [21]

Left Bundle
Branch Block after
TAVR

Private data NA Analysed the new
onset of LBBB
after TAVR to
mitigate sudden
cardiac death

Kora et-al, 2016
[31]

Bundle Branch
Block (BBB)

MIT-BIH
database

Adaptive Bacterial
Foraging Opti-
mization (ABFO)

ABFO and Lev-
enberg Marquadt
Neural Network
(LMNN)

Hunifang Huang
et-al, 2014 [32]

LBBB and RBBB MIT-BIH
Arrhythmia
dataset

Minimum distance
classifier, the Lin-
ear discriminant
classifier, and the
Linear SVM

Ensemble of the
three classifiers

assessing the heart state without TAVR, for heart
block or CD prediction.

3.2 Solution Proposed

Here, we propose a smart healthcare based frame-
work to predict the conduction disturbance using
ECG. The acquired ECG is combined with two
demographic features i.e., ’age’ and ’sex’ to
improve the prediction performance of the classi-
fier.

3.3 Significance and Novelty of the
Solution

The novel contribution of the presented work is:

1. A novel machine learning-based classifier is
proposed to classify the conduction distur-
bance like Left Bundle Branch Block (LBBB),
Right Bundle Branch Block (RBBB), Left
anterior or posterior fascicular block, Atrioven-
tricular (AV) block, on-specific intraventricu-
lar conduction block, complete or incomplete
left or right bundle branch block, and Wolf-
Parkinson-White syndrome.

2. The 12-lead raw ECG is utilised along with two
ubiquitous demographic features, i.e., ’age’ and
’sex,’ to predict conduction abnormality in the
heart.

3. It also presents a comparative analysis of
three very famous machine learning classifiers
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to show that ensemble machine learning is a
better choice.

4. A smart healthcare framework is presented for
predicting conduction disturbances or abnor-
malities in the human heart.

4 Smart Healthcare
Framework for Prediction
of Conduction Disturbances

The proposed algorithm’s implementation is cru-
cial in the modern smart healthcare system [33].
The clinical gold standard for the initial evaluation
of CVD is the ECG, which is also economical. An
IoT infrastructure was given by [15] that uses his-
torical and empirical data to develop suggestions
for real-time and remote health monitoring. While
[34] presented a fog-based smart healthcare system
that may notify medical professionals, caretakers,
or respective hospital staff in advance about heart
attack chances. An intelligent healthcare tracking
system utilising ensemble deep learning and fea-
ture fusion to forecast heart disease is proposed
by [35]. [36], [37], [38], [39], and [40] proposed a
similar sort of cloud-based Smart Healthcare plat-
form to identify cardiac problems. It employs a
deep learning strategy in cloud networks using
IoT. The smart healthcare framework for con-
tinuous glucose monitoring is presented in the
paper [41] A Smart Healthcare framework for the
early diagnosis of cardiac arrest circumstances was
also given by [42], and for cardiovascular disease
is given by [43]. Similarly, [44] suggests another
Smart Healthcare framework to identify cardiac
disease using machine learning and deep learning
approaches.

Similar to the previous approaches, the pro-
posed CD prediction machine learning model can
also be deployed using cloud services. The raw
ECG data would be acquired from smart wear-
able devices such as those presented by [45–49].
In the following step, the data preprocessing (i.e.,
noise filtering, data transformation, encoding,
etc.) would be done at the ECG acquisition node
or devices or on the cloud, depending upon the IoT
infrastructure or healthcare service provider pref-
erence. After the preprocessing, data will be finally
prepared for feeding the ML model, which will
predict the presence or absence of any Conduc-
tion Disturbance in the subject. The prediction

ECG Acquisition

Data
Processing User/subject

Healthcare Service Provider

IoT Network Smart Healthcare Framework

ML ClassifierFinal data preparation

Fig. 3 Proposed Smart Healthcare Framework for CD
prediction

would be communicated further using Application
Programming Interface (API) services.

5 iCardio 3.0: Proposed
Methodology for
Conduction Disturbance
using Machine Learning
method

The proposed methodology utilizes a 10-second
12-lead ECG collected from subjects of age group
0 to 95 years. The raw ECG is converted into an
array and combined with the two demographic fea-
tures, i.e., ’age’ and ’sex.’ Later, three famous clas-
sifiers, Support Vector Machine, XG Boost, and
Random Forest, are utilized to predict the Con-
duction Disturbance in the heart. A comparison
of the performance of all three classifiers’ is done
to find the best one in terms of accuracy. Further,
a comparison of the performance of classifiers’
before and after adding demographic features is
also made, and all three classifiers have shown sig-
nificant improvement in their performance after
adding demographic features.

The next subsection discusses all the clas-
sifiers’ estimated performance metrics, including
SVM, RF, and XG Boost, and Figure 4 illustrates
the process flow of the proposed work.
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5.1 Machine Learning Models

Ensemble machine learning models, i.e., Ran-
dom Forest and XG Boost, are utilized to pre-
dict conduction disturbances. Performance and
robustness are two other advantages of ensemble
machine learning models for predictive modelling.
An ensemble ML model can perform better than
a single model and create more accurate predic-
tions while also lowering the variance or dispersion
of those predictions. The Support Vector Machine
(SVM) classifier is also considered with the ensem-
ble machine learning classifiers due to its discrim-
inative power [50]. Here, in the presented work,
SVM with ’rbf’ (Radial Bias Function) kernel is
used, which is given as:

k(xa, xb) = exp(− dab
2σ2

) (1)

where xa and xb are two points of the sample 
data, and ab is the Euclidean Distance between
xa and xb. The data, which cannot be separated
linearly, is transformed by the kernel function into
a higher-dimensional feature space where it can be
separated linearly into two classes. However, RF
and XGBoost both use the Decision Tree classifier
at the backend and work on majority voting. One
significant difference between them is that RF has
parallel processing, and XGBoost has sequential.
For selecting the attribute at the root node, the
Decision Tree of the presented RF model uses the
Gini Index, which can be calculated as follows:

GiniIndex = 1−
n∑

i=1

(Pi)
2 (2)

where Pi is the probability of a data point to 
being classified in a particular class. Here n=2 as
we are assuming two classes NORM and CD. As
XGBoost is a sequential process, it tries to min-
imise the loss at each step, which is calculated as
follows:

L(f) =

n∑
i=1

(L(yi, (f(xi)) (3)

The above mentioned three classifiers—Random
Forest (RF), XG Boost (XGB), and Support Vec-
tor Machine (SVM) are set up with their default
hyper-parameters and trained using the training
dataset [51]. The models performance is assessed
using the testing dataset after training. Perfor-
mance metrics included for comparing the per-
formance of the classifiers are accuracy, precision,
recall, and f1-score [52]. Although accuracy is the
most used performance metric for classification
models, a brief description of the performance
mentioned above measures is provided below:

• Accuracy: It provides us with the proportion of
overall correct forecasts to overall predictions
(see equation 1).

• Precision: It gives the percentage of True Posi-
tives compared to all of the Positive Predictions
(refer to equation 2).

• Recall: The ratio of rightly predicted CVD class
cases to actual CVD incidence is provided. The
formula to calculate Recall is given in equation
3.

• F1 score: It is the harmonic mean of precision
and recall, it is calculated as per the formula
given below (refer to equation 4):

The overall process can be summarized in four
stages. First is data processing, which includes
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noise removal, transformation, and normalization.
The second step is to prepare the data for input
to a machine-learning model; in this step, two sets
of data were prepared, one containing only 12-
lead ECG recording and the labels and another
that has two demographic features ’age’ and ’sex’
together with 12-lead ECG and labels. Both the
datasets are later split into train and test set in
80:20. In the third step, the three models (i.e.,
SVM, RF, and XGB) are trained with the train-
ing datasets, and finally, they are tested on testing
datasets, and the performance metrics are com-
pared. The models are validated in the fourth
and final step using 10-fold cross-validation. Mean
accuracy, Receiver Operating Curve (ROC), and
Area Under Curve (AOC) scores for each model
are calculated using 10-fold cross-validation. The
overall process flow is depicted in Figure 4.

5.2 Dataset

This study is employed on the PTB-XL publicly
accessible large electrocardiography data collec-
tion obtained from [53, 54]. It comprises 12 lead
ECG recordings, each lasting 10 seconds, from
21837 records obtained from 18885 people (I, II,
III, aVL, aVR, aVF, V1, V2, V3, V4, V5, and
V6). The ECG data was annotated by two car-
diologists, making it a multi-label data set. It
was later combined as a diagnostic superclass
and subclass. The five superclasses are Myocardial
Infarction (MI), Normal ECG (NORM), Hyper-
trophy (HYP), Conduction Disturbance (CD)and
ST/T change (STTC). Only the classes NORM
and CD are taken into consideration in this case.
The following diseases are included in conduction
disturbance or disorder (CD):(i)(LAFB/LPFB )
Left anterior/left posterior fascicular block, (ii)
(IRBBB) left anterior/left posterior fascicular
block, (iii) (ILBBB) incomplete left bundle branch
block, (iv) (CLBBB) complete left bundle branch
block, (v) (CRBBB) complete right bundle branch
block, (vi) (AVB) AV block, (vii) (IVCB) on-
specific intraventricular conduction lock or distur-
bance and (viii) (WPW) Wolf-Parkinson-White
syndrome.

The data inclusion and exclusion process for
the presented work is shown in Figure 5.

5.3 Data Preparation

Here, in this presented work, CD classification is 
modelled as a binary classification problem, where 
class 1 corresponds to normal (NORM) subjects, 
and class 2 corresponds to CD patients. In total 
there were 10,777 samples left out of which 9,069 
were of NORM class and 1,708 were of CD class. 
Using the Numpy library, the 12-lead ECG data 
for all 10,777 individuals has been transformed 
into a 3-D array. Later, it was flattened i nto a 
2-D array and transformed into a Pandas data 
frame. After that, two more features, ’age’ and 
’sex’ were added to the data. The data is split 
into 80:20 ratios for training and testing purposes. 
Further, using Standard Scalar from the Sklearn 
package, the training data is scaled or standard-
ized. Three distinct classifiers a re t rained using 
training data and evaluated through testing. The 
machine learning models are used to predict con-
duction disturbances and are discussed in the next 
section.

6 Experimental Results

The data included for the work has 10,777 sam-
ples, which are split into training and testing sets. 
The machine learning classifiers, i .e., S VM, RF, 
and XGB, are first t rained a nd t ested w ith raw 
ECG, and the performance metrics are recorded 
for each one of them. Later, we added two demo-
graphic features, ’age’ and ’sex,’ to raw ECG and 
trained and tested the same three algorithms (i.e., 
SVM, RF, and XGB) for classification. Both cases’ 
performance metrics are listed in Table 2 and 
Table 3. The class-wise performance metrics are 
also provided in Table 6 for the second case where 
demographic features are added. Further, the con-
fusion matrix for the same is provided in Figure 
6.

As reported in Table 2, the maximum accuracy 
with raw ECG only is 84% with SVM and XGB 
classifier. However, the b est value f or precision is 
with the RF that is 74 %. At the same time, the 
best values for recall and F1 score are 84 % and 
77 %, respectively.

A significant improvement in the performance 
of the classifiers’ c an b e o bserved a fter adding 
the demographic features, as seen in Table 3. The 
accuracy of all the classifiers i mproved signifi-
cantly, i.e., 90 % for the RF and XGB and 87 % for
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Fig. 5 Data inclusion and exclusion process

Table 2 Performance metrics of SVM, XG Boost, and RF before adding ’age’ and ’sex’ features

ML Classifiers Precision
(%)

Recall
(%)

F1 score
(%)

Accuracy
(%)

Support Vector
Machine (SVM)

70 84 77 84

XG Boost 72 84 76 84
Random Forest
(RF)

74 83 77 83

Table 3 Performance metrics of SVM, XG Boost, and RF after adding ’age’ and ’sex’ features

ML Classifiers Precision
(%)

Recall
(%)

F1 score
(%)

Accuracy
(%)

Support Vector
Machine (SVM)

89 87 83 87

XG Boost 89 90 88 90
Random Forest
(RF)

90 90 89 90

SVM. Precision for RF also significantly enhanced,
i.e., 90%. At the same time, recall and F1 score
for the RF classifier is 90% and 89%, respectively.

6.1 Validation

To further validate the classifier’s result, 10-fold
cross-validation is performed, and performance
metrics like the average accuracy score, ROC-
AUC value, and confusion matrix are obtained.
The 10-fold cross-validation process assures that

the proposed classifier is unbiased. The accu-
racy and ROC-AUC score in each fold of 10-fold
cross-validation is listed in Table 5.

It is evident from the 10-fold cross-validation
scores that the Random Forest classifier exceeds
the SVM and XG Boost classifier’s performance.
However, the accuracy of XG Boost is comparable.
Further, the cumulative values of the confusion
matrix of 10-fold cross-validation are provided in
Figure 7 to better assess the classifiers’ perfor-
mance.
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Fig. 6 Confusion matrix of SVM, XG Boost, and RF respectively before adding demographic feature

Table 4 Class-wise performance metrics of each classifier after adding ’age’ and ’sex’ features

Performance Metrics SVM XG Boost RF

NORM CD NORM CD NORM CD
Precision 0.87 0.98 0.90 0.88 0.90 0.86
Recall 1.00 0.18 0.99 0.39 0.99 0.44

F1 Score 0.93 0.30 0.94 0.54 0.94 0.59

Table 5 Accuracy and ROC-AUC score of the classifiers’ in each fold of 10-fold cross-validation

Fold
Accuracy ROC-AUC

RF XG-Boost SVM RF XG-Boost SVM
1-Fold 89.14 88.49 85.25 0.89 0.90 0.76
2-Fold 88.68 88.31 85.52 0.86 0.85 0.72
3-Fold 90.35 89.61 86.82 0.90 0.90 0.74
4-Fold 90.44 89.33 86.17 0.87 0.86 0.74
5-Fold 89.98 90.25 86.08 0.88 0.87 0.71
6-Fold 90.16 90.53 85.89 0.88 0.91 0.75
7-Fold 89.33 89.98 86.36 0.86 0.86 0.72
8-Fold 90.71 90.62 85.88 0.86 0.86 0.74
9-Fold 90.15 90.06 85.42 0.87 0.87 0.71
10-Fold 92.20 91.17 86.53 0.88 0.87 0.72
Average 90.11 89.83 85.99 0.87 0.87 0.73
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Fig. 7 10-fold cross-validation Confusion Matrix after adding demographic features

To ensure the unbiased performance of the pre-
sented classifier, their Receiver Operating Curve

(ROC)is plotted, and the Area Under the Curve
(AUC) is also calculated. Figure 8, Figure 9
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and Figure 10 show the ROC-AUC score for all 
three classifiers. ROC curve is drawn on the 45-
degree diagonal, i.e., y=x. Ten curves are plotted 
in all three graphs, each representing the corre-
sponding K-Fold test data. Mean and standard 
deviations are also plotted along with the 10-fold 
cross-validation receiver operating curves. Mean 
indicates the average of the 10-fold receiver oper-
ating curves, while standard deviation measures 
the dispersion of data with the mean value.

6.2 Comparison with State of the
Art Methods

The existing methods are compared with the 
proposed method to predict the conduction abnor-
malities in the human heart, which is presented in 
Table 6. Most of the methods are tested on ECG 
features that require an additional step before 
the final prediction through the final classification 
model. Wherever the presented method requires 
no feature extraction step, the raw ECG, along 
with two common demographic features, i.e., ’age’ 
and ’sex’, can be directly be applied to the clas-
sifier t o p redict c onduction d isturbances i n the 
human heart. Apart from this, the number of sub-
jects considered in the existing state-of-the-art 
methods is comparatively less; they are hundreds, 
while in this presented work, it is more than 10 
thousand. This makes the presented method more 
promising and reliable. Subsequently, a 10-fold 
cross-validation score is presented, proving the 
classifier i s r obust a nd a ccurate. The a rea under 
the curve of the receiver operating curve confirms 
the unbiased prediction by the classifier.

7 Discussion

It is evident from the result that adding two 
demographic features, i.e., ’age’ and ’sex,’ has 
significantly improved the performance measures 
(that includes precision, recall, F1 score, and accu-
racy) of all three classifiers. However, if we dig 
deeper into the model and look into the classi-
fiers’ class-wise performance measure, we observe 
that even after adding the demographic features, 
recall for all three classifiers is below 0.50 for the 
CD class, whereas it is 0.99 and above for the 
NORM class. The low recall value for the CD

class is due to the imbalanced data of 9069 sam-
ples of the NORM category and only 1708 samples 
of the CD class. In the future, this problem can 
be attempted to solve by applying the techniques 
of data balancing [43]. The relation between 
Diabetes and CVD is well established [60, 61]. 
People with Diabetes have a greater prevalence 
rate of cardiovascular disease (CVD) than people 
without diabetes [62–64]. Moreover, people with 
Diabetes mellitus experience higher rates of mor-
bidity and death due to cardiovascular disease 
mention yao2023age, einarson2018prevalence. So, 
to lower the chance of dying from cardiovascular 
disease, diabetes management is crucial [65]. Sim-
ilarly, BMI (Body Mass Index) is directly related 
to CVD. Higher BMI increases the risk of CVD 
[66–68]. Several studies [69–71] have been done 
to showcase the relationship between obesity and 
CVD. Hence, including Diabetes and BMI with 
other demographic features, viz. ’age’ and ’sex,’ 
shall increase the prediction of CVD. Still, unfor-
tunately, the subjects’ Diabetes information is not 
available in the data. In the future, the impact 
of adding features like ’BMI’ and ’Diabetes’ on 
predicting CVD can be done.

8 Conclusion

The ensemble ML algorithms perform better than 
the SVM, whereas RF uses the bagging approach 
and works in parallel. The XG Boost works on 
the concept of boosting, which is a sequential 
process. It has been observed that RF is better 
regarding overall performance metrics. The per-
formance measures for each class are listed for a 
better understanding of the classifiers’ behaviour. 
However, the accuracy and ROC-AUC score are 
recorded good results in 10-fold cross-validation. 
The Random Forest classifier i s b etter i n terms 
of accuracy and ROC-AUC score. However, the 
mean of the 10-fold cross-validation score of ROC-
AUC score is the same for the Random Forest 
classifier a nd X G b oost c lassifier; Ra ndom For-
est offers a  s tandard deviation o f 0 .01 only, while 
XG Boost classifiers h ave a  s tandard deviation 
of 0.02. In future work, the resource requirement 
of a neural network-based classifier for predicting 
CVD using 12-lead ECG can be studied, and per-
formance can be compared. In addition to that, 
Optuna optimization would also be performed
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Fig. 8 Receiver Operating Curve of
SVM classifier

Fig. 9 Receiver Operating Curve of
RF classifier

Fig. 10 Receiver Operating Curve of
RF classifier

Table 6 Comparative Analysis of the Methods of prediction of Conduction Disturbances

Reference Conduction
Abnor-
mality
Included

Data No.
of
sub-
jects

Input
data/Fea-
tures

Cross- val-
idation

Model Accuracy Area
under
curve

Kora et-al,
2015 [55]

LBBB,
RBBB

MIT-BIH ECG fea-
tures

NA BFPSO ↑ 90.0% NA

Rasel et-al,
2019 [56]

1st AV
block,
LBBB,
RBBB

Chittagong
Medical
College
(CHCH)

208 ECG Fea-
tures (32
attributes)

NA DT and
RF

↑ 90.0% NA

Yang et-al,
2020 [57]

Strict
LBBB, and
LBBB

MADIT-
CRT
clinical trial
data

602 ECG Fea-
tures (14
attributes)

NA Neural
Net-
work

↓ 90.0% NA

Kaya et-al,
2021 [58]

LBBB,
RBBB

MIT-BIH 45 ECG Fea-
tures

NA BE+
KNN

↑ 90.0% NA

Aldave et-
al, 2023 [59]

LBBB Physiological
signal
challenge
(ICBED
2018)

300 ECG Fea-
tures

NA RF ↓ 90.0% NA

Galli et-al,
2021 [24]

Patient
specific
conduction
abnormality
after TAVR

ECG
data nine
European
Centres

151 Preoperative
multi-slice
computed
tomography
(MSCT)
features

5-fold KNN ↓ 90.0% 0.84

Proposed ILBBB,
CLBBB,
CRBBB,
AVB,
IVCB,
WPW

PTB-XL 10,777 Raw ECG
with ’age’,
and ’sex’

10-fold RF ↑ 90.0% 0.87

on the presented ML models to improve their
performance further.
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