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Abstract Smart Healthcare becomes one of the pop-
ular research areas in recent years. This research pro-
poses to expand the state-of-art of smart healthcare by
incorporating solutions for Obsessive Compulsive Dis-
order (OCD). Classification of OCD by analyzing ox-
idative stress biomarkers (OSBs) through a machine
learning mechanism is a significant development in the
study of OCD. However, this procedure requires the
collection of OCD class labels from hospitals, collec-
tion of corresponding OSBs from biochemical labora-
tories, integrated and labeled dataset creation, use of
suitable machine learning algorithm for designing OCD
prediction model, and making these prediction mod-
els available for different biochemical laboratories for
OCD prediction for unlabeled OSBs. Further, from time
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to time, with significant growth in the volume of the
dataset with labeled samples, redesigning the predic-
tion model is required for further use. The entire process
demands distributed data collection, data integration,
coordination between the hospital and the biochemi-
cal laboratory in real-time, dynamic machine learning
model design for OCD prediction, and making the ma-
chine learning model available for the biochemical lab-
oratories. Considering these requirements, Accu-Help a
fully automated, smart, and accurate OCD detection
conceptual model is proposed to help the biochemical
laboratories for efficient detection of OCD from OSBs.
OSBs are classified into three classes: Healthy Individ-
ual (HI), OCD Affected Individual (OAI), and Geneti-
cally Affected Individual (GAI). The main component
of this proposed framework is the machine learning-
based OCD class prediction model design. Accu-Help
uses a neural network-based approach with an OCD
class prediction accuracy of 86 ± 2%.

Keywords Healthcare Cyber-Physical System (H-
CPS) · Smart Healthcare, Internet-of-Medical-Things
(IoMT) · Machine Learning · Artificial Neural Network
(ANN) · Obsessive Compulsive Disorder (OCD)
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1 Introduction

In the era of the rapid advancement of machine learn-
ing, the internet of things, and cyber-physical system
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technology, there is a larger possibility of improving the
excellence of healthcare technologies. Recently, numer-
ous researchers have demonstrated their interest in de-
signing and developing smart healthcare technologies
to resolve different issues in the healthcare system. For
example, to automate seizure detection from EEG the
authors in [1] have proposed an IoT-based System using
Machine Learning. A H-CPS is proposed in [2] to detect
Blood Alcohol Concentration using machine learning.
A smart healthcare system is proposed in [3] to detect
and monitor diseases to provide real-time support to
patients.

Barely attention is given in the literature to design-
ing H-CPS for mental illnesses like anxiety, obsession,
compulsion, or obsessive-compulsive disorder.

This research focuses on obsessive-compulsive dis-
order (OCD). OCD is one of the classes of anxiety ill-
ness [4]. Persons with OCD have a mental condition
of obsession and compulsion. Obsessions are unpleas-
ant and unwanted feelings that automatically come into
mind. Obsession makes an individual very uncomfort-
able, anxious, and fearful. For the sake of correction,
individuals with obsession carry out repeated activ-
ities called compulsion. For example, washing hands
frequently to overcome the thought of contamination.
Here, contamination feeling is the obsession, and wash-
ing hands repeatedly is the compulsion.

One of the effective treatments for OCD is Cognitive-
behavioral therapy (CBT). CBT is a general kind of
conversion therapy. This therapy helps individuals to
learn the way to recognize the patterns and alter neg-
ative feelings or emotions. However, OCD is detected
from behavioral symptoms analysis, but the OCD be-
havior is observable at a letter stage. Earlier detection
can help the patient for quick recovery using CBT treat-
ment. However, in general, OCD-affected persons have
less trust in the detection process through symptom
analysis in the preliminary stage. As long as this OCD
problem is not harming their day-to-day activity, they
are not accepting the disease and abstaining from treat-
ment. Therefore, the treatment starts at a later stage
and the recovery period becomes longer. In such a situ-
ation, OCD detection using an intelligent machine may
create trust in the diagnosis process of OCD at an early
stage. As a result, CBT can be adapted in the early
stage for better results.

For automated and accurate detection of OCD, a
Healthcare Cyber-Physical System (H-CPS) is proposed
called Accu-Help. H-CPS is an information and commu-
nication technology-based infrastructure in which the
healthcare process is supervised and controlled using
smart systems. Accu-Help is designed as an H-CPS which
uses a machine learning-based smart healthcare frame-

work for the accurate detection of OCD. The account-
ability of Accu-Help includes the collection of OCD 
class labels from hospitals, collection of corresponding 
OSBs from biochemical laboratories, integrated database 
creation, use of suitable machine learning algorithm 
for designing OCD prediction model, and making these 
prediction models available for different biochemical lab-
oratories for OCD prediction for unlabeled OSBs. With 
the growth of the size of the OCD database containing 
labeled samples, redesigning the OCD prediction model 
is required to enhance the robustness of Accu-Help. The 
entire process requires distributed data collection, data 
integration, coordination between the hospital and bio-
chemical laboratory, dynamic machine learning-based 
OCD prediction mode design, and making the predic-
tion model available over the cloud for easy access and 
integration.

The core part of Accu-Help is a machine learning-
based model which can provide the intelligence required 
for the prediction of OCD. Accu-Help can collect OSBs 
and OCD class labels from different h ospitals a nd dif-
ferent biochemical laboratories located in different ge-
ographical locations. OSBs along with the class labels 
are used for ML model design for OCD classification 
and made available online. OSBs estimated from new 
individuals’ blood samples in a biochemical laboratory 
can be given to Accu-Help for OCD class detection.

A novel hyperparameter-optimized neural network 
for OCD identification or c lassification us ing oxidative 
stress biomarkers is used in the Accu-Help. The useful-
ness of the proposed approach is compared with the use-
fulness of some of the popular classification approaches. 
Experimental results reveal that the suggested mecha-
nism is better contrary to others.

The rest of the article is organized as follows. The 
state of the art of the problem at hand is summarized 
in Section 2. The novelty of the article is presented in 
Section 3. In Section 4 a cyber-physical system is pro-
posed to handle the whole system of OCD detection. 
Various popular machine learning methods are used 
for OCD detection in Section 5. Section 6 presents the 
proposed hyperparameter-optimized neural network for 
OCD classification through oxidative stress biomarkers. 
The dataset description, experimental result analysis, 
and comparative studies are performed in Section 7. 
Section 8 gives the future work direction and concludes 
the article.

2 Related Prior Works

The related research approaches are categorized into 
two parts. In Section 2.1, few recent smart healthcare 
systems are presented. Further, in Section 2.2, OCD
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detection-related approaches are presented and analyzed.

2.1 Smart Healthcare Systems

In recent years, there has been an increasing interest 
among several researchers are seen to attempt of de-
veloping a smart healthcare system to automatically 
diagnose, and manage different expects of diseases [18, 
19]. However, the healthcare system proposed in this 
article mainly focuses on OCD and the diagnosis of 
OCD from oxidative stress biomarkers. There are sev-
eral smart healthcare systems proposed in the litera-
ture. The research work in [20] proposes a model to 
automate the process of automatic monitoring of pa-
tients and biomedical devices. To automate seizure de-
tection from EEG the authors in [1] have proposed an 
IoT-based System using Machine Learning. A smart 
healthcare system is proposed in [2] to detect Blood 
Alcohol Concentration using machine learning. In [21] 
the authors have proposed a healthcare system to han-
dle the mobility of individuals during a pandemic. Even 
though several smart healthcare systems are proposed 
in the literature, as per the knowledge of the authors’ 
none of the approaches has proposed a smart healthcare 
system to automate the process of OCD detection.

2.2 Related Prior Research

In recent years several researchers have analyzed several 
aspects of OCD such as prediction, monitoring treat-
ment effectiveness, and severity prediction. Artificial in-
telligence approaches were also well utilized to resolve 
different problems related to OCD. Several approaches 
focus on the prediction of OCD patients by studying 
neuropsychological biomarkers, genetic biomarkers, MRI 
biomarkers [5], fMRI biomarkers, DTI and EEG biomark-
ers [6, 7], and EEG biomarkers [8]. Artificial intelli-
gence approaches have been used in the detection of 
OCD treatment effectiveness in [10], OCD severity fore-
cast [11] and OCD severity reduction forecast model 
has been designed in [22,23]. In general, the EEG anal-
ysis is performed by power and source analysis. EEG 
channel one and four analyses have been performed for 
OCD detection in [6]. An intracortical EEG signal is 
analyzed in [9] and observed hyper-activation for OCD 
individuals. MRI and fMRI have been analyzed in many 
studies to diagnose OCD [12, 24–27]. However, the col-
lection of such biomarkers involves high-end machines 
which may not be available in most places. The OCD re-
search literature on neuroimaging biomarkers and their 
limitations are summarized in Table 1. In absence of

biological markers such as EEG, MRI, fMRI, and DTI,
an alternative mechanism should be adopted.

The study in [17] suggests the act of oxidative stress
biomarkers in OCD. Oxidative stress biomarkers (OSBs)
can be measured from an individual’s blood samples.
This study observed different patterns of OSBs in all
three OCD classes (HI, GAI, and OAI. The OSBs con-
sidered for the study are superoxide dismutase (SD),
Glutathione Peroxidase (GP), Catalase (CAT), Mal-
ondialdehyde (MAL), and serum cortisol (SC). Sev-
eral studies are found in the literature on the analysis
of OSBs to understand OCD. In some studies [14, 17]
COR is found to be normal whereas in some other stud-
ies [13,28] it is found to be high in the case of OCD in-
dividuals. As per [14, 15, 17, 29], CAT, GPX, and SOD
are lower and MDA is higher in OCD whereas levels
of CAT, GPX, and SOD were higher in OCD individ-
uals in other studies [14, 16]. In [25] the authors have
made a careful study of OSBs and it is observed that
these markers act as a major role in OCD individu-
als [25]. In [25] it is also observed that the population
mean and the standard deviation is significantly differ-
ent in the case of OCD individuals. However, it is not
possible to predict OCD through the statistical anal-
ysis of each marker. The OCD research literature on
OSBs and their limitations are summarized in Table 2.
This research aims to design an intelligent predictive
method to predict the existence of OCD in an individ-
ual through oxidative stress biomarkers. Thus, it is es-
sential not only to develop a mechanism to detect OCD
without EEG, MRI, fMRI, and DTI but also to classify
all three classes.

3 Novel Contributions of the Article

Segregating the HIs from the OAI is considered the
OCD detection or classification process. In regular prac-
tice, the mechanism of OCD detection is carried out
by symptom observation. Generally, the symptoms are
visible at the latter stage of the disease. As the symp-
toms are not visible in the initial stage of the disease,
early recognition is not possible. Further, in the case of
an early or moderate stage of OCD, the symptoms are
mild and in general, the patient doesn’t trust the detec-
tion through symptoms observation. As a result, they
obstruct themselves from taking treatment. However,
laboratory detection of OCD may build extra trust in
the mind of OCD patients even at the early stage and
as a result, they may accept the treatments in the early
stages. Accepting treatment at the early stage may re-
sult in quick recovery.

In the literature, several works have been carried
out to detect OCD by applying machine learning to
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Table 1 OCD research literature on neuroimaging biomarkers and their limitations

Research Analysis and results Limitations

OCD severity
detection [5]

Data Analyzed: MRI, DTI, and neuropsychological data.
The technique used: Applied machine learning for OCD
severity detection Result: Detection Ability of 90% in the
training set and 70% in the testing set.

Collection of such biomarkers requires high-
end machines near the patient. Without bi-
ological markers such as EEG, MRI, fMRI,
and DTI, an alternative mechanism should be
adopted.

Classification
of OCD [6]

Data Analyzed: EEG data and hemispheric dependency
data. The technique used: Support vector machine (SVM)
classifiers. Result: Achieved an OCD classification accuracy
of 85 ± 5.2%.

This approach does not able to classify GAI.
Further, in the absence of biological markers
such as EEG, MRI, fMRI, and DTI, an alter-
native mechanism should be adapted.

Classify tri-
chotillomania
and OCD [7]

Data Analyzed: EEG biomarkers. The technique used:
SVM with ant colony optimization. Result: Achieved a clas-
sification accuracy of 81.04%.

This approach is not able to address the OCD
classification problem and is not able to iden-
tify the GAI group.

EEG source
analysis in
OCD [8,9]

Data Analyzed: EEG biomarkers. The technique used:
Compared resting state using standardized low-resolution
electromagnetic tomography. Result: Observed that there
is a medial frontal hyperactivation in OCD.

This approach is not able to classify GAI.
Further, an alternative mechanism should be
adapted in the absence of biological markers
such as EEG, MRI, fMRI, and DTI.

Prediction of
OCD treatment
response [10]

Data Analyzed: Symptoms dimension, neuropsychologic
act, and epidemiologic parameters. The technique used:
Multilayer perceptrons. Result: 93.3% of correct classifi-
cation of cases achieved.

This approach is not able to address the OCD
classification problem. Does not able to iden-
tify GAI group.

Predicting
OCD sever-
ity [11]

Data Analyzed: MRI data. The technique used: support
vector regression. Result: Concluded that Support Vector
Regression can predict OCD symptom severity.

This approach is not able to address the OCD
classification problem. Does not able to iden-
tify GAI group.

fMRI pattern
recognition in
OCD [12]

Data Analyzed: fMRI data. The technique used: Multivari-
ate pattern classification techniques. Result: Neurobiolog-
ical markers provide reliable diagnostic information about
OCD.

This approach is not able to classify GAI.
Further, an alternative mechanism should be
adapted in the absence of biological markers
such as EEG, MRI, fMRI, and DTI.

Table 2 OCD research literature on oxidative stress biomarkers and their limitations
Research Findings Limitations

Urinary free cortisol
(UFC) Cortisol level
analysis in OCD [13]

UFC of both the groups was compared and the
OAI group had significantly higher UFC levels
than the HI group.

This study analyzed the cortisol level but had
not come up with a threshold as OCD detector.

MAL, SD, GP, and CAT
levels in patients with
OCD [14]

Higher MAL, SD, GP, and CAT activity but
the differences were not big. However, it is ob-
served that OCD is linked with free radicals.

This study analyzed oxidative stress biomark-
ers but had not come up with a threshold as an
OCD detector.

Analysis of free radical
metabolism and antioxi-
dants in OCD [15]

A higher level of MAL was observed in the OCD
group.

This study analyzed MAL but had not come
up with a threshold as an OCD detector.

Analysis of oxidative
stress of OCD pa-
tients [16]

Oxidative stress biomarkers imbalance was ob-
served in the OCD group.

This study analyzed oxidative/ antioxidative
status but had not come up with a threshold
as an OCD detector.

Oxidative stress biomark-
ers analysis in three
groups (HI, GAI, and
OAI) [17]

Levels of CAT, SD and GP in all three groups
are significantly different.

This study analyzed oxidative stress in all three
groups but had not come up with a mechanism
to segregate these three groups.

Accu-Help: A Machine
Learning-based smart
healthcare framework
for accurate detection of
OCD class (HI, GAI, or
OAI).

Hyperparameter optimized Neural networks
have achieved a prediction accuracy of 86±1%.

This approach is successful in applying Neu-
ral Networks on OSBs to predict OCD class.
However, the training process is computation-
ally costly.
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biomarkers such as MRI, fMRI, EEG, and DTI. How-
ever, the collection of such biomarkers involves high-end
machines which may not be available everywhere. The
study in [30] suggests a link between oxidative stress
biomarkers in OCD and these biomarkers can be mea-
sured from blood samples. Further, the recent study
performed in [17] suggests the existence of a signifi-
cantly distinguished pattern in the biomarkers of the
first-degree relatives of OCD-affected individuals. By
identifying the individuals with genetic linkage with
OCD, preventive suggestions may be recommended to
such individuals to stay away from OCD. Therefore
identifying the genetically affected individuals (GAI)
with OCD has greater importance in medical science
[17]. Therefore, this study aims at the identification or
segregation of the three groups (HI, GAI, and OAI). In
this article, we define the OCD classification problem
as, classifying the given OSBs of an individual into one
of the three classes HI, GAI, and OAI.

3.1 Research Questions

This research aims to design a Healthcare Cyber-Physical
System (Accu-Help) to automate the OCD classifica-
tion process to strengthen the concept of smart health-
care. The issues that Accu-Help primarily focuses on
are:

– In the literature, several approaches are found for
OCD detection using artificial intelligence by an-
alyzing neuroimaging biomarkers. A collection of
such biomarkers involve high-end equipment and
the individual needs to be physically present near
the equipment for data collection. However, such
equipment may not be available everywhere and the
collection of such markers becomes a challenge. As
a result, these OCD detections process may not be
widely available.

– It is observed by many researchers that oxidative
stress has a significant role in OCD. The majority
of these studies focused on comparing the popula-
tion mean, mode, and standard deviation of OSBs
among the HI group and the OAI group. However,
very less attention is given to detecting OCD through
oxidative stress biomarkers.

– Several studies observed the genetic linkage to OCD.
Identifying individuals with a genetic link to OCD
has a greater importance in medical science. How-
ever, in the literature, less importance is given to
detect GAI individuals.

– From the above discussion, it is observed that clas-
sifying an individual into one of the three classes
(HI, GAI, or OAI) has greater importance. It is also

observed that artificial intelligence can play a major
role in addressing this issue and OSBs can be used
as a useful biomarker in solving this problem. In
the literature, less importance is given to designing
a machine learning prediction model to detect the
OCD class (HI, GAI, or OAI) from given OSBs.

– Designing an H-CPS to automate the OCD detec-
tion process has greater importance. This H-CPS
should be essentially designed to support distributed
system to collect labeled OSBs from hospitals and
biochemical laboratories, design a machine learning
prediction model, and make it available for future
use by biochemical laboratories for OCD detection
by just giving the OSBs of an individual as input.

3.2 Proposed Solution

As a solution to the problems highlighted in Section
3.1, Accu-Help an H-CPS is proposed. OSBs such as
SD, GP, CAT, MAL, and SC are estimated from the
blood samples of an individual. These biomarkers are
passed to a machine learning prediction model designed
by the Accu-Help environment to identify the class (one
among HI, GAI, and OAI) by analyzing OSBs. Accu-
Help collects labeled OSBs from hospitals and biochem-
ical laboratories. In this study, OCD detection signifies
the identification of the class (one of the three classes:
HI, GAI, and OAI) from someone’s oxidative stress
biomarkers. The core part of the Accu-Help is the ar-
tificial intelligence part designed based on an artificial
neural network for OCD prediction.

3.3 Research Objective

The idea behind the proposed H-CPS is conceptualized
by taking into account the process of OCD detection,
the ease of involvement of human/machinery compo-
nents of this process, easy coordination and coopera-
tion among them, and its ancillary impact on the com-
munity. The main objectives that are targeted through
Accu-Help are:

OCD Individuals Health In the era of artificial intelli-
gence, the detection of OCD through machine learn-
ing can put extra faith in the mind of OCD patients.
As a result, the patients may start their treatment
at an early stage and recover with reduced treat-
ment duration.

Genetically Affected OCD individuals Health This H-CPS
aims to segregate HI, GAI, and OAI. GAI individ-
uals can be benefited by taking preventive advice
from experts to stay away from OCD.
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Early Detection of OCD Accu-Help also aims to pre-
dict OCD even in the early stage when symptoms
are not so significant. As a result, early treatment
can be recommended.

OCD Detection at Biochemical Laboratories As Accu-
Help aims to detect from OSBs, the biochemical lab-
oratories can take help of Accu-Help to detect OCD
from OSBs without involvement of a doctor.

Technological Advancement In general, behavioral anal-
ysis is the popular method of OCD detection. How-
ever, this detection happens in the latter stage of the
disease, and OCD patient has less faith in this detec-
tion process. As a result, they only accept treatment
only at the latter stage when the disease affects their
day-to-day living. The idea of using machine learn-
ing methods through an H-CPS system to analyze
OSBs for the detection of HI, GAI, or OAI can be
a significant development in OCD studies.

3.4 Practical Use of Proposed Approach

In normal practice, OCD detection is carried out through 
symptom analysis. However, mild symptoms can be ob-
served in suspected individuals or genetically linked in-
dividuals. At the initial stage, individuals have less faith 
in OCD detection. Further, they don’t have any mech-
anism to make confirmatory tests. As a result, they 
are restricting them to take preventive treatment. At 
the latter stage, when the symptoms become signifi-
cant and OCD negatively affects their day-to-day life 
they approach the doctor for treatment. As a result, in 
some cases the OCD becomes chronic and the treatment 
becomes lengthy. To overcome such a situation, labora-
tory detection of OCD can be adopted to create extra 
faith in the early detection process. The proposed ap-
proach aims to mitigate this problem. In the proposed 
approach, blood samples are collected remotely and Ox-
idative Stress Biomarkers are estimated in a laboratory. 
Further, the Oxidative Stress Biomarkers are sent to the 
machine learning model to identify the class label of the 
sample. The outcome of the machine learning model 
can be one of the three class labels: 1) Healthy Individ-
ual (HI), 2) Individual at the initial stage of OCD or 
Genetically Affected (GAI), and 3) Individual affected 
with OCD and is at advance stage (OAI). In case it 
is detected with GAI, a preventive treatment can be 
suggested.

4 Accu-Help: A Cyber-Physical System for
Accurate Detection of OCD

In recent years many cyber-physical systems are pro-
posed to achieve smart health care [2], and many more.
This section proposes a conceptual cyber-physical sys-
tem for organizing and managing the OCD detection
process. The main component of this system is a ma-
chine learning model which can solve the OCD clas-
sification/detection problem. The efficiency of the ma-
chine learning model is mainly dependent on the labeled
samples collected as training data and the learning ap-
proach. Upon completion of training and validation of
the machine learning model, the model should be ac-
cessible remotely to make the model widely available
and reachable to different biochemical laboratories situ-
ated in different geographical locations. Considering all
these aspects in mind, the proposed health care cyber-
physical system is conceptually divided into three com-
ponents. The three components are 1) Labeled data
collection (LDC), 2) Machine learning model design
(MLMD), and 3) Machine learning model remote ac-
cess (MLMRA).

4.1 Labeled data collection (LDC)

At the time of manual detection of OCD by a psychi-
atric doctor blood samples are collected from OAIs and
their GAIs. The blood samples have to be sent to a
biochemical laboratory for oxidative stress biomarkers
(such as SD, GP, CAT, MAL, and SC) estimation. The
estimated biomarkers along with their class labels have
to upload to the central data cloud data server.

4.2 Machine learning model design (MLMD)

Periodically, using the updated dataset machine learn-
ing model training and validation are performed in a
cloud server and produce batter prediction models from
time to time. The improved version of the machine
learning prediction model is to be made online avail-
able for OCD detection and is called OCD prediction
model.

4.3 Machine learning model remote access (MLMRA)

To diagnose OCD in an individual, a blood sample of
the individual is needed to be sent to a biochemical
laboratory for oxidative stress biomarkers estimation.
The estimated biomarkers are to be given to the OCD
prediction model which is available online. The OCD
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prediction model in the cloud classifies the given sam-
ples into one of the three classes HI, GAI, or OAI.

The conceptual design of the cyber-physical system
is presented in Fig. 1. The primary objective is the con-
struction of the OCD prediction model which is de-
scribed in detail in the following sections.

5 Classical Machine Learning Models for OCD
detection

For the problem at hand, classification algorithms are
suitable to solve the problem. Classification algorithms
can be used to predict the class labels of unknown sam-
ples. The conceptual view of the OCD class prediction
process is presented in Fig. 2.

Among several important classifications approaches
k-nearest neighbor, logistic regression, linear discrimi-
nant analysis, and neural networks are some of the pop-
ular ones. A brief description of these approaches and
the OCD detection effectiveness is described in this sec-
tion as follows.

5.1 Logistic Regression and OCD Detection

Given the OCD dataset containing N number of oxida-
tive stress biomarkers set along with the OCD class la-
bels {OSBSi, CLi}N

i=1. Where CLi ∈ {HI,GAI,OAI}
andOSBSi =< SDi, GPi, CATi,MALi, andSCi > rep-
resents the oxidative stress biomarker set of the ith sam-
ple containing five biomarkers called SD, GP, CAT,
MAL, and SC. The OSBs are real valued parameters
and OSBSi ∈ ℜ5. The objective is to learn from the
dataset and design a prediction model. For a given new
OSBSi determine the class label.

Procedure: Given the training dataset {Si, yi}N
i=1, Data

point Si ∈ ℜp where, p is the number of predictors, class
label yi ∈ {1, 2, ...,M). The training dataset contain N
number of samples and the number of class levels are
M .

Objective: For a given new s ∈ ℜp determine the
probability of y ∈ {1, 2, ...,M} such that s ∈ class y.

Assumption: The predictors are drawn from a prob-
ability distribution having

Pr(y = 1|s) = eβτ s

1 + eβτ s
= p(s;β)....(say), (1)

βτ is expressed as the following:
βτ = (β0, β1, β2, ..., βp) and sT = (1, s1, s2, ..., sp).

βτs = β0 + β1s1 + β2s2 + ...+ βpsp (2)

For a two class classification problem,

Pr(y = 0|s) = 1 − p(s;β) (3)

∴ To know the probability that a given s is from a
class 0 or 1 can be calculated if β is known. β can be
calculated using the maximum likelihood method:

Pr(y|s) =
N∏

k=1
Pr(yk|sk) (4)

For a two class dataset:

Pr(y|s) =
N∏

k=1
p(sk;β)yk (1 − p(sk;β))1−yk (5)

where, p(sk;β) = eβτ sk

1+eβτ sk
= 1

1+e−βτ sk
= g(βτx)...(say)

Let, L(β) = Pr(y|s) =
N∏

k=1
p(sk;β)yk (1−p(sk, β))1−yk

(6)

β can be determined by maximizing the likelihood
of the occurrences of all the events in the dataset. ∴
βτ = (β0, β1, β2, ..., βp) are the values for which L(β) is
maximum. But, maximizing L(β) is same as maximiz-
ing l(β) = log(L(β)). To find the β value for which l(β)
is maximum make ▽l(β) = 0.

⇒ ∂l
∂βj

= 0, for j = 0, 1, ..., p
⇒
∑N

i=1(yi − p(xi, β))xij = 0
To get β, one has to solve

∑
sk(yk − p(sk, β)) =

0 and the solution is described in Algorithm 1. For a
detailed description of Logistic Regression analysis one
can go through [31].

Algorithm 1: β Estimation from the given
OCD dataset.
1 Input: OCD dataset.

1. Make initial prediction of β, lets call it β0 and k = 0
2. βk+1 = βk + αk▽l(βk), where αk is a small value called

learning rate.
3. while (

∥∥βk+1 − βk
∥∥ < ϵ)

4. βk = βk+1

5. βk+1 = βk + αk▽l(βk) // Estimate ▽l(βk) with the
help of OCD dataset.

6. Return βk+1

This algorithm is simulated usingR−Programming
and experimented with OCD dataset containing OSBs
and class labels. The experimental outcomes revels that
this algorithm achieves an Overall OCD classification
Accuracy of 0.777789, Precision of 0.768943, Recall of
0.771247, and F1-Score of 0.770093.
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Fig. 1 Conceptual Healthcare Cyber-Physical System (H-CPS) for Obsessive Compulsive Disorder (OCD) Detection

5.2 Linear discriminant analysis and OCD Detection

Given the OCD dataset containing N number of oxida-
tive stress biomarkers set along with the OCD class la-
bels {OSBSi, CLi}N

i=1. Where CLi ∈ {HI,GAI,OAI}
andOSBSi =< SDi, GPi, CATi,MALi, andSCi > rep-
resents the oxidative stress biomarker set of the ith sam-
ple containing five biomarkers called SD, GP, CAT,
MAL, and SC. The OSBs are real valued parameters
and OSBSi ∈ ℜ5. The objective is to learn from the
dataset and design a prediction model. For a given new
OSBSi determine the class label.

Procedure: Let the training dataset D = {Si, yi}N
i=1, a

data point Si ∈ ℜp where p is the number of predictors,
and class label yi ∈ {1, 2, ..., M).

The training dataset contains N number of samples
and the number of class levels is M .

Objective: For a given new sample s ∈ ℜp deter-
mine the the class of s.

Classification method: Assign the class label to
x for which class probability of occurrence is maximum.
i.e., Class label of s is l = ArgMax1≤k≤M p(y = k|S =
s).

p(y = k|S = s) = p(S = s|y = k)p(y = k)
p(S = s) (7)

This can be denoted as pk(s) = fk(s)
∏

k

p(s) , where
fk(s) is the probability of S = s given y,

∏
k is the

probability of y = k, and p(s) is the probability of oc-
currences of s. It is assumed that the probability of
S = s for a given y = k is normally distributed. i.e.,

fk(s) = 1√
2πσk

e
−(s−µk)2

2σ2
k , here it is assumed that s ∈ ℜ

where σk is the standard deviation of class k. Again it
is assumed that the standard deviation in each class are
equal i.e., σ1 = σ2 = ... = σM = σ.

∴ fk(s) = 1√
2πσ

e
−(s−µk)2

2σ2 (8)

But it is known that
ArgMax1≤k≤M pk(s) = ArgMax1≤k≤M log (pk(s)).
∴ Let us use log (pk(s)) to find out for which value

of k, pk(s) is maximum.

log(pk(s)) = log

 1√
2πσ

e
−(s−µk)2

2σ2
∏

k

p(s)


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Fig. 2 Proposed OCD prediction model through oxidative
stress biomarkers (OSBs) analysis.

= log 1√
2πσk

−
[

s2

2σ2 + µ2
k

2σ2 − 2sµk

2σ2

]
+log

∏
k−log p(s).

⇒ Arg Max1≤k≤M (pk(s)) = Arg Max1≤k≤M (log
∏

k−
µ2

k

2σ2 + sµk

σ2 ) as other terms are independent of k.
Let us denote it as

Arg Max1≤k≤M (pk(s)) = Arg Max1≤k≤M (δk)
∵
∏

k, µk, and σ are unknown, we can use some in-
direct way to estimate it. Let us define these estimated
values as

∏̂
k = Numberofelementsinkthclaaa

T otalnumberofelements = nk

N , µ̂k =
1

nk

∑
i:yi=k xi and σ̂ =

∑M
k=1

(
1

N−M

∑
i:yi=k(si − µ̂k)

)
.

Compute δk for all k and find the k for which δ is
maximum. That k value is the class label generated by
linear discriminant analysis for s.

For the case where p > 1 i.e., multiple predictors
are there then the shape of linear discriminant analysis
is as follows.

Suppose s1 and s2 are two random variables inde-
pendent and normally distributed then the joint prob-
ability density function can be written as:

f(s) = 1√
2πσ1

e
−(s1−µ1)2

2σ2
1 1√

2πσ2
e

−(s2−µ2)2

2σ2
2

= 1
2πσ1σ2

e
− 1

2

[
(s1−µ1)2

σ2
1

+ (s2−µ2)2

σ2
2

]
In general for a p random, independent and nor-

mally distributed variables/ predictors:

f(s) = 1
2π p

2 |
∑

|
p
2
e− 1

2 (s−µ)τ
∑−1(x−µ) = pk(s) (9)

For p = 2: s =
(
s1
s2

)
, µ =

(
µ1
µ2

)
, and

∑−1 =
( 1

σ2
1

0
0 1

σ2
2

)
But we know that,

ArgMax
1 ≤ k ≤ M

pk(s) = ArgMax
1 ≤ k ≤ M

log (pk(s)) (10)

and
ArgMax

1 ≤ k ≤ M
log (pk(s)) = ArgMax

1 ≤ k ≤ M
δk (11)

where δk = sτ
∑−1

µk − 1
2µ

τ
k

∑−1
µk + log(

∏
k
) (12)

In equation (12), sτ = (s1, s2, ..., sp),
µτ

k = (µ1, µ2, ..., µp),∏
k = Number of elements in kth class

T otal number of elements ,

and
∑

=



σ2
1 0 ... 0

0 σ2
2 ... 0

. . .

. ... .

. . .

0 . ... σ2
p

.

Classification label for s is l = Arg Max
1 ≤ k ≤ M

δk, i.e.,

compute δk for all k for which δ is maximum. That k
value is the class label generated by linear discriminant
analysis for s from multi dimensional feature space. For
a detailed description of Linear discriminant analysis
one can go through [32].

This algorithm is simulated usingR−Programming
and experimented with OCD dataset containing OSBs
and class labels. The experimental outcomes revels that
this algorithm achieves an Overall OCD classification
Accuracy of 0.821431, Precision of 0.833333, Recall of
0.828347, and F1-Score of 0.830827.

5.3 K Nearest neighbor and OCD Detection

Given the OCD dataset containing N number of oxida-
tive stress biomarkers set along with the OCD class la-
bels {OSBSi, CLi}N

i=1. Where CLi ∈ {HI,GAI,OAI}
andOSBSi =< SDi, GPi, CATi,MALi, andSCi > rep-
resents the oxidative stress biomarker set of the ith sam-
ple containing five biomarkers called SD, GP, CAT,
MAL, and SC. The OSBs are real valued parameters
and OSBSi ∈ ℜ5. The objective is to learn from the
dataset and design a prediction model. For a given new
OSBSi determine the class label.
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Procedure: Let the training dataset {Si, yi}N
i=1, Data

point Si ∈ ℜp where, p is the number of predictors, class
label yi ∈ {1, 2, ...,M). The training dataset contain N
number of samples and the number of class levels are
M .

Objective: For a given new s ∈ ℜp determine the
the class of s.

The procedure of k-nearest neighbor is described
in Algorithm 2. For a detail description of K Nearest
neighbor one can go through [33].

Algorithm 2: k Nearest Neighbor for OCD
Detection
1 Input: Given an OCD dataset and a new OSB sample

that is to be classified.
1. Let k be a positive integer and s be a new sample to be

classified.
2. Evaluate the similarity of s compare to all samples of the

OCD dataset using the function
distance(s, sj)∀j = 1, 2, ..., N . The distance() function
uses euclidian distance.

3. Sort the distances in ascending order.
4. Consider the first k distances.
5. Identify the k samples corresponding to these k lowest

distances.
6. Let ci is the number of samples from ith class among

these k points.
7. The new sample s is classified as ci if ci > cj∀j ̸= i

This algorithm is simulated usingR−Programming
and experimented with OCD dataset containing OSBs
and class labels. The experimental outcomes revels that
this algorithm achieves an Overall OCD classification
Accuracy of 0.785741, Precision of 0.814132, Recall of
0.786613, and F1-Score of 0.800102.

6 The Proposed Novel Hyperparameters
Optimized Neural Network(HONN) for OCD
Detection

The neural network approach is widely adapted by re-
searchers to solve various classification problems. How-
ever, the performance of an artificial neural network
model is highly relies on the selection hyperparameters
such as number of computational unit layers in the net-
work, activation function, learning rate, and number of
computational units in each layer. In this research work,
we propose an approach to optimize such hyperparam-
eters of artificial neural network for OCD classification.

6.1 Neural Network and OCD Detection

Given the OCD dataset containing N number of oxida-
tive stress biomarkers set along with the OCD class la-
bels {OSBSi, CLi}N

i=1. Where CLi ∈ {HI,GAI,OAI}
andOSBSi =< SDi, GPi, CATi,MALi, andSCi > rep-
resents the oxidative stress biomarker set of the ith sam-
ple containing five biomarkers called SD, GP, CAT,
MAL, and SC. The OSBs are real valued parameters
and OSBSi ∈ ℜ5. The objective is to learn from the
dataset and design a prediction model. For a given new
OSBSi determine the class label.

Procedure: A generalized neural network comprises sev-
eral layers of computational computational units called
Input Layer (IL), zero or more Hidden Layer (HL) and
Output Layer (OL).The front-end layer of computa-
tional units is known as the IL, the backend layer of
computational units is called the OL, and the computa-
tional units layers between the IL and OL are called HL.
The IL feeds the input to the layer next to it, the com-
putational results of the first HL computational units
become the input to the next HL, and so on. Each com-
putational unit performs a weighted sum of the inputs
and passes to its activation function (AF). The AF is a
continuous nonlinear function. Each OL computational
units has a specific target value to produce for an as-
sociated input, the comparison of actual output and
target value estimates an error signal. The error sig-
nals computed at the OL computational units and the
associated weights are used to estimate the error sig-
nal at the computational units of the previous layer.
This way the error signal propagates backward layer-
by-layer. The error signal is nothing but the gradient
of the error function concerning the associated input
weights of the computational unit. The general struc-
ture of a neural network is presented in Fig. 3.

A set of patterns with the class labels is given as the
training dataset. The training dataset is defined by

TP = {Xm, tm}N
m=1. (13)

where Xm ∈ Rp is a p dimensional vector that rep-
resents the mth pattern and tm denotes the class label
of Xm. Let ym

i denote the output of computational unit
i at the OL as a result of the input Xm at the IL. The
error signal generated at computational unit i of the
OL is defined by

ξm
i = tmi − ym

i (14)

where tmi is the ith component of the desired re-
sponse vector tm. ∴ the error energy of computational
unit i is defined by
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Fig. 3 Proposed ANN for automatic OCD Detection

Em
i = 1

2(ξm
i )2 (15)

Total error energy at the output layer is defined by

Em =
∑

i

Em
i = 1

2
∑

i

(ξm
i ) (16)

The average error energy for all training samples is
defined by

Eav = 1
N

N∑
m=1

∑
i

(ξm
i )2 (17)

Let the computational unit i being fed by the com-
putational units of the previous layer, The total input
to computational unit i is defined by

vm
i =

n∑
j=0

ωjiy
m
j (18)

where n is the number of inputs (excluding the bias) to
computational unit i. The weight ωm

ji is associated with
the link between jth computational unit of the previous
layer and ith computational unit of the current layer.
The weight ωm

0i associated with the constant input y0 =
1 represents the bias bi applied to computational unit
i.

The activation function of the computational unit i
produces the output

ym
i = ψ(vm

i ) (19)

The weight correction ∆ωm
ji is applied to the weight

ωm
ji , proportional to ∂Em

∂ωm
ji

.

∂Em

∂ωm
ji

= −ξm
i ψ

′

i(vm
i )ym

i (20)

where ψ′

i(vm
i ) = ∂ym

i

∂vn
i

, ∆ωm
ji = −ρ∂Em

∂ωm
ji

= ργm
i y

m
j , ρ

is the step size and γm
i = ξm

i ψ
′

j(vm
i ).

For the hidden layer computational units, there is no
target response. Hence, direct estimation of error signal
at hidden layer computational unit is not possible. How-
ever, the error signal of the hidden layer computational
unit can be estimated using the error signal of the suc-
ceeding layer computational units and the weight asso-
ciated with them. Therefore, the error signal propagates
backward.

The local gradient of the error signal at a hidden
layer computational unit i is defined by

γm
i = ψ

′

i(vm
i )
∑

k

γm
k ω

m
ik (21)

where k denotes a computational unit in the succeeding
layer computational unit, omegam

ik is the weight asso-
ciated between computational unit i and k and γm

k is
the local gradient of error signal at computational unit
k. The local gradient of the error signal is computed
from output layer computational units to the first hid-
den layer computational units in a backward direction.

∴ In general, the weight correction ∆ωm
ji formula

can be defined as

∆ωm
ji = ργm

i y
m
j (22)

where ρ is the learning rate or step size, γm
i is the local

gradient and ym
j is the input signal of computational

unit j. The computation of γm
i depends on whether
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neuron i is a hidden layer neuron or an output layer
neuron.

This process of weight correction is performed sev-
eral times by passing different samples each time from
the training dataset until the average error comes down
to an acceptable range.

The procedure for the neural network training ia
described in Algorithm 3. For a detail description of
the neural network training one can go through [34].

This algorithm is simulated usingR−Programming
and experimented with OCD dataset containing OSBs
and class labels. The experimental outcomes revels that
this algorithm achieves an Overall OCD classification
Accuracy of 0.833333, Precision of 0.839907, Recall of
0.83482, and F1-Score of 0.836035.

6.2 Hyperparameter Optimization Procedure

The OCD class prediction accuracy by a neural net-
work mainly depends on various hyperparameters. It is
crucial to find optimal hyperparameters to increase the
performance of a network. The approach proposed in
this article adopts a finite hyperparameter set guesti-
mating approach called HONN.

HONN ModelArchitecture Select a set of hyperparame-
ters that needs to be optimized. For each hyperparam-
eter choose a finite list of possible values. Initialize the
hyperparameters of the neural network model by taking
one value from the lists of each parameters list. Perform
the neural network training by providing the training
dataset. Once the neural network is trained, test it with
the help of a test dataset and record the test accuracy. If
the accuracy achieved in this step is better than the past
models then preserve the parameters set. Repeat this
process of new hyperparameter set selection from the
list, training, and testing process for all combinations
of hyperparameter sets. Finally, return the parameters
that are preserved as best-performing ones. The con-
ceptual architecture of the HONN is presented in Fig.
4.

Out of many hyperparameters, this approach tries
to optimize the activation function, the number of lay-
ers in the network, the number of computational units
in each layer, and number of epoch. The activation func-
tions considered for different computational units of
the neural network are Logistic

(
f(v) = 1

1+e−v

)
, Tanh(

f(v) = 2
1+e−2v − 1

)
, ArcTan

(
tan−1(v)

)
, and Softplus

(loge(1 + ev)). Apart from the input and output layer
number of layers considered are 0, 1, and 2. The num-
ber of computational units in each layer ranges from 3

Algorithm 3: OCD Detection Network
weight set learning (OCD Training Dataset
TP , Network Model M , Activation Function
ψ, Step size ρ, Number of Epochs EP )

Note: The OCD Training Dataset TP represents the
oxidative stress biomarkers (SD, GP, CAT, MAL, and
SC) of N number of individuals. The network model
M(n0, n1, ..., nl, ..., nL) represents the L+ 1 number of
layers and nl numbers of computational units in layer
l. The input layer is represented by l = 0 and the
output layer is represented by l = L. The training
dataset TP = {Xm, tm}N

m=1 consists of N number of
training patterns. The training patterns belong to
n0-dimensional real space, that is Xm ∈ Rn0 . The
weight ωl

ji is the weight associated with the link
between the jth computational unit of layer l − 1 and
the ith computational unit of layer l. The weight ωl

0i

signifies the bias of the ith computational unit of the
layer l.
Initialization: Initialize the weight set from a normal
distribution whose mean is zero and standard
deviation is a small number.
for Epoch = 1 to EP do

for n = 1 to N do
Choose a random sample X from TP (i.e.,
OCD dataset) and set it as input to the
network.
for l = 1 to L do

for each computational unit i in layer l do
vl

i =
∑ml−1

j=1 ωl
jiy

l−1
i where vl

i is the
input to computational unit i in layer
l, ml−1 is the number of
computational units in layer l − 1,
yl−1

i is the output of computational
unit i in layer l − 1, and y0

i = Xi.
yl

i = ψl
i(vl

i)
for i = 1 to mL do

ξn
i = ti − yL

i

for i = 1 to mL do
γL

i = ξiψ
l
i
′(vL

i )
for l = L− 1 to 1 do

for i = 1 to ml do
ψl

i
′(vl

i)
∑ml+1

k=1 γl+1
k ωl+1

ik

for l = 1 to L do
for j = 0 to ml−1 do

for i = 1 to ml do
∆ωji = ργl

iy
l−1
j

ωji = ωji +∆ωji

for n = 1 to N do
Using Xn as input calculate yL

n and estimate
ξn.

ξav = 1
N

∑N

n=1 ξn

Return(Weight set W )
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to 15. The hyperparameter optimization or model se-
lection approach is presented in Algorithm 4.

This article uses k-Nearest Neighbor (KNN), Lo-
gistic Regression (LR), Linear Discriminant Analysis 
(LDA), Support Vector Machine with Radial Basis 
Func-tion kernel function (SVMR), Support Vector 
Machine with Linear kernel function (SVML), 
Random Forest (RF), and HONN) for OSBs 
classification for OCD class detection. The working 
principle comparative study of these approach are 
presented in Table 3.

6.3 Experimental Setup

For a better conformation of the model accuracy a k − 
fold cross-validation approach is adopted. k round, of 
experiments are performed and in each round the model 
accuracy is estimated. The average over all the k ex-
periments accuracy results is considered as the model 
accuracy. In the k −fold cross-validation approach, the 
given OCD dataset is randomly shuffled and divided 
into k nearly equal size partitions. That is the given 
dataset D = {D1, D2, ..., Dk}. In the ith round of the 
experiment, the training dataset T R = D1 ∪ D2 ∪ ... ∪ 
Di−1 ∪ Di+1 ∪ Dk and the test dataset TD = Di. Due to 
the small size of the dataset, in the current study, a 3 − 
fold cross-validation process is repeated multiple times 
with a complete data shuffle and re-partition after

Algorithm 4: Hyperparameter optimization
neural network algorithm for Accurate OCD
Detection (OCD Training Dataset TP , OCD
Test Dataset TD)

Input: The OCD dataset is divided into training and
test dataset (i.e., TP and TD). TP is utilized to train
the network where as TD is used to estimate the
accuracy of the trained model.
Initialization:
AF=[Logistic, Tanh, ArcTan, Softplus] //Activation
Function list
SS=[ρ1, ρ2, ..., ρm] // Step size list
EL=[EP1,EP1, ..., EPn] //Number of Epoch list
Accuracy = 0, Model = (5, 3)
Procedure:
for f in AF do

for ρ in SS do
for EP in EL do

for l = 0 to 2 do
if l == 0 then

M = (5, 3)
W=Algorithm 3(TP, M, f, ρ, EP
)
newAccuracy =
ModelAccuracyTest(M,W, TD)
if newAccuracy > Accuracy then

Accuracy = newAccuracy,
Model = M , Preserve W .

if l == 1 then
for i = 3 to 15 do

M = (5, i, 3)
W=Algorithm
3(TP, M, f, ρ, EP )
newAccuracy =
ModelAccuracyTest(M,W, TD)
if newAccuracy > Accuracy
then

Accuracy = newAccuracy,
Model = M , Preserve W .

else
for j = 3 to 15 do

for i = 3 to 15 do
M = (5, i, j, 3)
W=Algorithm
3(TP, M, f, ρ, EP )
newAccuracy =
ModelAccuracyTest(M,W, TD)
if
newAccuracy > Accuracy
then

Accuracy =
newAccuracy,
Model = M , Preserve
W .

Return(Model M , and Weight Set W )
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Table 3 OCD classification approaches feature study.

Approach Working Principles and reasons for the performance

KNN This approach classifies the new samples based on the local majority class of the new OSB
sample.

LR The class label prediction is performed based on the probability of the sample belonging to
a particular class. The higher probable class is selected.

LDA This approach works well if the features follow normal distribution.
ANN ANN is quite suitable to handle linearly nonseparable classes. However, the technique is not

performing its best if the approach’s hyperparameters are not suitably selected.
HONN ANN HONN tries to improve the ANN approach by proposing a parameter selection algo-

rithm.
SVMR SVMR is a support vector machine-based approach that uses the radial basis function as a 

kernel function to handle the nonlinearity in the class distribution.
SVML SVML is a support vector machine-based approach that uses the linear kernel function to 

handle the nonlinearity in the class distribution.
RF RF aggregates the output of multiple decision tree classifiers to take a final call on 

classifi-cation results.
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Fig. 5 Accu-Help: Experimental Setup Procedure

each 3−fold cross-validation to achieve 10−fold cross-
validation. The experiments are performed on a system 
having Intel(R) Core(TM) i5-3210m, 4GB RAM, 2.0 
GHz Processor and Windows-11 as OS. R- 4. 2. 1 is used 
for programming the approaches. The 3 − fold 
experimental procedure is presented in Fig. 5.

7 Experimental Evaluation

A quantitative analysis of the effectiveness o f t he pro-
posed approach is performed by experimenting with

the proposed approach and testing with the OCD data
which was originally presented in [30]. To make a com-
parative analysis the performance of the approach is
compared with the performance of other popular and
relevant approaches by considering the same dataset as
input. Among the state-of-the-art supervised approaches,
some of the most popular supervised approaches such as
k-nearest neighbor, logistic regression, linear discrimi-
nant analysis, and neural network are considered. A
brief description of the dataset is given in the following
paragraph.

7.1 Oxidative Stress Biomarker Dataset Description

Oxidative stress biomarkers are recorded from the blood
samples of healthy individuals, OCD patients, and first-
degree relatives of OCD patients. The restriction im-
posed during individual selection for sample collection
includes: age should be between 18 and 45, should not
be under any medications in the last three months,
should not have any illness in case of healthy and first-
degree relatives, and should not have any other illness
in case of OCD patients. Pregnant and lactating indi-
viduals are excluded. The oxidative stress biomarkers
considered for this study are SD, GP, CAT, MAL, and
SC. Standard biochemical methods are adopted to mea-
sure these biomarkers. To estimate these biomarkers,
blood samples are drawn after overnight fasting. The
assessment of these biomarkers is carried out in the bio-
chemical laboratory of King George Medical University.
Plasma is used as the source of enzymes. An in-depth
description of the laboratory mechanism of assessment
of these biomarkers is presented in [30].

The biomarkers recorded are in the form of real
numbers. The range of the values varies from marker
to marker. The distribution of the values in different
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Fig. 6 Class density distribution over biomarkers and all biomarker pair scatter plots

metrics and all biomarker pair wise scatter plot is pre-
sented in Fig. 6.

To project all the values of the markers into a com-
mon range a normalization procedure is followed. Let
β = {β1, β2, ..., βp} represents the set of biomarkers
where p is the number of biomarkers.

Let βi = {β1
i , β

2
i , ..., β

N
i } be the collection of ith

marker for all N samples. Let βs
i and βl

i represent the
smallest and largest value among the values stored in βi

respectively. To normalize βi in the range [n1, n2], we
adopt the min-max normalization method. The normal-
ized value βj

i = n1 + (n2 − n1)
(

βj
i

−βs
i

βl
i
−βs

i

)
.

7.2 Quantitative Analysis

To access the effectiveness of the model, a test dataset
TD = {Xi, yi}M

i=1 is used which consists of M num-
ber of samples and these samples are not used for the
training of the model.

Xi =< XSD
i , XGP

i , XCAT
i , XMAL

i , XSC
i > rep-

resents the five oxidative stress biomarkers of the ith

sample of the test dataset and yi is the class label of
Xi. The test samples (Xi) are presented to the model to
get the predicted output ŷi of a model and ŷi is com-
pared with yi to get the test accuracy of the model.
The probable outcomes of this comparison is given in
equation 23 where TPc represents the true positive for
class c, TNc represents the true negative for class c,
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Table 4 Classification accuracy metrics.

Accuracy Metric Estimation Method

Overall Accuracy
(∑C

c=1
T Pc+T Nc

T Pc+F Nc+F Pc+T Nc

)
/3

Precision
∑C

c=1
T Pc∑C

c=1
(T Pc+F Pc)

Recall
∑C

c=1
T Pc∑C

c=1
(T Pc+F Nc)

F1-Score 2 ∗
(

P recision∗Recall
P recision+Recall

)
FPc represents the false positive for class c, and FNc

represents the true positive for class c,

Comp(ŷi, yi) ∈


TPc if ŷi = yi = c (class label )
TNc if ŷi and yi ≠ c
FPc if ŷi = c and yi ≠ c
FNc if ŷi ≠ c and yi = c

(23)

The output of the Comparison function for all the 
samples can be represented in a confusion matrix. The 
confusion matrix CM for a 3 class classification prob-
lem can be represented as a (3×3) matrix, where CM [i, j] 
represents the number of samples predicted as class
i and the actual class of the sample is j. ∴ T P1 = 
CM [1, 1], T P2 = CM [2, 2], T P3 = CM [3, 3], T N1 = 
CM [2, 2] + CM [2, 3] + CM [3, 2] + CM [3, 3], T N2 = 
CM [1, 1] + CM [1, 3] + CM [3, 1] + CM [3, 3], T N3 = 
CM [1, 1] + CM [1, 2] + CM [2, 1] + CM [2, 2], P F1 = 
CM [1, 2]+CM [1, 3], P F2 = CM [2, 1]+CM [2, 3], P F3 = 
CM [3, 1]+CM [3, 2], FN1 = CM [2, 1]+CM [3, 1], FN2 = 
CM [1, 2] + CM [3, 2], and FN3 = CM [1, 3] + CM [2, 3].

Based on the values of T Pc, T Nc, F Pc , and FNc of 
all the classes, one can estimate classification accuracy 
metrics such as Overall Accuracy, Precision, Recall, and 
F1-Score. The formulas used to estimate these metrics 
are given in Table 4.

7.3 Comparative Analysis

For comparative analysis, the experiments are performed 
twofold. In the first f old, m anually d ifferent variants 
of neural networks are selected and experimented with 
for OCD classification and the outcomes are compared 
with the outcomes of the proposed model. In the second 
fold of the experiment, some of the popular classifica-
tion approaches (such as k-Nearest Neighbor, Logistic 
Regression, Linear Discriminant Analysis, Support Vec-
tor Machine with Radial Basis Function kernel function, 
Support Vector Machine with Linear kernel function, 
Random Forest, and Neural Network) are selected and

Table 5 Classification accuracy achieved by the neural net-
work models: Mean values of all accuracy measures over 10-fold
validation (HLN: Hidden Layer Numbers, and HLNN: Hidden
Layer computational unit Numbers)

Accuracy measure HLN HLNN Accuracy

Overall Accuracy

1 6

0.833333
Precision 0.839907
Recall 0.83482
F1 score 0.836035
Overall Accuracy

1 10

0.777778
Precision 0.768943
Recall 0.771247
F1 score 0.770093
Overall Accuracy

1 15

0.811111
Precision 0.825838
Recall 0.820978
F1 score 0.823345
Overall Accuracy

2 5,5

0.755556
Precision 0.769639
Recall 0.747397
F1 score 0.75834
Overall Accuracy

2 10,8

0.788889
Precision 0.800385
Recall 0.773107
F1 score 0.786435
Overall Accuracy

2 15,10

0.733333
Precision 0.74236
Recall 0.738571
F1 score 0.740436
Overall Accuracy

3 5,5,4

0.7
Precision 0.705804
Recall 0.686802
F1 score 0.695818
Overall Accuracy

3 10,8,5

0.655556
Precision 0.668515
Recall 0.665826
F1 score 0.666983
Overall Accuracy

3 15,10,8

0.722222
Precision 0.738492
Recall 0.731519
F1 score 0.734933

experimented with for OCD classification and the out-
comes are compared with the outcomes of the proposed
model.

Nine different neural network architectures are se-
lected for OCD classification. The models which are
chosen are defined by M1(5, 6, 3), M2 (5, 10, 3),
M3(5, 15, 3), M4 (5, 5, 5, 3), M5 (5, 10, 8, 3),
M6 (5, 15, 10, 3),M7 (5, 5, 5, 4, 3),M8 (5, 10, 8, 5, 3),
and M9 (5, 15, 10, 8, 3). Logistic function is used as
the activation function for all the computational units.
The step size or learning rate is set to 0.005 and the
maximum number of epoch is taken as 10000. All these
models goes through a 10 − fold cross-validation pro-
cess. The Overall Accuracy, Error Rate, Precision, Re-
call, Micro Averaging F1-Score, Macro Averaging F1-
Score obtained by different models are presented in Ta-
ble 5. For visual analysis, bar plots are used for each
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Fig. 7 Classification accuracy comparison bar plots for all network models

Table 6 Classification accuracy achieved by ANN, KNN, LR, LDA, and HONN : Mean values of all accuracy measures over
10-fold validation

Metric ANN KNN LR LDA HONN SVMR SVML RF

Overall Accuracy 0.833333 0.785741 0.777789 0.821431 0.861111 0.848511 0.821421 0.821433
Precision 0.839907 0.814132 0.768943 0.833333 0.8650794 0.841111 0.821111 0.821433
Recall 0.83482 0.786613 0.771247 0.828347 0.8630752 0.843821 0.823521 0.821411
F1-Score 0.836035 0.800102 0.770093 0.830827 0.8640761 0.843821 0.821421 0.831131

accuracy measure. The x-axis of these plots is marked 
with the metrics, the y-axis is marked with the accuracy 
level, and different colours are used to represent differ-
ent models. The bar plots are presented in Fig. 7. From 
Table 5 and Fig. 7 it can be observed that the model 
M1 performs batter compared to others with an Over-
all Accuracy of 0.833333, Precision of 0.839907, Recall 
of 0.83482 and F1-Score of 0.836035.

Further, experiments are performed using KNN, LR, 
LDA, SVMR, SVML, RF, Neural Network (Model M1)
(ANN), and HONN for OCD classification. The hyper-
parameters of these models are tuned using hit-and-trial 
method. 10 − fold cross-validation process is fol-lowed 
to estimate performance accuracy. For a com-parative 
analysis, the results obtained are presented in Table 6. 
Accuracy measure wise bar plots are presented in Fig. 8 
for a visual comparative analysis. From Table 6 and Fig. 
8 it can be observed that HONN performs batter 
compared to others with an Overall Accuracy of 
0.861111, Precision of 0.8650794, Recall of 0.8630752 
and F1-Score of 0.8640761.

8 Conclusion and Future Directions of Research

This article proposes an H-CPS called Accu-Help for
OCD detection. Data collection, class label integration,
machine learning model design, and online OCD clas-
sification process can be managed and monitored us-
ing Accu-Help. The core component of the H-CPS is
a machine-learning model for OCD prediction. In this
machine learning model, a hyperparameter-optimized
neural network (HONN) approach is proposed to clas-
sify oxidative stress biomarkers into one category from
HI, GAI, and OAI. The OCD detection accuracy by
the network is mainly dependent on the hyperparam-
eters set for the network. Deciding the best set of hy-
perparameters is a real challenge. This challenge can be
reduced by adopting the HONN method. For compara-
tive study k-Nearest Neighbor, Logistic Regression, Lin-
ear Discriminant Analysis, and Artificial Neural Net-
work are used. From experimental result analysis, it
is observed that HONN yields better accuracy in the
test dataset with respect to all the classification mea-
sures. The OCD detection accuracy achieved by HONN
is 86 ± 2%. As GAI identification is possible with this
approach, appropriate preventive actions can be recom-
mended well in advance.
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Fig. 8 Classification accuracy comparison bar plots for ANN, KNN, LR, LDA, and HONN:: Mean values of all accuracy measures
over 10-fold validation

The future research directions include the expan-
sion of the scope of the Accu-Help and the design of
a more accurate machine-learning model for OCD de-
tection. Even though the proposed machine learning
model performs well compared to popular classification
models, the approach is not scalable to use in real life
because this approach is computationally costly. In the
future, we will try to propose a computationally less
costly and scalable model with better OCD detection
accuracy.
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“EEG source analysis in obsessive–compulsive disorder,”
Clinical Neurophysiology, vol. 122, no. 9, pp. 1735–1743,
2011.

10. G. Salomoni, M. Grassi, P. Mosini, P. Riva, P. Cavedini,
and L. Bellodi, “Artificial neural network model for the
prediction of obsessive-compulsive disorder treatment re-
sponse,” Journal of clinical psychopharmacology, vol. 29,
no. 4, pp. 343–349, 2009.

11. M. Q. Hoexter, E. C. Miguel, J. B. Diniz, R. G. Shavitt,
G. F. Busatto, and J. R. Sato, “Predicting obsessive–
compulsive disorder severity combining neuroimaging and
machine learning methods,” Journal of affective disorders,
vol. 150, no. 3, pp. 1213–1216, 2013.

12. M. Weygandt, C. R. Blecker, A. Schäfer, K. Hackmack, J.-
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