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Abstract ADHD is a prevalent disorder among the
younger population. Standard evaluation techniques cur-

rently use evaluation forms, interviews with the patient,
and more. However, its symptoms are similar to those
of many other disorders like depression, conduct disor-

der, and oppositional defiant disorder, and these cur-
rent diagnosis techniques are not very effective. Thus,
a sophisticated computing model holds the potential to
provide a promising diagnosis solution to this problem.

This work attempts to explore methods to diagnose
ADHD using combinations of multiple established ma-
chine learning techniques like neural networks and SVM

models on the ADHD200 dataset and explore the field
of neuroscience. In this work, multiclass classification
is performed on phenotypic data using an SVM model.

The better results have been analyzed on the pheno-
typic data compared to other supervised learning tech-

Abhishek Sharma
The LNM Institute of Information Technology, Jaipur, India
302031
E-mail: abhisheksharma@lnmiit.ac.in

Arpit Jain, Shubhangi Sharma, Ashutosh Gupta
The LNM Institute of Information Technology, Jaipur, India
302031
E-mail: 18ucs085,18uec006,18ucs200@lnmiit.ac.in

Prateek Jain
Nirma University, Ahmedabad (India)
E-mail: prtk.ieju@gmail.com

Saraju P. Mohanty
Dept.of CSE, University of North Texas, Denton (USA)
E-mail: saraju.mohanty@unt.edu

Corresponding Author (*)
Nirma University, Ahmedabad (India)
E-mail: prtk.ieju@gmail.com

niques like Logistic regression, KNN, AdaBoost, etc. In
addition, neural networks have been implemented on

functional connectivity from the MRI data of a sample
of 40 subjects provided to achieve high accuracy with-
out prior knowledge of neuroscience. It is combined with

the phenotypic classifier using the ensemble technique
to get a binary classifier. It is further trained and tested
on 400 out of 824 subjects from the ADHD200 data

set and achieved an accuracy of 92.5% for binary clas-
sification The training and testing accuracy has been
achieved upto 99% using ensemble classifier.

Keywords ADHD, Neuro-Imaging, Artificial Neural

Network, Ensembling

1 Introduction

The Attention Deficit/Hyperactivity Disorder (ADHD)
is a pervasive neurodevelopmental disorder affecting the
younger population. However, ADHD does also affects
numerous adults [1]. People diagnosed with ADHD gen-
erally experience inattention (unable to focus properly),
hyperactivity (excessive movement that is not fit for
the sitting), and impulsive behaviors (may act without
thinking about what the result will be). Mental dis-
order symptoms include difficulty in focusing, instant
irritation, easily distraction and other abnormal men-
tal situations [2,3]. It is critical issue of mental health
and it is being challenged for the next generation. Now
a days, it is required to cure the mental disorder effi-
ciently without any constraints of awareness, time and

availability of medical experts. Remote connectivity of
medical expert and patients is the trendy solution in
terms of better and advanced facilities to the patients.
The current issues with symptoms are presented in Fig.
1.
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Fig. 1 An ADHD Symptoms with future Challenges

As the current healthcare approaches are being up-

dated, there is a trend of consumer awareness for their

health. In particular scenario, the demand for remote

healthcare is getting promoted than ever. Present IoMT

framework for healthcare encourages health centers to

ameliorate the quality treatment with focusing on over-

all optimization in terms of the cost also [4]. The ADHD

diagnosis is required to be updated as the living style

is being sophisticated and patients need the treatment

instantly without any basic hurdles to get the treat-

ment. Hence, an ADHD care framework is required to

proposed for smart healthcare, in which patient will get

support from medical representatives without wastage

of time and treatment will be reliable as the patient

can approach to the experts remotely and time won’t

be constraint [5].

The current paper is organized in such a way that

the problem and solution are addressed accordingly in

section 2. The related prior work demonstrated with

scope of future in section 3. With further sequence,

proposed framework overview, data characteristics with

processing and validation of the proposed work with re-

sult analysis are explored in section 4, 5 and 6 respec-

tively. Conclusion and future work are represented in

section 7.

2 Contributions of the Current Paper

2.1 The Problem Addressed in the Current Paper

Presently, the mental disorder is being cured by the psy-

chiatrists after taking counseling and discussing with

them. Based on medical and personal histories, experts

would be able to get the level of mental disorders and

medical treatments are being provided accordingly. There

is a disadvantage of this convention process that the pa-

tient may not be able to consult with expert sometimes

and treatment wouldn’t be proper and reliable. Many

time, the experts are not available at particular area.

So, the problem would be critical in those cases.

2.2 Solution Proposed in the Current Paper

To mitigate such kind of issues, an ADHDcare frame-

work iPAL is proposed for smart healthcare. Based on

symptoms, the brain images will be captured and pro-

cessed through computing model, which will be already

trained and tested through the samples. The results

would be available in terms of status of disorders. The

results status would be updated to medical experts,

who is a available at remote location and connected

through the internet servers. The medical experts would

be available to the patients for counseling according to

preferred time. The data would be available on cloud

server, which can be accessed through user, medical

staff and experts for treatment and clinical studies. The

conventional process and proposed system is visualized

in Fig. 2.
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Fig. 2 An ADHD Diagnosis Framework for Smart Health-
care

2.3 Novelty and Significance of the Proposed Solution

Till today, all the research work that has been done on

precise level justifications of mental disorder, which is

highlighted in earlier work. Many models classify the

EEG signals and different kind of brain images. This

framework has been calibrated and tested on significant

ADHD-200 dataset with sufficient subjects with multi-

ple conditions. Phenotypic and fMRI images are taken

for preprocessing, conditioning and classifying steps for

ADHD detection. Multiple features are extracted for

classification. Data has been segregated as per the stan-

dards of the analysis. This framework is portrayed as

a virtual effective model, which would be the real-time

framework for instant ADHD diagnostic. The research
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contributions are judicially reported, which depict the

advancement in recent technology for ADHD detection.
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Fig. 3 Significance and effective paradigm of iPAL

1. A real-time framework with fMRI and phenotypic

images has been proposed for smart healthcare, where

the patients can approach to medical experts at re-

mote location.

2. Key-point features have been extracted and precise

classifier has been used for ADHD diagnosis with

prescribed protocols of data analysis.

3. Live brain images are used to train models and trained

modules or data have been utilized among the peo-

ple for precise detection.

4. Multiple classifiers are trained and tested for analy-

sis of optimized model, which provide reliable results

for mental disorder justifications.

5. Attractive performance parameters have been achieved

from precise model for reliable diagnosis.

The proposed work presented a distinct methodology,

which results a precise justification of mental disorder

from live phenotypic and fMRI images. The visualiza-

tion is presented in Fig. 3, which shows the significance

of the proposed framework.

3 Related Works

According to survey analysis, overall 2.2% of the aver-

age prevalence of ADHD has been estimated in children

and adolescents (aged<18 years) [6]. Many studies have

been conducted based on machine learning to diagnose

ADHD effectively. To contribute to the research in di-

agnosing ADHD, the ADHD-200 consortium globally

held the ADHD-200 competition backed by the Inter-

national Neuroimaging Data-sharing Initiative (INDI).

Evolution of this research is considered, when statistical

analysis of brain surfaces has been done using gaus-

sian random field [7]. Adjacently, fMRI images have

been taken as resource for ADHD detection in terms

of technology advancements. In continuation, EEG sig-

nals were being monitored for gesture recognition to

justify the changes in brain signals. The research work

had been done to optimize the signal parameters to

make precise framework. Different features had been

extracted for chasing the accuracy for ADHD level jus-

tifications. But, it is required to form a reliable frame-

work, which confirm the levels of mental disorders.

The prior presented work uses SVM, explicitly address-

ing the imbalanced dataset problem of ADHD-200 [8].

The positive and negative empirical errors are han-

dled explicitly and separately by using a three-objective

SVM. After trying many traditional classifiers and com-

paring them with deep learning-based CNN VGG 16,

the maximum accuracy was achieved in CNN VGG 16

model [9]. The earlier presented work demonstrates the

use of functional-Magnetic Resonance Imaging for the

diagnosis of ADHD using multiple machine learning

models on the publicly available ADHD-200 dataset [10,

11,12]. The results show the classification of ADHD and

control subjects, differentiate between the functional

connectivity of these two categories, and evaluate the

significance of phenotypic data to predict ADHD [13].

They have used SVM to classify ADHD after calcu-

lating functional connectivity, performing elastic net-

based feature selection and integrating phenotypic in-

formation. In the presented work, multiclass classifica-

tion has been performed using a hierarchical extreme

learning machine (H-ELM) classifier [14]. They have

also compared the performance of the H-ELM classi-

fier with that of a support vector machine and primary

extreme learning machine (ELM) classifiers for corti-

cal MRI data from 159 ADHD patients of the ADHD-

200 dataset. This work achieved an accuracy of 61%

by using SVM with recursive feature elimination(RFE-

SVM). Overall, they achieved high multiclass classifi-

cation accuracy by combining RFE-SVM with H-ELM

classifiers for s-MRI data. After doing an overview of

many studies on ADHD prediction, also found that

SVM and ANN are most effective classification tech-

niques [14]. The recent prior work is enlighten with

ADHD classification combining biomarker detection. Auto-

encoding neural network is implemented to validate the

work [15]. A symptom-level approach is presented for

identifying symptoms of ADHD in children [16,17]. A

predictive model is also explored for youth ADHD us-

ing independent samples from particular region [18].
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Lots of studies have been done for mediational roles

for self-stigma in associations between different types

of psychological distress [19,20]. Multiple EEG devices

were validated in two subtypes of AD/HD and controls

[21]. The presented figure depicts the earlier technology

to the recent technique to detect the mental disorder.

These hierarchical report is presented in Fig. 4. The
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Fig. 4 Related Prior Works for ADHD

work proposes a Multichannel Deep Neural Network

Model, which has delivered a promising result with an

accuracy of 95% on the combined data of connec-

tome and phenotypic data of the ADHD-200 dataset

[22]. Furthermore, the multichannel deep neural net-

work model improved ADHD detection performance

considerably compared with a single scale by fusing the

multi scale brain connectome data [22]. The work estab-

lishes that s-MRI data can effectively differentiate be-

tween ADHD and controls [23]. In this work, deep learn-

ing neural networks have been used to determine the

similarities in neuroanatomical changes in the brains

of children with ADHD and adults with ADHD. Not

only this, but this work also demonstrates the effective

use of neural networks as classification models to test

hypotheses about developmental continuity and to pre-

dict ADHD. The work proposes a deep neural network-

multilayer perceptron to diagnose psychotic disorder

diseases (PDD) [24]. The prior works evident that neu-

ral networks can be effective in ADHD prediction [9,

22,24]. Handwriting-Based ADHD Detection has been

performed for Children with ASD using smart learning

approach [25]. 29 Japanese children (14 ADHD with

coexisting ASD children and 15 healthy children) have

been considered for validating the system. ADHD is

identified for children With coexisting ASD From fNIRs

signals using optimized prediction model [26]. Various

channels and Features are explored for ADHD diagno-

sis From EEG signal using different prediction model

[27].

Still, accuracy and reliability are the recent chal-

lenges for future perspective. The main motivation be-

hind the method developed in this study was to explore

the efficient supervised leaning techniques in the field

of neuroscience and achieve maximum accuracy while

at the same time also combine the results of both kinds

of data, i.e., Phenotypic and MRI data. Despite many

such studies, this remains open to further research and

a topic of interest to date as many studies are still going

on and the ADHD-200 dataset still remains a significant

contribution to these studies. The similar works are

found and compared with current work, which demon-

strate the advancement in terms of features and preci-

sion. The prior related work are represented in Table

1

4 Automatic ADHD Diagnosis Framework : An

overview of iPAL

In this presented work, different patients (subjects) have

been taken to organize the efficient dataset to train the

framework for ADHD diagnosis. Data has been seg-

regated in 70-30% ratio for training and testing. The

live images are pre-processed and features are extracted

for classification. The accuracy parameters have been

calculated after the analysis through multiple models.

The results are stored at cloud server for further access

through the medical experts and patients. The data can

be used and secured for further clinical trials through

multiple health centers. The proposed iPAL would be

able to diagnose the ADHD after the training and test-

ing. The main advantage of the proposed framework is

that this would be faster, reliable and low cost solution

as there would be low cost to justify the mental disor-

der through iPAL and framework would be accessible

through the patients and doctors at remote location.

So, it will be much faster and reliable comparatively.

The architectural view of proposed iPAL is represented

in Fig. 5.
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Fig. 5 An architectural Representation of iPAL
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Table 1 Comparison of iPAL with Existing Works

Works Dataset Subjects Features Classifier Accy Prcs F-1
(%) (%)

Khare
et.al.[28]

EEG 61 VHERS ELM-SIG 99 100 99

Tenev
et.al.[29]

EEG 67 FFT SVM 82.3 - -

Moghaddari
et.al.[30]

EEG 31 Rhythms
& CNN

CNN 98.48 - 98.49

Snyder
et.al.[31]

EEG 97 Mean
Power

- 89 87 -

Karimu
et.al.[32]

CWT 20 Scalogram MEFM 99 98 -

Boroujeni
et.al.[33]

EEG 50 FD,CD,EN SVM 96 98 -

Pei
et.al.[3]

fMRI 120 COV TD CNN 80 - -

Proposed
iPAL

phenotypic 400 meanFD Ensemble 99.8 99 99

& fMRI DVARS,rmsFD

4.1 Dataset for Proposed iPAL Framework Calibration

and Initial testing

As per the demand to solve the issues of mental disor-
der, a According to prior work, overall 2.2% of the aver-
age prevalence of ADHD has been estimated in children

and adolescents (aged <18 years) [6]. Some common
ways to diagnose ADHD are by evaluation forms, phys-
ical examinations, interviews with the patient, and sim-
ilar methods. Hence, many studies have been conducted

based on intelligent learning to diagnose ADHD effec-
tively. For diagnosing ADHD, the ADHD-200 consor-
tium globally held the ADHD-200 competition backed

by the International Neuroimaging Data-sharing Ini-
tiative (INDI). Fig. 6 roughly depicts the motivation
and purpose behind ADHD-200 and its dataset. The

ADHD-200 dataset consists of resting-state functional-
MRI(rs-fMRI) and structural magnetic resonance imag-
ing (s-MRI) images of more than 900 subjects. The
competition was focused on determining the prediction

accuracy differentiating Typically Developing Children
(TDC) and patients of ADHD. Initially, using imaging
data, the highest accuracy was found to be 60.51% in
2011. This motivated numeroud researchers to use data
from the competition to perform various studies and
predictions on ADHD, and many works are still going
on to this date. The NITRC also made the preprocessed
ADHD-200 data publicly available to facilitate the in-
volvement of more researchers to develop further and
provide better results.
The ADHD-200 dataset consists of two types of data,
the personal characteristic data and the MRI (Mag-
netic Resonance Image) data consisting of a resting-

state functional magnetic resonance image (rs-fMRI)
and a structural magnetic resonance image(s-MRI). How-

ever, with the introduction of the ADHD-200 global

competition, there has been a significant increase in
works. The ADHD-200 data set facilitated these stud-
ies by providing a dataset of such scale.Therefore, it has

seen the introduction of numerous models, and a lot are
still developing.The Attention Deficit/Hyperactivity Dis-
order (ADHD) is a pervasive neurodevelopmental disor-
der affecting the younger population. However, ADHD

does also affects numerous adults. People diagnosed
with ADHD generally experience inattention (unable
to focus properly), hyperactivity (excessive movement

that is not fit for the sitting), and impulsive behaviours
(may act without thinking about what the result will
be). According to prior work, overall 2.2% of the aver-
age prevalence of ADHD has been estimated in children

and adolescents (aged <18 years) [6]. Some common
ways to diagnose ADHD are by evaluation forms, phys-
ical examinations, interviews with the patient, and sim-

ilar methods. Hence, many studies have been conducted
based on intelligent learning to diagnose ADHD effec-
tively. For diagnosing ADHD, the ADHD-200 consor-
tium globally held the ADHD-200 competition backed
by the International Neuroimaging Data-sharing Ini-
tiative (INDI). Fig. 6 roughly depicts the motivation
and purpose behind ADHD-200 and its dataset. The
ADHD-200 dataset consists of resting-state functional-
MRI(rs-fMRI) and structural magnetic resonance imag-
ing (s-MRI) images of more than 900 subjects. The
competition was focused on determining the prediction
accuracy differentiating Typically Developing Children
(TDC) and patients of ADHD. Initially, using imaging
data, the highest accuracy was found to be 60.51% in

2011. This motivated numeroud researchers to use data
from the competition to perform various studies and
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predictions on ADHD, and many works are still going

on to this date. The NITRC also made the preprocessed

ADHD-200 data publicly available to facilitate the in-

volvement of more researchers to develop further and

provide better results. The ADHD-200 dataset consists

of two types of data, the personal characteristic data

and the MRI (Magnetic Resonance Image) data con-

sisting of a resting-state functional magnetic resonance

image (rs-fMRI) and a structural magnetic resonance

image(s-MRI). However, with the introduction of the

ADHD-200 global competition, there has been a sig-

nificant increase in works. The ADHD-200 data set fa-

cilitated these studies by providing a dataset of such

scale.Therefore, it has seen the introduction of numer-

ous models, and a lot are still developing.
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Figure 6 roughly depicts the motivation and pur-

pose behind ADHD-200 and its dataset. The ADHD-

200 dataset consists of resting-state functional-MRI(rs-

fMRI) and structural magnetic resonance imaging (s-

MRI) images of more than 900 subjects [10,11]. The

competition was focused on determining the prediction

accuracy differentiating Typically Developing Children

(TDC) and patients of ADHD. Initially, using imaging

data, the highest accuracy was found to be 60.51% in

2011. This motivated numeroud researchers to use data

from the competition to perform various studies and

predictions on ADHD, and many works are still going

on to this date. The NITRC also made the preprocessed

ADHD-200 data publicly available to facilitate the in-

volvement of more researchers to develop further and

provide better results. The ADHD-200 dataset consists

of two types of data, the personal characteristic data

and the MRI (Magnetic Resonance Image) data con-

sisting of a resting-state functional magnetic resonance

image (rs-fMRI) and a structural magnetic resonance

image(s-MRI). However, with the introduction of the

ADHD-200 global competition, there has been a sig-

nificant increase in works. The ADHD-200 data set fa-

cilitated these studies by providing a dataset of such

scale.Therefore, recent times have seen the introduction

of numerous models, and a lot are still developing.

4.2 Description of presented Dataset for automatic

diagnosis of ADHD

The Phenotypic Dataset consists of the personal char-

acteristic data of the 973 participants from the ADHD-

200 dataset, like ScanIDDir, Site, Gender, Age, Hand-

edness, DX, Secondary DX, ADHD Measure, ADHD

Index, Inattentive, Hyper/Impulsive, IQ Measure, Ver-

bal IQ, Performance IQ, Full2 IQ, Full4 IQ, Med Status,

QC Athena, QC NIAK, as mentioned in Table 2. We fil-

tered out some rows to handle this imbalance since the

dataset had some discrepancies and implicit values. For

example, this data’s label, i.e., ‘DX’, had four values:

ADHD-C, ADHD-H, ADHD-I, and Healthy Control/

Typically Developing Control (TDC), and was used in

a multiclass classifier model.

For the MRI data, a subset of 824 subjects from the

Athena Pipeline preprocessed data [8] was prepared us-

ing custom python scripts and used for the fMRI model,

which included data from all eight websites. The data

was filtered to use the preprocessed resting-state fMRI

scans. This filtration amassed the relevant data of sub-

jects at one place to be used, along with the phenotypic

information of the individuals. This data was loaded

using a custom python script to organise the data into

a usable format. This data’s label, i.e., ‘ADHD’/ ‘la-

bel’ originally also had four values: ADHD-C, ADHD-

H, ADHD-I, and TDC, later converted to binary values,

‘1’ for ADHD and ‘0’ for not having ADHD. A sample

of 40 subjects provided by the nilearn library was also

used.

The phenotypic data taken from the ADHD-200 com-

petition from NITRC of 973 subjects was used to pre-

dict and diagnose ADHD in children aged 7-18. As

discussed in [8], the proposed multi-objective classifi-

cation scheme avoids hyper-parameter selection. Fur-

thermore, the parameters were balanced to avoid over-

fitting. Phenotypic data consists of personal charac-

teristics like ScanIDDir, Site, Gender, Age, Handed-

ness, DX, Secondary DX, ADHD Measure, ADHD In-

dex, Inattentive, Hyper/Impulsive, IQ Measure, Verbal

IQ, Performance IQ, Full2 IQ, Full4 IQ, Med Status,

QC Athena, QC NIAK (Table 2). The data consisted

of four classification types, namely, typically developing

children (TDC), ADHD-inattentive (ADHD-I), ADHD-

Hyperactive/Impulsive(ADHD-H), and ADHD-combined

(ADHD-C). The data had some implicit and missing

values. Unnecessary columns were sorted out and rows

missing crucial data for ADHD prediction were removed
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to handle these implicit values and discrepancies. Upon
sorting, data size was reduced to 505 subjects and ap-
plied to various classification algorithms to better pre-
dict the data. The classification models mainly used
are support vector machine, random forest, AdaBoost,
KNN, logistic regression. Support vector machine pre-
dicted with the most accuracy along with the classi-
fication the graph plots between the parameters show
significant relations between ADHD and possible fac-
tors affecting it.

This work integrates the use of phenotypic of the
individuals with the resting-state functional-Magnetic
Resonance Images. When performed on a sample of 40
subjects from the nilearn dataset, the Support Vector
Machine provides an accuracy of 100%. In contrast, the
neural network implemented on functional connectome
data achieves an accuracy of 75%. Using a voting clas-
sifier with equal weightage to diagnose ADHD, an ac-
curacy of 100% was achieved. Such a combined high ac-
curacy is because the neural network implemented on

functional-MRI is 100% accurate in predicting ADHD
but not perfect for predicting Control. Hence, SVM
can filter out the Control, resulting in overall accuracy

is 100%. This method was further extended and ap-
plied to the data present in publicly available ADHD-
200 dataset. With the Independent Component Anal-

ysis (ICA) [34], multiple Regions of Interest(ROIs) are
extracted from the voxel time-series of the fMRI using
the CanICA. These ROIs further help compute func-
tional connectivities like ’tangent’, ’partial correlation’

and ’correlation’. The efficient functional connectivity
obtained is additionally used to plot the functional-
connectivity maps. According to [14], functional con-
nectivity refers to undirected coupling strength between
voxels or regions and is calculated using standard cor-
relation measures. Thus, functional-connectivity maps
are a representation of these connections. Therefore,

functional connectivity can be further used as an in-
put for the predictive models.

The model in prior work represented an accuracy of
65% [35,36,37,38,39,40,41]. It was observed that accu-
racy of 92.50% is achieved. So here, this work tries to
improve the accuracy even better.

For this work, the database was extended with the
inclusion of more patient records. In Total, 824 patient

records were used from [11]. Further analysing the us-
able records due to discrepancies and implicit values,
the records were narrowed down to a count of 400 after
data processing. In this way, the learning component of
the algorithm was extended, resulting in better general-
isation of the model. The dataset with 400 subjects was
further analysed with a Support Vector Machine(SVM)
on its phenotypic data, and with a neural net on the

function-MRI data, for classification. The SVM gave an
accuracy of 99.16% on the phenotypic, and the neural
net on MRI-based data gave an accuracy of 86.66%. Fi-
nally, on further classifying the data, data ensembling
using voting with equal weightage improves accuracy,
resulting in 92.50% accuracy. Presently the data uses a
wide range of parameters to predict ADHD in children,
possible symptoms, and age at which is the children
more prone to ADHD.

5 Data Characteristics and preprocessing

5.1 Phenotypic Dataset

Datasets from [11] and [42] were used, including both
phenotypic and MRI datasets. One of which is a dataset
of 40 subjects taken from the nilearn library. It has four
significant dataset types i.e. ’func’, ’confounds’, ’pheno-

typic’ and ’description’. The data contains many fea-
tures to help diagnose ADHD in patients, and partic-
ularly using phenotypic as it contains features like f0,

RestScan, MeanFD, NumFD>20, rootMeanSquareFD,
FDquartiletop14thFD, PercentFD>020, Subject, Me-
anDVARS and more. In the data pre-processing, the
features for which most of the values are not available or

null are eliminated. After dropping all such features and
optimally processing the data, the count is reduced to
39 subjects and 18 phenotypic features, namely f0, Sub-

ject, RestScan, MeanFD, NumFD greater than 020, root-
MeanSquareFD, FDquartiletop14thFD, PercentFD>020,

MeanDVARS, MeanFD Jenkinson, site, data set, age,
sex, TDC, ADHD, sess 1 rest 1 and sess 1 anat 1, as
depicted in Table 2, to apply SVM.

Another dataset is taken from [11], which contains
the phenotypic and MRI data of the subject. The data
was extracted for each subject and then concatenated
to form a distinguished dataset. The phenotypic dataset
was analysed further for 824 subjects and features, namely
ScanDir ID, Site, Gender, Age, Handedness, ADHD,
ADHDMeasure, Inattentive, Hyper/Impulsive, IQMea-

sure, Verbal IQ, Performance IQ, Full4 IQ, Med Status,
QC Athena, and QC NIAK, leading to the elimination
of the features containing more than 60% null or not de-
fined values, followed by dropping the remaining rows
with null values from the dataset. After cleaning the
data, 400 entries and 14 features, namely ScanDir ID,
Site, Gender, Age, ADHD, ADHD Measure, Inatten-

tive, Hyper/Impulsive, IQ Measure, Verbal IQ, Perfor-
mance IQ, Full4 IQ, QC Athena and QC NIAK, as de-
picted in Table 2, were left to be used for further anal-
ysis. The correlation matrix of multiple attributes for
ADHD-200 dataset is represented in Figure 7.
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Fig. 7 The correlation matrix depicts the relationship between multiple attributes of the phenotypic dataset used for classi-
fication.

Fig. 8 Visualization of the Default Mode Networks(DMN) and the Components obtained from the Independent Component
Analysis(ICA) on a 3D brain mask image using Nift Map Masker.

Visualization of the Default Mode Networks (DMN)

and the Components obtained from the Independent

Component Analysis(ICA) on a 3D brain mask image

using Nift Map Masker is enlighten by Figure 8.

Time-series visualization of a voxel of an MRI scan

from ADHD-200 sample. Here the x-axis corresponds to

the time units, and the y-axis corresponds to the blood-

oxygen-level-dependent (BOLD) fMRI signal. Voxels can

be classified into ‘active’ or ‘inactive’ based on the in-

tensity of these signal. This time series, on further com-

putation, results in functional. It is visualized in Figure

9. Accuracy plot of connectivity biomarkers is shown in

Figure 10.

The phenotypic file is chosen from [11] to work for

the diagnosis and classification of ADHD. This file con-

tains data for 973 individuals with many discrepancies,

and hence it was needed to handle this imbalance before

feeding this data to multiple multiclass classification

models. Various permutations of features were adopted

to determine the result, keeping in mind the usefulness

of those features regarding ADHD, narrowing down to

505 individuals with multiple features. These include

Site, Gender, Age, ADHDMeasure, ADHD Index, Inat-

tentive, Hyper/Impulsive, IQ Measure, Verbal IQ, Per-

formance IQ, Full4 IQ, QC Athena, and QC NIAK, as

depicted in Table 2. The correlation matrix in Figure 7
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Fig. 9 Time-series visualization of a voxel of an MRI scan
from ADHD-200 sample.

Fig. 10 Accuracy plot of connectivity biomarkers: ‘tangent’,
‘partial correlation’, ‘correlation’

shows the relationship between multiple features, and

the column distribution helps understand the spread of

elements in the data. Fig. 7 describes the various fea-

tures selection priorities based on obtained accuracy.

The best correlation explores the higher selection prior-

ity of features and justifies the selections of particulars.

5.2 MRI Dataset

The MRI data used is taken from the Athena pipeline
preprocessed data from [11]. In total, 824 subjects’ data
was used, and after handling the implicit data, it was
narrowed down to 400. The rsfMRI data was in the
form of a 4D nifti image file(.nii.gz) with noise vari-
ables removed. In a 4D nifti image, the first three di-
mensions represent the three coordinates of a 3D space,
i.e., x,y, and z, and the 4th dimension represents time.
Thus, a 4D image is a collection of several 3D images
corresponding to each unit of time. A 3D image repre-
sents voxels, just like a 2D image represents pixels. Each
voxel has some fMRI signal associated with it, which

is a blood-oxygen-level-dependent (BOLD) signal (de-
tected in fMRI) in this case. Plotting these signals of a
voxel against the time is called a time series. These time
series provide further functional connectivity computa-
tion data, potentially allowing machine learning appli-
cations and research. The proper notations for ADHD-
200 phenotypic are represented in Table 2.

Table 2: Notations related to features used in the ADHD-200
phenotypic

Subject ID/ an in-
dividual ID

Seven digits
integral value

Site to provide the
individual’s
data

1 Peking Univer-
sity 2 Bradley
Hospital/Brown
University 3
Kennedy Krieger
Institute 4 Neu-
roIMAGE Sample
5 New York
University Child
Study Center 6
Oregon Health &
Science Univer-
sity 7 University
of Pittsburgh
8 Washington
University in St.
Louis

Gender/sex Gender infor-
mation

0 Female 1 Male

Age Age at the
time of test

Children aged 7-
18. Mean: 11.37
years

DX Diagnosis of
ADHD

0 - Typically
Developing Chil-
dren 1 - ADHD
- Combined 2 -
ADHD - Hyper-
active/Impulsive
3 - ADHD -
Inattentive

ADHD Diagnosis of
ADHD

0 - Typically De-
veloping Children
1 - ADHD - Com-
bined, Hyperac-
tive/Impulsive,
Inattentive

ADHD Measure measuring
method

1 ADHD Rating
Scale-IV (ADHD-
RS) 2 Conners’
Parent Rating
Scale-Revised,
Long version
(CPRS-LV) 3
Connors’ Rating
Scale-3rd Edition

parameter
description values

Continued on next page
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Table 2: Notations related to features used in the ADHD-200
phenotypic (Continued)

ADHD Index ADHD mea-
surement

Values between 18
- 99. Mean: 49.37

Inattentive value based on
ADHD mea-
sure adopted

Values between 9 -
90. Mean: 41.61

Hyper/Impulsive
value

ADHD mea-
sure adopted

Values between 9 -
99 Mean: 39.85

IQ Measure The method
used for
measuring IQ

1 Wechsler In-
telligence Scale
for Children,
Fourth Edition
(WISC-IV) 2
Wechsler Ab-
breviated Scale
of Intelligence
(WASI) 3 Wech-
sler Intelligence
Scale for Chinese
Children-Revised
(WISCC-R) 4
Two subtest
WASI 5 Two
subtest WISC or
WAIS – Block
Design and Vo-
cabulary

Verbal IQ based on IQ
measure

Values between
65 - 158. Mean:
112.80

Performance IQ based on IQ
measure

Values between
54 - 139. Mean:
106.01

Full4 IQ Full4 IQ mea-
sured

Values between
73 - 153. Mean:
110.41

QC Athena Quality Con-
trol check of
an individ-
ual’s data
wrt Athena
pipeline

0 Questionable 1
Pass QC NIAK

Quality COntrol check of
an individ-
ual’s data
wrt NIAK
pipeline

0 Questionable 1
Pass

Rest Scan Type of
resting-state
scan

All are ‘rest 1’

MeanFD Mean Func-
tional Depen-
dency

Float value be-
tween 0 to 1

parameter
description values

Continued on next page

Table 2: Notations related to features used in the ADHD-200
phenotypic (Continued)

NumFD>020 Functional
Dependencies
with strength
> 20%

Integral value

rootMeanSquareFD RMS of Func-
tional Depen-
dencies

Float value be-
tween 0 to 1

PercentFD>020 Functional
Dependen-
cies with
strength>
20% (%)

Float value be-
tween 0 and 1

MeanDVARS Mean of
the change
in average
wholebrain
signal

Float Value

MeanFD Jenkinson Mean correla-
tion between
motion pa-
rameter

Float Value

data set Type of
dataset, ini-
tially used by
nilearn

‘test set’/’data set’

tdc/ TDC Abbreviation
of Typically
Developing
Control

0 or 1

parameter
description values

The connectivity matrix between 20 regions of a
subject with ADHD and all of all subjects for mean
functional connectivity are represented in Figure 11 and
12 respectively.

The basic characteristics of the ADHD-200 dataset
is explored in Table 3.

Table 3 Characteristics of ADHD-200 Dataset

Subjects Basic Subjects with Subjects with
Characteristics Phynotypic fMRI
Male:- 1097 Male:-573 Male:-400
Female:- 700 Female:-424 Female:-400
Age For Validation
Male:- 07-18 Male:- 128 Subjects are
Female:- 07-18 Female:- 160 narrowed down
Randomly taken after processing
Age For Testing
Male:- 07-18 Male:- 78 Subjects are
Female:- 07-18 Female:- 110 narrowed down
Randomly taken after processing
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(a) first case

(b) second case

Fig. 11 Connectivity matrix between the 20 regions of a
subject diagnosed with ADHD (label 1) with strength in the
range -20% to 20%

5.3 Feature selection for ADHD Framework

5.3.1 Phenotypic dataset

The Phenotypic dataset for 973 subjects contains mul-

tiple features, but not all contribute equally to the diag-

nosis of ADHD. By applying logistic regression and ex-

amining the coefficients, the features which contribute

significantly can be understood. Such features include

Site, Gender, ADHD Measure, ADHD Index, Inatten-

tive, Hyper/Impulsive, IQ Measure, Verbal IQ, and Per-

formance IQ. Other features that do not affect signif-

icantly are Age, Handedness, Full4 IQ, Full2 IQ, Med

Status, QC Athena, and QC NIAK, and could be due

(a) first case

(b) second case

Fig. 12 Correlation matrix of mean functional connectivity
of all the ADHD and TDC subjects

to multiple factors. The data sample already represents

a small fraction of age, and hence the diagnosis may

be independent of an individual’s age in that range.

Measurement of handedness depended on the Univer-

sity adopted for the measurement technique and con-

sequently had large diversity. Some individuals had bi-

nary or ternary integral values, and others had a deci-

mal value of handedness, leading to considerable incon-

sistency. Med Status and Full2 IQ had almost no im-

pact on the diagnosis and had immense implicit value,

and hence, it was better to be removed to work upon

a larger dataset. This was concluded after running the

scripts with and without considering these attributes

as well as finding the majority of the instances with

these attributes having either no value available (N/A)

or out-of-bounds values like -999. Therefore, one can
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not claim the usefulness of a feature beyond the scope
of the dataset due to significant inconsistency. As when
we sorted the data considering med status and Full2
IQ and passed it to the classifier there was no signif-
icant impact on result due to both of them So, We
have integrated phenotypic information of Site, Gender,
Age, DX, ADHD Measure, ADHD Index, Inattentive,
Hyper/Impulsive, IQ Measure, Verbal IQ, Performance
IQ, Full4 IQ, QC Athena, and QC NIAK, as depicted
in Table 2, which are left to be used for further analysis
with data for 505 subjects.

5.3.2 MRI dataset

Basically, there are two different types of fMRI based
data pre-processing, which are generally used and fol-
lowing fundamental procedure of data pre-processing.
Volume and surface based fMRI data pre-processing
consist steps to process the T1-weighted MRI and fMRI
The resting-state fMRI data had some fMRI files with

their noise variables already removed and some still
with noise variables present in them. Though time courses
are a popular choice in neuroimaging, taking all the vox-

els and their time series can increase data size by a sig-
nificant amount. Therefore the probabilistic and statis-
tical analysis is performed to extract the ROIs, i.e., vox-

els which are temporarily correlated and are active. The
rest of the voxels are purposeless and treated as noisy
voxels. One such method is Independent Component
Analysis (ICA). Using Independent Component Anal-

ysis, 20 components were extracted, as shown in Fig.
8(b). Numerous computations ran, keeping the ROIs
in the range of 15-40. The analysis yielded 20 as the
optimum count. ICA analysis is an optimized and effi-
cient and is deployed to large datasets. ICA facilitates
an interpret able demonstration of the dataset, where
every component explains a minimized source signal.

This may support in briefing the underlying structure
of the dataset.

Therefore Independent Component Analysis was per-
formed using the group-level ICA (CanICA) method
from [42] to analyse the fMRI signals and remove these
noise variables. According to [43], Resting MRI sig-
nal(BOLD signals) processing has been crucial in iden-
tifying ROIs. Default Mode Networks (DMNs) effec-
tively indicate the difference between an ADHD brain
and a typically developing brain, and with ICA, ROIs
are identified efficiently from the MRI [28-30]. By iden-
tifying the ROIs, the number of voxels can be signifi-
cantly reduced to only activated voxels to plot the func-
tional connectivity maps [41,42,43]. Removing the in-

active/noisy voxels also improves accuracy. Fig. 8(a)
shows the default mode network for the components

extracted using ICA plotted for the coordinate values
( x = 27, y = 44, z = 55), represented by the three
images, each along with one of the axes and the point
of intersection of lines shows the coordinate. Similarly,
Fig. 8(b) is a visualization of the 20 components ex-
tracted from performing the ICA of the dataset, taking
(x = 2, y = -1, z = 20) as the reference coordinate.

After removing the noisy voxels and extracting the
ROIs, the time-series of this was obtained data using
the fit transform method that shown in Fig. 9 [42]. This
time series, on further computation, can be used to ob-
tain functional connectivity.

Three connectivity measures were considered to cal-
culate the functional connectivity: correlation, partial
correlation, and tangent. First, the accuracies for these
three measures were compared and the ‘correlation’ and
‘tangent’ were found to be similar and accurate enough,
as shown in Fig. 10, and proceeded with ‘correlation’.
The results shows the correlation as a preference as

a connectivity measure over others [44,45,46,47]. Fur-
thermore, the networks created using correlation as a
connectivity measure appear extensively clustered com-

pared with random networks. For this, the data was
startified using StratifiedKFold cross-validation from the
sklearn library and classified using connectivity mea-

sures and Linear Support Vector Classifier for compari-
son [48]. After obtaining the time-series of the ROIs,
the functional connectivities are measured using the
correlation connectivity measure in the form of corre-

lation matrices. According to the work, functional con-
nectivity refers to undirected coupling strength between
voxels or regions, usually calculated using the standard

correlation measures [41,42,43]. Functional connectiv-
ity maps are a representation of these connections. Fur-
ther, functional connectivity can be used as an input to
predictive models. Fig. 11 (a) and (b) shows the con-
nectivity matrix for an individual without ADHD and
an individual with ADHD, respectively.

Fig. 12 (a) and (b) are the mean correlation matri-
ces of the mean functional connectivity for ADHD and
TDC, respectively, for the 20 regions obtained from the
Independent Component Analysis. After ignoring the
diagonal(correlation of a region with itself is always 1),
the connections do not seem too different by looking. It
is difficult to distinguish between both figures visually.

Therefore these connections are plotted on the brain as
a functional connectivity map and visualised as shown
in Fig. 13. The mapping of these functional connectivity
matrices onto a brain image where each node represents
an ROI and edges represent the time-synchronized con-
nectivity between the ROIs with edge strength of more
than 80% to obtain the functional connectivity maps
or functional connectome. Fig. 13(a) shows the mean
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(a) first case

(b) second case

Fig. 13 Mean Functional connectome for ADHD and TDC
subjects as represented in a three dimensional space. In this
fig., the color of the line represents the intensity of the con-
nection(Refer to Fig. 14).

connectivity map of ADHD-diagnosed patients. It has

20 ROIs. Fig. 13(b) shows the strength of connections

between these ROIs with a scale for context.

From Fig. 13 (a) & (b) and Fig. 14 (a) & (b), the

visual difference can be seen between ADHD and TDC

connectivity map. It is easy to see that the ADHD con-

nections are significantly less dense than the TDC con-

nections. Hence, this also suggests that it is possible to

differentiate between ADHD and TDC using functional

connectivity and use functional connectivity as an in-

put to the classifiers to predict ADHD. Moreover, some

studies prove that brain connectivity is a biomarker

of ADHD diagnosis [49,50]. Connectivity matrix and

functional connectivity map for both class subjects are

represented in fig. 15.

5.4 Classification for ADHD Framework

5.4.1 Phenotypic dataset

An immense number of classifiers, such as K-nearest

neighbour, Logistic Regression, Support Vector Machine,

Artificial Neural Network, Random Forest, Ada-Boost,

and Decision Tree, are used on the phenotypic dataset

widespread and supervised learning classification meth-

ods. Supervised learning is where the classification re-

sults are known, and the models obtained by learning

from these samples are used for prediction. Logistic

(a) first case

(b) second case

Fig. 14 Functional connectivity map of the mean connec-
tivity matrix showing the strength of connections in between
20 regions on a color scale and giving a better perception of
density of these connections for ADHD and TDC subjects.

Regression is a popular supervised classification algo-

rithm that assigns weightage to each feature used to

predict an individual’s class. This model is great when

the dataset is linearly separable, and hence, is not best

suited for our phenotypic dataset. The measuring tech-

niques differ widely in the sites from which the data

is gathered and the measuring techniques used by that

side for measuring ADHD [49,50]. Adaptive boosting

(AdaBoost) is one of the most popular reinforcement al-

gorithms as a supervised learning method. It combines

weak classifiers with specific rules to build a robust clas-

sifier. AdaBoost determines the weight of each sample

according to the last overall classification in each train-

ing session and the accuracy obtained.K-Nearest Neigh-

bour is a supervised machine learning algorithm that is

also used for classification problems. KNN, as the name

suggests, that similar objects exist in close proximity

to every other. First, the gap distance is calculated be-

tween the current point and the selected point in the

algorithm. The distances are then added and sorted in

ascending order, and finally, top K entries are chosen

as nearest neighbours and are further used for deter-

mining the class of the current point. Support vector

machine is employed which gives the most effective ac-
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(a)

(b)

Fig. 15 Connectivity matrix and functional connectivity
map of the mean connectivity matrix showing the strength of
connections in between 20 regions on a color scale and giving
a better perception of density of these connections for ADHD
and TDC subjects.

curacy among all the similar types of classifiers used

[51]. The SVM algorithm detects a hyperplane in an N-

dimensional space that classifieds data points.Artificial

Neural Network(ANN) is an excellent replacement for

the SVM as its accuracy is very close to SVM. Its mul-

tilayered neural network is suitable for such a diverse

dataset. Fig. 16 depicts the overall techniques and pro-

cedures used to process the datasets from different sites.

5.4.2 MRI dataset

The MRI dataset obtained as the functional connec-

tivity biomarkers are further used to diagnose ADHD.

As observed by plotting the correlation matrices and

comparing them for ADHD and TDC, they seem very

similar visually. Hence, a comprehensive evaluation was

required to distinguish between individuals with ADHD

and TDC. The dataset was observed to be linearly in-

separable, independent of nearest neighbours, and did

Start

Import the phenotypic and fMRI image 
data from standard module 

Division into Healthy and patient data

Image data filtration for conditioning

Check 

Image Segmentation

Segregate the data for 
filtering again

Testing set (data)

Stop

Not segmented
Data is segmented

successfully 

Preparation 
of data for 

iPAL 
framework

data 
arrangements 
for standard 
segregations

Training set (data)

Training of computing modelOptimized computing model (classifier) and 
Prediction 

Features Extraction
Training and 

Testing of 
computing 
model for 

ADHD 
detection Statistical analysis of 

parameters

Import the phenotypic and fMRI image 
data from standard module 

Division into Healthy and patient data

Image data filtration for conditioning

Check 

Image Segmentation

Segregate the data for 
filtering again

Not segmented
Data is segmentedData is segmented

successfully 
Features Extraction

Testing set (data)

Stop

Training set (data)

Training of computing modelOptimized computing model (classifier) and 
Prediction 

Statistical analysis of 
parameters

Fig. 16 Processing Steps of an Automated ADHD diagnosis
framework

not follow a decision tree-based pattern. Using a neu-

ral network for classification appeared to be a potential

candidate and was later observed to be the best suitable

method.

5.5 Sophisticated Model training for Precise Diagnosis

5.5.1 Phenotypic dataset

Initially, the phenotypic dataset taken was distributed

into classification and prediction features. The classifi-

cation features were then subjected to the transforma-

tion using a Min-Max Scaler [11]. Further, the data of

505 subjects were split into train and test with a split

size of 20%. These 404 training subjects were processed

under numerous classification algorithms, and the mod-

els obtained were used for prediction on 101 subjects.

Multiple classification algorithms were applied to deter-

mine the best possible classifier for the dataset, includ-

ing Logistic Regression, Random Forest, Ada-Boost,

Support Vector Machine, k-Nearest Neighbour, and Neu-

ral Network. Linear Regression uses cross-entropy loss

function as the multi class is multinomial. Some of the

parameters used include the solver as ‘lbfgs’, tolerance

as 1e-4, and max iterations to be 101. Grid Search was

performed to determine the best parameters for the

Random Forest, which result in ‘criterion’ as ‘entropy’,

‘max features’ as ‘sqrt’, and n estimators as 1000.Grid

Search was also performed for SVM for best parame-

ter estimation, resulting in regularisation parameter as

100, gamma as 0.04, and kernel as ‘rbf’.KNN was per-

formed for the K parameter ranging from 1 to 26, and

the following graph was observed in Fig. 17. Hence, the

optimum value of K turned out to be 18, which con-

tained numerous points from multiple classes, therefore
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Fig. 17 Graph of K parameter used in KNN

eliminating KNN as a reliable classifier.While working

with the ANN, the prediction class for training was con-

verted using One-Hot-Encoder to be used in a neural

network. Further, a Sequential Neural Network was cre-

ated, having an input size of thirteen dimensions. Five

dense layers were added with dimension and activation

functions as eleven and ‘relu, nine and ‘relu’, seven and

‘relu’, five and ‘relu’, and lastly, four and ‘sigmoid’.

The model was compiled using loss function as ‘cate-

gorical crossentropy’, optimiser as adam, and metric of

accuracy. After training the neural network model with

a max epoch count of one hundred, the prediction was

made, and the result was converted into an array back

from One-Hot-Encoded format.

5.5.2 MRI dataset

Since the combined model has to work on functional

MRI and phenotypic individually, it is crucial to use

the same individuals for training-testing in Neural Net-

works and the SVM. Therefore, the features and the

prediction class for both functional MRI and pheno-

typic are zipped together and then split into train-test

with 70% training and 30% testing, further divided into

features and prediction class of both the fMRI data

and the phenotypic data. However, before these train-

ing and testing data can be combined, they also need to

be scaled to train with the model. While working with

the ANN for fMRI, the prediction class was converted

using One-Hot-Encoder to be used in a neural network.

For both the fMRI and the phenotypic, the features

were processed through the Min-Max Scaler separately.

Another thing to note is that the diagnosis of ADHD is

converted into binary form, whereas the phenotypic file

had ADHD of four types, as mentioned as DX in Table

2.

The correlation matrix developed using functional

connectivity as the connectivity biomarker is used as

input data for our neural network. A Sequential Neu-

ral Network model made up of Dense layers was built,

having an input size of 210 neurons. Seven dense lay-

ers were used having dimensions and activation func-

tion as one hundred and five and ‘relu’, fifty-two and

‘relu’, twenty-six and ‘relu’, thirteen and ‘relu’, six and

‘relu’, three and ‘relu’, and lastly, two and ‘sigmoid’.

The model is compiled using the loss function as ‘cate-

gorical crossentropy’, optimiser as adam, and metrics as

accuracy. After training the neural network model with

a max epoch count of one hundred, the prediction was

made, and the result was converted into an array back

from One-Hot-Encoded format. The phenotypic data is

processed using SVM. Since the purpose was to use the

result obtained in ensembling, the SVM was optimised

using Grid Search to predict the best suitable parame-

ters. The regularisation parameter was set to one thou-

sand, gamma as 0.05, and kernel as ‘rbf’. The model

was further trained using the scaled data from unzip-

ping to obtain the prediction result. The flow chart in

Fig. 18 depicts the various methodologies used to pro-

cess the result. The phenotypic data of these individuals
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Fig. 18 Depiction of the methodology used to obtain results

was processed to be used in conjunction with fMRI to

ensemble the classification of ADHD. The fMRI data

was processed using the Neural Network, and the phe-

notypic are processed using SVM. They were ensem-

bled to yield a diagnosis that predicts ADHD based on

an individual’s fMRI and phenotypic data. Varying the

weightage depicts the strength of each parameter. For

the testing, both parameters with equal weightage were

used. Since the prediction class is binary, the results

obtained from both the fMRI and phenotypic classifi-

cation were multiplied with their weightage and added
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together. A threshold of 0.5 determined the prediction
class. If the sum is less than or equal to the thresh-
old, it belongs to class 0. If the sum is greater than this
threshold, it belongs to class 1. The result obtained was
further used to display the confusion matrix and other
relevant visualizations.

6 Validation of Precise Framework and Result
Analysis

The phenotypic dataset was classified using multiple
machine learning algorithms. The Logistic Regression
gave an accuracy of 86.13%, Random Forest gave 84.15%,
Ada-Boost gave 69.30%, Support Vector Machine gave
90.09%, K-Nearest Neighbour gave 77.27%, and Artifi-
cial Neural Network gave 85.14%. Fig. 19 depicts the de-
tailed analysis. Diagnosing ADHD based on the dataset
of 39 individuals from nilearn showed an accuracy of
75% for Artificial Neural Network on fMRI, 100% for
SVM on phenotypic, and 100% when combined using
both of these classifiers.

Fig. 20 depicts the detailed analysis. Diagnosing ADHD
based on the dataset of 400 individuals from NITRC
gave an accuracy of 86.67% for Artificial Neural Net-

work on fMRI, 99.16% for SVM on phenotypic and
92.5% when combined using both of these classifiers.
Fig. 21 depicts the detailed analysis.

People have tried to develop multiple binary and

multiclass classifiers based on either rs-fMRI or phe-
notypic data of an individual or both to diagnose and
classify ADHD. After studying the current technologi-

cal developments, we experimented with multiple tech-
niques to further advance the diagnosis and found many
exciting observations and critical areas of improvement
for research development. Therefore, we started work-
ing on classifying ADHD using the phenotypic data of
individuals provided by NITRC under the ADHD-200
competition. As a result, we achieved an accuracy of

90.09% using Support vector machines for unified data
and could be increased further if split into sections.
However, upon detailed analysis of this data, we found
a massive variation in classification based on the source
of the data and the methodology used to calculate vari-
ous parameters. Moreover, it convinced us that the data
was not enough to apply methods for medical applica-

tion and clinical purposes.

Therefore, we looked into MRI, hoping it could pro-
vide us with a consistent evaluation platform for accu-
rately diagnosing ADHD. Looking at the rs-fMRI data
supplied by the nilearn library, we started modifying
current work with a better neural network to diag-
nose ADHD based on these rs-fMRI and successfully

achieved an accuracy of 75%. The next task was to in-
tegrate the diagnosis using rs-fMRI with the classifica-
tion using phenotypic to provide the best result for the
application in medical and clinical areas. We achieve an
astonishing accuracy of 100% accuracy with SVM and
accuracy of 100% when ensembled with equal weightage
due to accurate prediction of non-ADHD by the neural
network. However, the nilearn library consisted of only
40 individuals at the time at version nilearn-0.7.1 and
hence still needed to be proven for larger applications.
Therefore, we hosted the rs-fMRI images and pheno-
typic privately on the cloud, taken from NITRC, and
wrote a script to automate the process to work with
a larger count of individuals. We managed to host 824
individuals, and upon removing the discrepancies, were
reduced to 400. The neural network on fMRI produced
an accuracy of 86.67%, and the SVM on the phenotypic
yielded an accuracy of 99.16%, both contributing to the
ensemble in equal weightage with an accuracy of 92.5%.
Table 4 describes the analysis of accuracy obtained from
various optimized classifiers. Fig. 22 demonstrates the

Table 4 Accuracy obtained from classifiers for ADHD
dataset

Classifier Parameter (Accuracy)
k-nearest (0.75-0.78) Weight:Uniform
neighbors (KNN)
Random Forest MaxDepth:0-10 (0.99)
KNN Hidden Layer:300-500

Activation:relu(0.78)
Ensemble (0.99-1.0)
SVM Multiple Kernals: (0.88-0.98)
Logistic Iteration No:2500-5000 (0.86)
Regression
Neural Network (0.75-0.850)
Adaboost (0.7)
RandomSearch CV

comparison of accuracy achieved using all of the clas-
sifications models as mentioned earlier [52]. The classi-
fiers in blue are based on the phenotypic dataset of 505
individuals. These six classifiers represent Logistic Re-
gression, Random Forest, Adaptive-Boosting, Support
Vector Machine, K-Nearest Neighbour, and Artificial
Neural Network. The classifiers in red are based on the
dataset of 39 individuals obtained from the nilearn li-
brary. The classifiers in yellow are based on the dataset
of 400 individuals obtained from the NITRC dataset.

For both these colours, ANN-MRI represents the Ar-
tificial Neural Network on fMRI data, SVM represents
the Support Vector Machine on phenotypic data, and
the Ensemble represents classification used in both the
data.
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Fig. 19 Confusion matrix of all models used on Phenotypic data

7 Conclusion and Future Direction of Current
Research

Multiple regions data is collected and factors have been
considered for improvement during the analysis of re-
search framework before a computational diagnosis of
ADHD. This will be beneficial for real-world medical
and clinical applications. Huge variations exist between
the data provided by numerous websites and the mea-

sures adopted to compute various parameters. The pre-
diction using phenotypic is precise comparatively. The
proposed research paradigm confirms that working with
fMRI can provide a crucial relationship with ADHD if
the data is provided with minimalist noise and follows

unified techniques for measuring parameters. Meanwhile,
the phenotypic does a much better job at diagnosing
ADHD. A large data can provide us meaningful in-

sights and represent the relation between various mea-
sures and given sufficient data. Hence a suitable stan-
dard needs to be adopted for better diagnosis.

Based on the present conclusive research, it is obvi-
ous that the precise diagnosis is required for mitigating
the impact of attention deficit/hyperactivity disorder.
Hence, it is required to design or form the paradigm in
which, automatic diagnosis is possible with current ap-

proaches for precise detection point of view. The diag-
nosis would be possible for patients of remote locations.
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Fig. 20 Confusion matrix of the algorithm applied on nilearn dataset

Fig. 21 Confusion matrix of the algorithm used on nitrc dataset

An intelligent framework is in the future plan, which
functions the all processes such as data collection from
patients, automatic diagnosis and providing treatment
synchronously to the individuals with time optimiza-
tion. There will be an advantage is that the patient will
be able to take better and reliable treatment without
failure. This type of medical care paradigm will help
the patient to provide the treatment at low cost. The
people would be conscious for similar kind of disorders
and would be smarter in self diagnosis after getting the
frequent solutions.
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