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Abstract—Logic locking has become a robust method for
reducing the risk of Intellectual Property (IP) piracy, overbuild-
ing, and hardware Trojan threats throughout the lifespan of
Integrated Circuits (ICs). Nevertheless, the majority of reported
logic locking approaches are susceptible to SAT-based attacks.
The existing SAT-resistant logic locking methods provide a trade-
off between security and effectiveness and require significant
design overhead. In this paper, a novel gate replacement-based
input-dependent key-based logic locking (IDKLL) technique is
proposed. We first introduce the concept of IDKLL, and how
the IDKLL can mitigate the SAT attacks completely. Unlike
conventional logic locking, the IDKLL approach uses multiple
key sequences (instead of a single key sequence) as the correct
key to lock/unlock the design functionality for all inputs. Based on
this IDKLL concept, we developed several locked gates. Further,
we propose a lightweight gate replacement-based IDKLL called
GateLock that locks the design by replacing exciting gates
with their respective IDKLL-based locked gates. The security
analysis of the proposed method shows that it prevents the SAT
attack completely and forces the attacker to apply a significantly
large number of brute-force attempts to decipher the key. The
experimental evaluation on ISCAS and ITC benchmarks shows
that the proposed GateLock method completely prevents the SAT-
based attacks and requires an average of 56.7%, 72.7%, and
87.8% reduced area, power and delay compared to Cascaded
locking (CAS-Lock) and Strong Anti-SAT (SAS) approaches.

Index Terms—Intellectual Property (IP), IP Protection, Hard-
ware Trojan, IP Piracy, Logic Locking, SAT-Attack, Anti-SAT.

I. INTRODUCTION

UE to globalization, intellectual property (IP) piracy,

overbuilding, reverse engineering, hardware Trojan in-
sertion, etc., are the major threats which arise during the
integrated circuit (IC) life cycle [1], [2], [3]. The IC industries
lose from $384 to $856 billion each year as a result of
supply chain assaults [4], [5]. Nevertheless, various design
techniques have been reported in the literature to address
these threats, including the removal of rare-triggered nets [6],
[7], logic locking [8] [9], [10], [11], and logic camouflaging
[12], [13]. Over the last decade, logic locking has become
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the prominent approach to counter these attacks. It locks the
design functionality by inserting the additional locked circuitry
in the design, [14], [15] or replace the existing logic with the
corresponding locked circuity [16], [17], [18], [7], [19]. The
design operates correctly only when the secret key sequence is
applied. This key sequence is kept in on-chip tamper-evident
memory, which is beyond the reach of the attacker.

The security of logic locking relies on the key’s confi-
dentiality. Within the past five years, boolean satisfiability
(SAT) [20], [21] has become the most effective attack that
compromises the security of most logic locking techniques,
even when utilizing a large key size, within a few minutes.
This attack progressively eliminates incorrect keys by apply-
ing distinguishing input patterns (DIPs) and identifying the
correct key [20], [21]. To counter this attack, various SAT-
resistant logic locking methods have been proposed in the
literature which integrate SAT-resistant circuits such as AES
[10], SARLock [22], and Anti-SAT block (ASB) [23], [24] in
the locked design. However, these methods need substantial
overhead and are also susceptible to other SAT attack variants,
such as removal [25], [26], App-SAT [27], and Bypass [28].

However, the Tenacious and Traceless (TTLock) [29],
Stripped Functionality (SFLL) [30], cascaded locking (CAS-
Lock) [31] and Strong Anti-SAT (SAS) [32] based logic
locking methods have been reported to mitigate the SAT and
its variants attacks. The TTLock and SFLL are vulnerable to
Functional Analysis (FALL) [33], whereas the CAS-Lock is
vulnerable to Identify flip s ignal ( IFS) a ttack [ 34]. Further,
the TTLock and SFLL provide a trade-off between security
and effectiveness, whereas the CAS-lock provides a trade-
off between removal and SAT attacks. Though SAS provides
high security over other SAT-resistant methods, it may be
vulnerable to IFS and removal attacks. This paper proposes a
novel gate replacement-based input-dependent key-based logic
locking (IDKLL) method called GateLock that effectively
mitigates the SAT attacks with low overhead.

The rest of the paper is organized as follows: Section II
provides the contributions of this paper. Section III presents
a review of logic locking techniques. Section IV introduces
a concept of IDKLL, the proposed GateLock method and its
quantitative security analysis. The experimental evaluation and
comparative analysis of the proposed logic locking technique
are presented in Section V. Section VI concludes the paper.

II. CONTRIBUTIONS OF THE CURRENT PAPER

This section outlines the problem addressed, the proposed
solution, and the novelty and significance of the solution.



A. Problem Addressed

The SAT and its variants attacks have been proven to be
the most effective as they break most of the logic locking
methods in a very limited time. The existing SAT-resistant
techniques are either vulnerable to SAT or its variants (e.g.,
Removal, App-SAT, Bypass, FALL, IFS) and require signifi-
cant overhead. Moreover, to the best of our knowledge, none of
the existing SAT-resistant methods renders SAT-based attacks
impossible; instead, they focus on increasing the attack time.
This paper focuses on rendering SAT attack impossible with
low overhead and protecting IC effectively during its life cycle.

B. Proposed Solution

This paper proposes a novel lightweight gate replacement-
based IDKLL method called GateLock to prevent SAT-based
attacks. The proposed GateLock method uses multiple key
sequences (instead of a single) as a valid key to lock/unlock
the design. The IDKLL divides the input patterns into multiple
sets and uses a different key sequence as a correct key for
each input set. No single key sequence exists in the whole
key space that can provide correct output for all input sets.
Based on this concept, we develop different basic IDKLL-
based locked gates to lock a design by replacing its original
gates. The locked design provides correct output for all sets
of inputs only when their corresponding valid key sequence is
applied, making it highly resistant to SAT-based attacks.

C. Novelty and Significance of the Proposed Solution

The proposed GateLock is a novel method that uses mul-
tiple key sequences to lock/unlock the design, unlike existing
methods that use a single key sequence. The design locked
using the proposed method provides correct output for all
inputs only when their corresponding correct key sequence
is applied. Unlike previous methods, the proposed method
uses look-up table (LUT) based tamper-evident memory to
store and retrieve the respective correct key sequence. The
proposed approach makes it impossible for the SAT attack
to identify the correct key because no single key sequence
provides the correct functionality for all input patterns. The
GateLock method tremendously increases the security against
SAT and brute-force attacks with reduced overhead compared
to existing SAT-resistant methods. The security analysis and
experimental evaluation using ISCAS and ITC benchmarks
support the effectiveness of our method.

ITIT. SAT-RESISTANT LOGIC LOCKING: A REVIEW

Several SAT-resistant logic locking techniques such as SAR-
Lock [22] and Anti-SAT block (ASB) [23] are proposed
to increase the SAT iterations or DIPs while extracting the
correct key. However, they are vulnerable to removal [25],
[26], App-SAT [27], double DIP [35], Bypass [28], SAT-
based Signature (SigAttack) [36], and Bit-flipping [37] attacks.
These methods also provide a trade-off between security (SAT
attack time) and effectiveness (output corruptibility), even
requiring significant overhead. Although, obfuscation of ASB
using LUT-based design withholding and wire entanglement

approach [18] increases its security against removal attack at
the cost of large overhead [24]. A lightweight ASB design and
obfuscation technique is also reported in [38] that constructs
the ASB using the existing circuitry to reduce the overhead.

Further, the modified v ersion o f S ARLock ¢ alled TTlock
[29] attempts to thwart removal attack, but it is vulnerable
to App-SAT [27] and Bypass [28]. Therefore, an extension
of TTLock called SFLL [30] is proposed that protects the
design for multiple input patterns. The SFLL increases the
output corruption and provides high security against App-SAT,
double DIP and Bypass attacks. However, SFLL provides a
trade-off between security and effectiveness, requires large
overhead [31], [32] and also proven vulnerable to FALL
[33], and structural analysis (SFLL-Unlocked) [39] attacks. To
overcome the limitations of SFLL, CAS-Lock [31] and SAS
[31] methods have been proposed that provide high security
and effectiveness with reduced overhead. Since CAS-Lock is
vulnerable to removal attacks, an extension of CAS called
mirror CAS (M-CAS) is also proposed in [31]. Though M-
CAS increase the security over CAS, it requires high overhead
and is susceptible to Identify flip signal S AT ( IFS-SAT) or
Key-bit mapping SAT (KBM-SAT) attack [34].

On the other hand, the SAS block is designed using the
merits of Anti-SAT and SFLL and provides high security and
effectiveness against SAT attacks over SFLL. SAS requires
significant overhead over the C AS-Lock, Anti-SAT and SAR-
Lock and may be vulnerable to structural analysis attacks such
as removal or IFS/KBM SAT as SAS uses the properties of
the Anti-SAT. The comparison of the efficacy o f different
SAT-resistant methods against SAT variants is presented in
Table I. Besides these techniques, a few other methods, such
as CORruption adaptable logic locking (CORALL) [40] and
DisORC [41] are also reported that provide increased output
corruptibility over the SAS [32] and SFLL [30] methods.
Further, generalized Anti-SAT (G-Anti-SAT) [42] and SKG-
Lock+ [43] methods are reported that also provide increased
output corruptibility while thwarting SAT-based attacks. How-
ever, G-Anti-SAT is vulnerable to a vulnerability assessment
tool called Valkyrie [44], SigAttack [36], and a generalized
attack reported in [45]. Further, all these methods focus only
on increasing the SAT iterations and require increased design
overhead. To the best of our knowledge, none of the existing
methods focuses on making SAT attack impossible. This
paper proposes a novel logic locking method (GateLock) that
effectively prevents SAT attacks with low overhead.

Table 1
ATTACK RESILIENCY OF DIFFERENT METHODS AGAINST DIFFERENT ATTACKS.
“Y”, “N” AND “Y/N” REPRESENT A METHOD MITIGATES, DOES NOT MITIGATE
AND PARTIALLY MITIGATES THE SPECIFIED ATTACK.
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IV. GaTeELock: PROPOSED LIGHTWEIGHT GATE
REPLACEMENT-BASED IDKLL

This section first introduces the idea of IDKLL, followed
by the proposed GateL.ock method and its security analysis.

A. Concept of Input Dependent Key-based Logic Locking

The previous logic locking methods use only a single key
sequence as a valid key to lock/unlock design (achieve correct
output) for all input patterns. Thus, SAT attack identifies the
correct key sequence by iteratively eliminating incorrect key
sequences. The idea behind rendering SAT attack can be that
“if we develop a method where no single key is individually
sufficient or correct to provide the correct output for all
inputs, then, in this case, SAT attack will either eliminate
all the keys or return a single key that cannot sufficient to
achieve correct output for all inputs”. Therefore, this paper
introduces the idea of IDKLL, where multiple (instead of
single) key sequences are used as a valid key to lock/unlock a
design. We lock the circuit such that it must produce correct
output for all inputs only when their corresponding correct
key sequences are applied. There will not be any single key
sequence that can provide correct output for all inputs, or
all the key sequences are individually incorrect. Essentially, a
distinct key sequence is used to unlock the design functionality
for every set of input patterns. Since the correctness of a
key sequence relies primarily on the inputs, it is called input-
dependent key-based logic locking (IDKLL). It means a valid
key sequence can only unlock the design for a particular set
of input patterns. A different key sequence must be applied to
unlock the functionality for a second set of inputs. The same
holds for the third, fourth, and other input sets, which require
other different key sequences for unlocking the functionality.

Let’s consider locking a circuit that consists of n primary
inputs with k key inputs using IDKLL. Assume that we utilize
m key sequences out of a total of 2¥ possible sequences as
a valid key to lock/unlock the design. In this scenario, the
2™ input patterns need to be divided into m sets, i.e., X .51,
X So, ..., XS, and the key sequences K.S1, Ko, ..., KSp,
are selected respectively as valid key for these sets. The locked
design produces the correct output for all sets (X 51, X.So, ...,
X S,,) only when the corresponding valid key sequence (KS)
(KSy, KSs, ..., KSy,) is applied. Any other key sequence
would result in an incorrect output. Importantly, there should
not exist any single key sequence that can unlock the design
or produce the correct output for all input patterns.

1) Locking Example Circuit Using IDKLL: Let us
consider an example circuit as shown in Figure 1(a) to
demonstrate the concept of IDKLL. First, we divide the input
patterns into m = 2 sets, i.e., XS = {“00”,“01”} and
XSy = {“107, “117}. After that, make the original output
of the circuit, i.e., Y dependent on two key inputs K; and
K, according to the truth table as shown in Figure 1(b).
In this case, we utilize two (m = 2) key sequences, t.e.,
KS; = “00” and KS; = “117, as the correct keys for
the input sets XS and XS5, respectively. Finally, the locked
circuit/Boolean function (Y1), as shown in Figure 1(c), can be
obtained from the truth table using Karnaugh Map (K-Map).

The locked circuit provides the correct output for the input
sets X571 = {“00”,“01”} and XSy = {“10”,“11”} only
when K.S7 = “00” and K.S; = “11” are applied, respectively.
In addition, it must be ensured that K.S; and KSs provide
incorrect output for the other set of inputs to prevent a key
sequence from producing the correct output for all inputs.
Therefore, we set Y7, as the complement of Y (i.e., Y, =!Y)
for the patterns {“0010”, “0011”, “1100”, “1101”}.
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(a) Original circuit and Iji1jrjirjo (c) Locked circuit obtained

its Truth Table, (b) Locking using IDKLL. from K-Map of table in (b].

Figure 1. Locking a circuit using IDKLL. Locked circuit provides correct
output for the input sets { “00”, “01”} and {“10”,¢11”} only when the key
sequence K1 Ko = “00” and “11” are applied respectively as a correct key.

It is analyzed that locking a design requires low imple-
mentation cost if we set output values don’t care in case
of incorrect (remaining) key sequences, i.e., “01” and “10”.
However, in this scenario, the expression of Y7, obtained from
the K-map does not rely on all the inputs (A and B) due to
optimization. Therefore, we replace the “don’t care” (x) values
in Y7, with "1I’/°0’ for specific patterns, such as 71000 and
”1010”. Nonetheless, the designer can also choose alternative
patterns to achieve this. If the designer is not concerned about
the dependency, then “don’t care” values can be maintained
for the remaining key sequences. If the locked functionality
already exhibits dependency on all input patterns while using
“don’t care” values for the remaining key sequences, those
values can be retained to obtain an optimized locked design.
Further, it is also observed that using incorrect output (1Y)
instead of “don’t care” (x) for the remaining key sequences
results in higher output corruption at the cost of increased
overhead. Thus, the designer can achieve the desired level of
output corruption in this technique, which may not be possible
with existing logic locking techniques.

2) LUT-based Tamper-Proof Memory for IDKLL:
Since the proposed method uses multiple key sequences as
a valid key for unlocking the design, we employ LUT-based
tamper-evident memory (instead of conventional tamper-proof
memory) that can store all selected KSs and provide respective
correct KS for an input set. This LUT-based memory allows
fetching a correct KS corresponding to a specific set of
input patterns. The implementation of this memory is based
on the LUT-based memory as used in [17], [18]. However,
using LUT-based tamper-proof memory incurs more overhead
compared to the conventional normal tamper-proof memory
because it stores multiple key sequences that are valid for dif-
ferent input sets. For storing m key sequences, the LUT-based
memory requires m X storage space compared to conventional
tamper-proof memory. In conventional memory, only a single



key sequence is stored that is valid for all inputs. In addition,
LUT-based memory uses an additional multiplexer unit to
extract the respective valid key for different input sets, which
also increases the overhead. Further, using LUT-based tamper-
proof memory may also introduce vulnerability or security
issues. One can also use the wire entanglement approach to
enhance security [18], [24]. However, overhead and security
analysis of LUT-based temper-proof memory is out of scope
in this paper. Here, it is assumed that the LUT-based tamper-
proof memory is implemented in a trusted facility, inaccessible
to the attacker and the designer activates it after fabrication [3],
[9], [14], [15]. We use LUT-based memory as one solution
to store multiple key sequences and retrieve respective key
sequences on applying an input. One can also explore other
cost-effective solutions to do the same.

Figure 2(a) illustrates the implementation and integration of
this LUT-based tamper-proof memory with the IDKLL-based
locked circuit (Figure 1).
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Figure 2. LUT-based tamper-proof memory and its integration with IDKLL-
based locked circuit. (b) The deterministic functionality of locked circuit.

It can be observed from Figure 2(a) that the correct key
sequence “00” can be readily extracted from this memory
by applying inputs {007, “01”} to the selection lines of the
multiplexer. The diagram shows that the key sequences “00”
and “11” are stored multiple times in memory, potentially
increasing the design cost. Thus, an alternative approach is to
store only unique valid key sequences, reducing the memory
requirements. However, the designers can also intentionally
introduce unused inputs or other internal wires to the tamper-
proof memory using the wire entanglement technique [18]
to obfuscate memory inputs and enhance security. Including
additional elements makes it hard and creates a dilemma
for potential attackers while distinguishing between genuine
inputs and those added for obfuscation purposes.

Furthermore, it can be observed from the locked functional-
ity mentioned in truth tables displayed in Figure 1(b) that we
retain some values as don’t care in the outputs (Y7). However,
the obtained locked circuit/Boolean function always produces
deterministic output for each key-input pattern. Therefore, we
present Table-1 in Figure 2(b), which shows a deterministic
output for each input pattern of the locked circuit/Boolean
function as depicted in Figure 1(b). The analysis of Table-
1 shows that the IDKLL-based locked circuit produces a
constant output of ‘1’ for the key sequence “01”. While this
output may be correct for a few inputs, it is not accurate for
all input patterns. Hence, the designer may also utilize the
KS “01” along with other KS to obtain the correct output for

all inputs. However, in this case, no single key sequence can
provide the correct output for all inputs, rendering SAT attacks
impractical for the attacker. This is because our approach
ensures that applying a DIP generates different outputs with
two key sequences even belonging to the valid set. This
causes the SAT solver to eliminate one correct key sequence
if it produces an incorrect output for that DIP. The same
elimination process occurs with subsequent DIPs. Ultimately,
the SAT solver either eliminates all the key sequences without
finding the correct key or ends up with a single key sequence
that is insufficient to produce the correct output for all inputs.

3) SAT Attack Prevention using IDKLL: Table II
demonstrates the example of SAT attack on the IDKLL-based
locked circuit as shown in Figure 2. It can be observed that
applying a DIP “01” provides correct output for the KS “00”
and “01”. Whereas it provides incorrect output for KS “10”
and “11”. Thus, this DIP eliminates the KSs “10” and “11”.
Similarly, in the second SAT iteration, the KS “00” provides
wrong output for the DIP “10”, thus it is eliminated. Similarly,
the KS “01” is also eliminated with DIP “11” in third iteration.
In this way, the SAT attack eliminates all the KSs, and none
of the KS remains correct. Hence, the attacker cannot identify
the correct key, which makes it impossible for the attacker to
render an SAT attack on the proposed IDKLL.

Table II
SAT ATTACK ON IDKLL-BASED LOCKED CIRCUIT SHOWN IN FIGURE 2

Input Y Y with different KS Elimination of
A B 00 | O1 | 10 | 11 Key Sequences
0 0 0] 0 1 1 1

0 1 1 1 1 0 0 | itr-1: {107, “117}
1 0 1 0 1 0 1 itr-2: {<00”}
11 0 1 1 0 0 itr-3: {“017}

The implementation of the proposed IDKLL for a small
circuit is presented above. However, locking a practical size
entire design exhibiting multiple inputs and outputs, em-
ploying the aforementioned procedure becomes exceedingly
intricate and arduous. Additionally, it may require substantial
overhead, rendering it impractical in certain cases. Therefore,
we introduce a cost-effective gate replacement-based IDKLL
called GateLock for locking a design in the next subsection.

B. GateLock: Gate Replacement Based IDKLL

Since a digital circuit is mainly constructed with AND,
NAND, OR, NOR, XOR and XNOR, it can be locked by
replacing its original gates with corresponding locked gates,
which are locked using IDKLL. To achieve this, we first
construct the locked circuitries of these basic gates using the
proposed IDKLL. Further, we lock the design by replacing the
original gates with the corresponding locked gates/circuitries.

1) IDKLL-based Locked Gates: The locked circuitries of
2-input AND, NAND, OR, NOR, XOR and XNOR gates are
shown in Figure 3. These locked gates are obtained by solving
the K-Map after locking their original functionality using two
key inputs. The Truth Table for obtaining the locked circuitries
(Figure 3) of AND, NAND, OR, NOR, XOR and XNOR gates
using K-Map is shown in Table III. Here, Y7, Y5, Y3, Yy, Y5,



and Yg represent the outputs considered while locking AND,
NAND, OR, NOR, XOR and XNOR gates, respectively.
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Figure 3. The locked circuitries of 2-input basic gates with two key inputs.
These locked gates are obtained by locking the functionality of gates using
the proposed IDKLL. The correct key sequences are K1 K> = “00” and “11”
for the inputs sets AB = {007, “01”’} and {107, “11”'} respectively.

Table III
TRUTH TABLE FOR LOCKING BASIC GATES
Ky Ko A B Y1 Yo Y3 Yy Ys Ys
0 0 0 0 0 1 0 1 0 1
0 0 0 1 0 1 1 0 1 0
0 0 1 0 1 0 0 1 0 1
0 0 1 1 0 1 0 1 1 0
0 1 X X X X X X X X
1 0 0 0 X X X X 1 0
1 0 X 1 X X X X X X
1 0 1 0 X X X X 0 1
1 1 0 0 1 0 1 0 1 0
1 1 0 1 1 0 0 1 0 1
1 1 1 0 0 | 1 0 1 0
1 1 1 1 1 0 1 0 0 1

We lock the functionality of these gates by dividing the
input combinations into two sets X.S;={“00”, “01”} and
X So={“10", “I11”}. A gate provides correct output for X.5;
and X S2 by applying the key sequences KS; = “00” and
KSy = “117, respectively. Applying K.S; and K S> for the
other inputs provides incorrect output. We assume that ’don’t
care output values’ for all the input combinations for the other
key sequences (“01” a361nd “10”) to get optimized locked
circuitries. However, it is analyzed from the K-Map solver that
if we keep don’t care output for all inputs, the locked functions
of XOR and XNOR gates do not depend on all inputs, i.e., K1,
K>, A, B. Hence, we set Y5 and Yg as ‘1°/‘0’ and ‘0°/‘1’ for
the key and input combinations “1000” and “1010” to ensure
the dependency of output on all the inputs. The correct output
for all input sets can be achieved only when their respective
valid key sequences are applied.

Though we used K.S; = “00” and K.S; = “11” as valid
key sequences for the input sets X .57 and XS5, respectively,
we also tried different combinations of key sequences while
developing the above IDKLL-based gates. During the study,
it is observed we can also use other key sequences and/or
other input sets to obtain such locked circuitries. For example,
we can obtain the similar IDKLL-based locked AND gate
functionality (i.e., Y7 = K5. A+ Ky.B + K;.A.B) can also
be developed using K'S; = “01” and KSe = “10” as valid

key sequences for the input set “00”, “01” and “107, “117,
respectively. It can be observed that both the expressions of
locked AND gate exhibit the same number of literals, which
shows that using different key sequences requires approxi-
mately the same cost. Since the attacker is unaware of which
key sequences are used as a valid key, it will introduce non-
determinism and increase search space, which will make it
harder for the attacker to know the correct respective locked
circuitries or key sequences. On the other hand, using uniform
keys may introduce vulnerability, and it may help the attacker
in finding the correct respective locked circuitries and their
valid key sequences.

Since we use don’t care (x) in the outputs for the key
sequences “01” and “10”, the obtained locked gates may
provide correct output on applying a single key sequence for
all patterns due to deterministic logic. Therefore, the designer
has to verify it while designing locked gates using don’t
care. We have also verified and ensured that these locked
circuitries do not provide correct output with a single KS for
all inputs. However, this verification time can be computa-
tionally expensive if it is required to verify entire/large circuit
for all input/output instances. Since the proposed method
locks the entire circuit by replacing its original gates with
the IDKLL-based locked gates, it is required to verify only
IDKLL-based gates before replacement. Verifying all locked
gates individually for all input/output instances is a one-time
process, and it is not computationally expensive for a designer.
The Truth Table for all the proposed locked gates (Figure
3) with deterministic output is shown in Table IV. It can be
observed from this table that there is no such single KS that
can provide the correct output for all inputs. The proposed
locked gates only provide correct output for all inputs when
their respective correct key sequence (K57 or K.S3) is applied.

Table IV
TRUTH TABLE OF LOCKED BASIC GATES/CIRCUITRIES

K. | Ks A B | Y | Yo | Ys | V2] Y5 | Y
0 0 |0 ] 0] 0 1 0 1 0 1
0 0 |0 1] 0 I I 0 I 0
0 0 I [0 1 0 0 I 0 I
0 0 T | 1] 0 I 0 I I 0
0 I X [ x| 1 I I I T T
I 0 0] 0] 0 0 0 0 T 0
I 0 | x [ 1] 0 0 0 0 0 0
I 0 T 0] 0 0 0 0 0 I
I I 0] 0| 1 0 I 0 I 0
I I 0 | 1 I 0 0 I 0 I
I I T 0] 0 I I 0 I 0
0 I |1 I 0 I 0 0 I

2) Locking a Design using IDKLL-based Locked Gates:
The designer can lock the design by judiciously replacing
the existing design gates with their respective IDKLL-based
locked gates. In this paper, we randomly select different design
gates to lock the functionality of a large design using proposed
input-dependent key-based logic locking. Further, the selected
gates are replaced with their corresponding proposed locked
circuitries/gates. The example of locking a sample circuit by
replacing an OR gate (G3) with a proposed IDKLL-based
locked OR gate is shown in Figure 4.

The selection of gates for locking the design can be either
random or strategic. Random selection may introduce some
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(a) Originsl Circuit.

(b) Locked circuit after replacing a gate G3
with its IDKLL based locked OR gate

Figure 4. Locking an example circuit using the proposed GateLock method.

level of unpredictability during the locking process, but it
may not achieve the desired output corruption. On the other
hand, a strategic replacement of gates can lead to a higher
degree of output corruption. For instance, selecting gates with
the highest fault impact, as described in [15], can greatly
enhance output corruptibility. The designer can also combine
both approaches to achieve a higher level of security for the
locked design.

Further, the proposed method does not use a specific struc-
ture of locked gates as used in exiting approaches [16]. [15].
The proposed locked gates/circuitries look like another design
circuit. Thus, it would be very difficult to correctly identify the
replaced/locked circuitry in the whole design. However, it may
be possible for a motivated attacker to identify an individual
structure of a locked gate in the design, re-synthesizing a
locked design (i.e., after replacement) as done in previous
methods [24] [31], [10], [18], [38] will make it hard for the
attacker to identify locked structures correctly. Further, due to
interference of the output of the locked gates in the locked
design, it may not be feasible for the attacker to know the
output of a locked structure individually by applying input
patterns [13], [46], [10]. Deciphering a locked structure in
a locked design will be very hard for a motivated attacker.
This paper presents the locked gates for standard logic gates.
One can also generate the locked circuities for the other small
logics/circuitries using IDKLL. Additionally, the designer can
lock the design by replacing the small circuitries with their
corresponding locked circuitries. This will make it hard for the
attacker to distinguish which parts of the circuit are replaced
with which locked circuits. The quantitative security analysis
of our method is presented in the next subsection.

C. Security Analysis of Proposed Method

This section first presents the analysis of the proposed
method against SAT and brute-force attacks followed by other
attacks such as key-sensitization, removal, App-SAT, double
DIP, Bypass, SAT-based Signature and Bit-flipping.

1) Threat Model or Information Available to Attacker: We
consider the same threat model as considered in the previous
logic locking methods [32], [34], where the attacker may
reside in an untrusted foundry, or he/she may be the end
user who has the capability and EDA tools to extract the gate
level netlist from the fabricated chip. Therefore, the attacker
can have access to (i) a locked gate-level netlist and (ii) an
activated chip bought from the open market. The attacker tries

to infer the circuit functionality or secret key to unlock the
design using the above resources. Since the designer is the
defender who activates the chip and only knows the secret
key (key/input-set mapping), it is assumed that LUT-based
tamper-proof memory is inaccessible to the attacker and the
attacker is unaware of the number of key sequences, which
are their specific values and their mapping to internal inputs
of the circuit, i.e., key/input-set mapping. It means the attacker
will also be unaware of the number of inputs associated with
each valid key set.

2) Analysis Against SAT and Brute-force: Since the SAT
attack cannot decipher the correct key from the IDKLL-based
locked circuit, the attacker has to employ a brute force attack
to identify the valid key. Hence, we conduct a quantitative
security analysis of the proposed method against the brute
force attack. If a design containing n primary inputs is locked
using conventional logic locking methods with k£ key inputs
(k-bit), the attacker would need to employ either exhaustive
key sequences or brute force attempts to decipher the design
functionality [15], [10], [47]. If total brute force attempts are
denoted with b, then b can be expressed as

b=2F (1)

Using SAT-resistant methods such as Anti-SAT [23],
[24] compels the attacker to make a minimum of A at-
tempts/iterations to extract the correct key. The value of A
for a k-bit key can be represented by Equation (2) [3].

A= 2k/2 (2)

On the other side, if we select m key sequences from
the total of b to lock the design using the proposed Gate-
Lock method, then the secret key will be represented as the
knowledge of selected m key sequences and their mapping
to input-sets (which key sequence corresponds to an input
set). To know this secret key, the attacker would require two
things: (i) knowledge of the corresponding output for each
key sequence to get the possible correct key sequences and
(i1) correct mapping of valid key sequences to input sets (i.e.,
correct combinations of key sequence and input). The number
of attempts required to determine the output of each key
sequence would be equivalent to the number of brute force
attempts, i.e., b = 2k as shown in Equation (1). As the attacker
is unaware of the number of key sequences (value of M),
which specific key sequences constitute a valid key set, and
what is their mapping with the input sets? Hence, the attacker
must apply all possible permutations of the b key sequences
to identify the valid set of key sequences and their mapping
(combinations of sequences and inputs) to input-sets. If we
denote the total number of permuted combinations for the b
key sequences as PC, it can be represented as follows.

PC =P, +°Py +°P5 + ...+ bP, (3)
The Equation (3) can also be expressed as follows.

b—1

.1
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Now, the total number of brute force attempts required
to determine the correct key sequences and their mapping
with the input sets will be equivalent to PC. However, the
validity/correctness of each permuted combination (mentioned
in Equation 4) is also required to know the output of each
key sequence. Here, the validity denotes whether a permuted
combination can provide the correct output for all patterns or
not. In the worst case, all permuted combinations need to be
checked. The number of iterations required for the knowing
output of each key sequence is b = 2¥. Hence, total attempts
will be calculated by adding b and PC' as follows:

Total_Attempts = b+ PC (5)
Substituting the values of b and PC' from above, then

2k _1
k k 1

Total_Attempts = 2% + (27)! Z Bl (6)

Now, it can be easily observed from Equation (1) and Equa-
tion (2) that our method significantly increases the number
of attempts required to reveal the secret key than previous
techniques. The increase in the number of brute force attempts
can be calculated by subtracting Equation (1) from Equation
(6), as illustrated below.

k_
r=1

k

no
—

Increased_Attempts = (2%)!

r=1

1
ol (N

Besides the above, it is also possible that the attacker
may reframe the problem solved by SAT-based algorithm by
learning the multiple key sequences and their associated input
sets. In this case, the algorithm would require to learn all
combinations of key sequences and inputs. Further, designing
SAT algorithm that learns these combinations will not be
applicable to our method as the attacker is unaware of which
valid key sequence is correct for which input. Hence, the
attacker has to employ all permuted combinations as men-
tioned in Equations (4) and (6). For a practical size circuit,
b will be sufficiently large; thus, this cannot be removed
from the analysis. In conclusion, it is evident from the above
that our method effectively prevents SAT-based attacks and
substantially augments the required number of brute force
attempts compared to previous logic locking methods.

3) Analysis Against Other Attacks: The proposed GateLock
method not only prevents the SAT attacks but it also effectively
mitigates other attacks such as key-sensitization [10], removal
[25], [26], App-SAT [27], double DIP [35], Bypass [28],
Bit-flipping [37] and SAT-based Signature (SigAttack) [36].
The key-sensitization attack determines the secret key by
propagating the key values one by one at output. However,
it can be applied only when the effect of one key-input does
not interfere with another key-input. In the proposed GateLock
methods, every IDKLL-based locked gate exhibits two inter-
fering key-inputs. Due to this interference, the attacker cannot
sensitize and propagate the key values at the output using a
key-sensitization attack. In addition, there are different valid
key sequences for different inputs; therefore, sensitizing and

propagating one key value for the applied input cannot be
correct for the other inputs. Hence, the sensitization cannot be
applied to the proposed GateLock method.

Besides the sensitization, the removal and Bit-flipping at-
tacks can also not be applied to the proposed method. The re-
moval attack identifies and removes the inserted SAT-resistant
block from the locked design using structural and signal
probability skewed (SPS) analysis. In contrast, the Bit-flipping
attacks attempt to separate the key-inputs of the inserted point
function from the key-inputs of the primitive and conventional
logic locking and then apply the conventional SAT attack
to determine the correct key. The application of both these
attacks is based on the specific structure of the inserted SAT
resistance block and the conventional SAT attack. Since the
proposed IDKLL-based gates are SAT resistant, they do not
follow any specific structure and do not exhibit SPS values
different from the other nets of the original circuits. Further,
we used our gates to replace the existing original circuitry;
therefore, it will approximately be impossible for the attacker
to know the replaced circuitry and remove the proposed gates
from the locked design. Hence, the removal and Bit-flipping
attacks cannot be applied to the proposed GateLock.

The proposed GateLock can also effectively mitigate the
other variants of SAT attack, such as App-SAT, double-DIP,
and Bypass. All these attacks exploit the properties of 1)
inserted point function block and ii) low output corruptibility
or error rate of the previous SAT-resistant methods. Similar to
these attacks, Signature-based SAT attack (SigAttack) is also
applicable in point function-based methods like Anti-SAT [24],
SARLock [22] and G-Anti-SAT [42]. SigAttack determines the
key-revealing Signature of the locked circuits and then uses
them to decipher the key. The proposed method is not based
on the point function and can easily provide desirable or high
output corruptibility. Further, the replacement of original gates
with IDKLL-based locked gates does not leave any signature
for the attacker. Therefore, these attacks cannot be applied
to the proposed method. Further, using different valid key
sequences for different input sets makes the SAT attack and its
above variants impossible on the proposed GateLock method.

The experimental evaluation of the proposed GateLock
method is presented in the section.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the simulation setup, results, and a
comparative analysis of our GateLock method.

A. Experimental Setup

The proposed GateLock method is implemented by em-
bedding the varying number of keys (i.e., 16, 32, 64, 128)
in the ISCAS and ITC benchmark circuits. The security of
our GateLock is evaluated by performing SAT attack [20] on
the locked benchmarks (i.e., Prop_16K, Prop_32K, Prop_64K,
Porp_128K). Further area, power, delay of GateLock are
extracted using Cadence RTL compiler with 45Snm Nangate
Open Cell Library [48] and compared with the well-known
previously proposed methods, namely Anti-SAT block (ASB)
[23], TTLock [29], SFLL [30], CASLock [31], and SAS [32].



B. SAT Attack Results and Discussion

The security of the proposed GateLock is evaluated against
SAT attack by applying SAT attack [20] on ISCAS and ITC
benchmarks locked using GAteLock. As a result, we found
that the SAT attack cannot extract the correct key from any of
the locked benchmark circuits. It completely failed to identify
the correct key sequences even with applying the Partial-
Break algorithm along with fault analysis [15]. The SAT attack
provides the “UNSAT Model” as output and returns the key
as “xxxxx..x” as shown in Figure 5.

./sld ../benchmarks/Locked_Gates/
c7552_Gatel6.bench ,'benchmarLs,‘myortglnaUc7552 txt
inputs=207 keys=16 cutputs 108 gates=3560

: 17790; clauses: 3130; decisions:
vars: 23532; clauses: 3500; decisions:

1066
1454

iteration: 2;

iteration: 8; vars: clauses:

flnlshed snlver loop.

57984; 5036; decisions: 3552

% backbones_count:o;
; maxrss=23.8047

cube_count=143888; cpu_time=0.168011

(a) SAT attack results on c7552 locked circuit with 16 keys.

./sld ../benchmarks/Locked Gates/

c880_Gatel6.bench . /b:nchmarks/myorLgLnal/cBBO txt
inputs=68 keys=16 outputs=26 gates=431
iteration: 1; vars: 2477; clauses: 7; decisions: 214
iteration: 2; vars: 3245; clauses: 1067; decisions: 214
finished solver loop.
UNSAT model!
e XXXXXXXXXXXXXX

2; backbones_count=8;

cube_count=5848; cpu_time=0.022509;

S ./sld ../benchmarks/Locked_Gates/
/benchmarks,‘myor1glna1,‘c7552 >t

c7552_Gate32.bench .
inputs=287 keys=32 outputs=108 gates=3608

iteration: 1; vars: 18886; clauses:

finished solver loop.

21857; decisions: @

XXXXXXXXXXXXXKXAXXXXKX XXX KKK
1; backbones_count=08; cube_count=32548;
maxrss=17.4922
s 1l

(c) SAT attack results on ¢7552 locked circuit with 32 keys.

cpu_time=0.064352;

Figure 5. Screen shots of the demonstration of SAT attack on the benchmarks
locked using the proposed GateLock method.

It can be observed from this figure that the application of
SAT attack on locked c880 and c7552 benchmark provides
“UNSAT Model”, which means it fails to determine the correct
key. Besides the above, we have also tested other locked
benchmarks for SAT attacks; in all the cases, SAT attack
returns the “UNSAT Model” as output. The sample SAT attack
results of the proposed GateLock are shown in Table V. The
4*h and 7" columns of this table represent the output of SAT
solver, whether the key is found or not (i.e., UNSAT Model).
Further, it is also analyzed that the SAT attack never identifies
the correct key in the proposed GateLock method, even locking
with any number of keys. This is because of using multiple
key sequences as a valid key.

On the other hand, due to the use of a single key sequence as
a correct key in Anti-SAT block (ASB), CAS-Lock, and other
SAT-resistant methods, the SAT attack runs until the worst-
case time and then returns the correct key. In most existing
methods, the SAT attack retrieves the correct key in an average
2% iterations if the design is locked with 2k keys. However,
the time and #SAT iterations in our GateLock method are
significantly low due to the unsuccessful termination of SAT

Table V
SAMPLE RESULTS OF SAT ATTACK DEMONSTRATION ON BENCHMARKS
LOCKED USING PROPOSED GATELOCK METHOD

Prop_16K Prop_32K

Circuits #Itr. Time (Sec.) Output #Itr. Time (Sec.) Output

c432 8 0.023494 5 0.19515

c499 4 0.016862 30 0.293555

c880 2 0.022509 = I 0.011458 =)
c1355 I 0.014087 Z 26 0.156574 g
cTI908 T 0.017569 2 T 0.016471 <
c2670 9 0.064356 =z 7 0.058989 =z
¢3540 3 0.063234 5 2 0.070557 =
c5315 10 0.134589 e 2 0.09265 [
c7552 8 0.168011 I 0.064352

attack. Therefore, the attacker has to employ a brute force
attack only to decipher the correct key. The comparison of
brute force attempts and SAT iterations required by proposed
and existing methods is shown in Table VI.

Table VI
COMPARISON OF #SAT ITERATIONS (k = 2 % n KEYS, m = 8) AND
#BRUTE FORCE ATTEMPTS IN EXISTING AND PROPOSED METHODS FOR
VARYING KEY SIZE.  DENOTES THE SELECTED CRITICAL INPUTS.

n SARLock| ASB| TTLock| CAS| SAS Proposed GateLock
ok omn ok on 2";m ok " (2F ),22 F—1 ﬁ
1 4 2 4 2 5 44
2 16 4 16 4 6 3.60E+13
3 64 8 64 8 8 2.18E+89
4 256 16 256 16 12 1.47E+507
5 1024 32 1024 32 20 9.31E+2639
6 | 4096 64 4096 64 36 6.26E+13019
7 16384 128 16384 128 | 68 2.07E+61936
8 | 65536 256 | 65536 256 | 132 8.87E+287193

It can be observed from this table the number of brute
force attempts is significantly high in our method compared to
the SAT iterations required in existing methods. Suppose an
SAT iteration and one attempt require the same time. In that
case, the attacker needs a significantly long time to decipher
the correct key in GateLock over all the existing techniques
for the same number of keys. For k¥ = 6, the SARLock
and TTLock require 64 iterations, and the ASB, CAS and
SAS require only 8 SAT iterations. Whereas the GateLock
requires 2.18E+89 attempts, which is significantly higher than
the existing methods. Further, we also analyze the security
of the proposed GateLock method against other SAT variants
such as App-SAT, removal and IFS. It is almost impossible
to defeat the proposed GateLock method with these attacks
because our method is not based on a single-point function
and can provide the desired output corruptibility. The proposed
GateLock method provides an effective solution to mitigate all
such attacks with less overhead. The overhead analysis of the
proposed GateLock method is presented in the next subsection.

C. Overhead Results

We analyze the implementation overhead of our GateLock
method while embedding varying key sizes (in bits), i.e., 16,
32, 64, 128 in different ISCAS and ITC benchmarks. The
original and locked benchmark circuits are synthesized using
the Cadence RTL compiler, and different design metrics are
extracted. It is observed from the results that the proposed
GateLock requires a large overhead on small benchmarks



Table VII
DESIGN METRICS OF PROPOSED GATELOCK METHOD WHILE EMBEDDING VARYING NUMBER OF KEYS IN LARGE ISCAS AND ITC BENCHMARKS
Circuit Area (um?)) Power (nW) Delay (ps)
Prop_32K | Prop_64K | Prop_128K | Prop_32K | Prop_64K | Prop_128K | Prop_32K | Prop_64K | Prop_128K
$35932 12365 12408 12480 842474 847504 855824 3057 3129 3421
s38417 11850 11868 11929 666947 729550 735333 5686 5790 5643
$38584 9917 9949 10083 627943 630676 640410 4066 3979 4093
bl4 3490 3612 3702 259701 293536 304253 18931 20580 21921
bl5 6577 6664 7070 336262 350124 373289 21982 21359 22931
bl7 20821 20867 20878 1046983 1032300 1074434 20594 21336 20914
bl18 51778 52163 52272 3024906 3058028 3073839 14972 15604 15819
b20 7307 7357 7426 489337 498038 533511 22535 22284 23866
b21 7568 7569 7680 520702 522752 507265 22518 23074 22956
b22 10920 10997 11064 727418 742219 795411 23071 22869 23348

(ISCAS-85), even locking with a small key size. Whereas it
requires significantly 1 ow area, p ower a nd d elay f or locking

large benchmarks, even with large key sizes. The results for
locking large-size ISCAS-89 and ITC benchmarks using the
GateLock method are shown in Table VII. It is clear from the
last row of this table that the proposed GateLock method on
average requires area, power delay as 14458um?, 889357nW
and 16491ps, respectively for while locking a design using
128-bit key. It can also be observed that the average of area,
power and delay values are only slightly increased while
increasing key size from 32 to 64 and then 128. Even in
some cases, values are also decreased as mentioned with
bold. It means our GateLock method will also not require
high implementation cost, even locking a design with a more
significant size k ey, i .e., K=256 or K =512. T he comparison

of the proposed Gate-Lock method with well-known existing
methods is presented in the next subsection.

D. Comparisons

We implement the existing well-known SAT-resistant logic
locking methods 7.e., ASB [23], CAS [31], and SAS [32].
The design metrics of the proposed method are compared
with these methods. The comparison of average area, power
and delay required by proposed GateLock and existing ASB,
CAS and SAS methods while inserting varying keys in large
ISCAS-89 and ITC benchmark circuits is presented in Ta-
ble VIII. It can be observed from this table that the ASB
requires low average area, power and delay compared to CAS
and SAS methods. Though the SAS method requires high
implementation cost, it provides high security against SAT
attacks over the ASB and CAS insertion-based methods. The
ASB, CAS and SAS methods are implemented without any
obfuscation; otherwise, the required implementation cost will
be further increased in these methods. Further, these methods
may be vulnerable to removal or structural analysis attacks if
implemented without obfuscation [26], [34]. At the same time,
our method requires very low implementation costs compared
to all these methods for varying key sizes.

The comparison of the required average overhead (%) of
GateLock and ASB, CAS and SAS methods is presented in
Figure 6. It is clear from this figure that the overhead for CAS
and SAS methods is approximately the same, but it is slightly
more than the overhead of ASB. The proposed method requires
significantly low overhead over all the existing methods for

all the mentioned key sizes. For embedding 128 keys in the
benchmarks, the SAS requires 3.5%, 3.75% and 28% area,
power, and delay overhead, whereas GateLock requires only
1.43%, 1.08%, and 3.6% area, power, and delay overhead
which is 59%, 71%, and 87% less, respectively.

B Ass lllcas [ sas [l GateLock
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Figure 6. Comparison of average overhead (%) required by proposed and
existing methods for embedding K=16, K=32 and K=128 keys in the large
ISCAS-89 and ITC benchmarks.

Besides the above, we also compare the implementation cost
of the proposed GateLock method with TTLock [29] while
embedding 32 and 64-bit keys in large ISAS-89 benchmark
circuits (s35932, s38417, s38584). On average, the TTLock re-
quires 2.5%, 3.4%, and 0.7%, whereas the proposed GateLock
requires 0.4, -0.9 and 8.1% area, power and delay overhead,
respectively. However, the delay overhead in our method is
higher than the TTLock because of the large delay overhead in
the 35932 benchmark. For the average of s38417 and s38584
circuits, the GateLock method requires a significantly lower
delay than the TTLock. It is reported that the SFLL is the
extension of TTLock and provides high security over TTLock
but requires more overhead over the TTLock, CAS, and SAS
[30], [31], [32]. Since it is analyzed in the above discussion
that GateLock requires low overhead over all these methods,
our method will also require lower overhead than the SFLL
method for the same size key. In addition, it is also observed
in the literature that other recently developed SAT-resistant
methods, i.e., CORALL [40], DisORC [41], G-Anti-SAT [42]
and SKG-Lock+ [43] provide better security compared to the
SFLL, CAS and SAS methods, but they also incur slightly
increased overhead. Most of these methods incur around 10%



Table VIII
COMPARISON OF AVERAGE AREA, POWER AND DELAY REQUIRED BY PROPOSED GATELOCK AND EXISTING METHODS
Method Area (qu) Power (nW) Delay (ps)

K=32 K=64 | K=128 K=32 K=64 K=128 K=32 K=64 | K=128

ASB 14339 | 14477 14633 866187 887057 | 906152 16550 17005 18098

CAS 14350 | 14475 14698 872427 891093 | 916603 17268 18617 | 20898

SAS 14396 | 14514 14755 866754 882127 | 912844 17360 18894 | 20379
GateLock | 14259 | 14345 14458 | 854267 870473 | 889357 | 15741 16000 16491

area overhead in the average case with the same or less key
size [43]. On the other hand, our method requires less than 4%
area overhead with a 128-bit key size. Hence, the proposed
method will also require low overhead over these methods.

The above comparison is presented for the same key size,
but our method achieves 2 x higher security (Equation 7) with
the same size key over the ASB, CAS and SAS methods. It
means our method can provide the same security only using
half key size compared to ASB, CAS and SAS. In this case,
the required overhead of GateLock will be reduced further
compared to existing methods. For example, the CAS/SAS
methods require 3.1%/3.5%, 4.2%/3.8% and 31.3%/28.0%
area, power and delay overhead to achieve 264 SAT iterations,
whereas, GateLock achieves the same security (264) with only
0.64%, -1.06%, and 0.52% overhead, respectively. Hence, our
GateLock method provides high security against SAT-based
attacks while reducing design overhead significantly.

VI. CONCLUSION

This paper proposes a novel SAT-resistant logic locking
method called GateLock that effectively prevents SAT-based
attacks. The GateLock method is based on the concept of
IDKLL, where multiple (instead of a single) key sequences are
utilized as the correct key to lock/unlock the design function-
ality for all inputs and mitigate the SAT attack completely. In
our method, we proposed different IDKLL-based locked gates,
which are used to lock the design functionality by randomly
replacing the respective original design gates. Further, the
security analysis shows that our GateLock prevents SAT
attacks and tremendously increases the brute force attempts
over the existing techniques. The experimental evaluation of
the proposed GateLock on ISCAS and ITC benchmark circuits
shows that our method prevents the SAT attack completely
while requiring only 1.43%, 1.08%, and 3.6% are power and
delay overhead for embedding 128 keys.

This paper uses LUT-based tamper-proof that requires a
slightly higher implementation cost than the normal memory;
thus, it may increase the implementation cost of the proposed
GateLock method. Therefore, our future work will explore the
cost-effective way to store correct key sequences and provide
an efficient implementation of the proposed method.
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