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Abstract— The widespread use of consumer electronics in today’s
society highlights the ever-evolving landscape of technology. With
the constant influx of new devices into our households, the ac-
cumulation of multiple infrared remote controls, required for their
operation not only causes wasteful energy consumption and re-
source depletion but also a disordered user environment. To tackle
these issues, we present SimplyMime, an innovative system that
aims to eliminate the need for multiple remote controls in the realm
of consumer electronics, while providing users with an intuitive
control experience. SimplyMime utilizes a dynamic hand gesture
recognition framework that seamlessly integrates Artificial Intelli-
gence with Human-Computer Interaction, allowing users to easily
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interact with a wide range of electronic devices. The keypoint model used for gesture identification prov;aes a flexible
system that can be easily adapted to recognize a variety of hand gestures, even complex ones. Additionally, SimplyMime
introduces a novel siamese-based hand palm print authentication system that acts as the security module for our work
and ensures that only authorized individuals can control the devices. The system’s hand detection is enhanced by a
customized Single Shot Multibox Detector (SSD) algorithm, which narrows its anchor boxes and uses a Feature Pyramid
Network (FPN) to identify hands across different feature maps, serving as a resource-efficient model. Extensive testing on
numerous benchmark datasets has proven the effectiveness of our proposed methodology in detecting and recognizing

gestures within motion streams, achieving impressive levels of accuracy.

Index Terms— Smart Remote Control, Object Detection, Gesture Recognition, Hand Gesture Recognition

[. INTRODUCTION

The advent of smart electronics such as televisions, air
conditioners, and speakers has become a defining characteristic
of modern society, propelling the development of smart cities
aimed at optimizing operations with limited resources and
maximizing asset utilization to enhance the quality of life.
With the increasing availability of inexpensive devices, most
households now possess multiple electronic devices, each
typically requiring its own remote control for operation and
interaction [1]. This proliferation of remote controls, while
convenient, leads to resource wastage, increased plastic con-
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sumption, and challenges in locating and operating the appro-
priate remote for a given device [2]. Despite the introduction of
remote-control devices in the 1950s and the subsequent devel-
opment of infrared-based remotes in the 1970s [3], traditional
methods of human-computer interaction (HCI) have not been
fully adopted because of a lack of seamless functionality.
The prevalence of smart electronics, such as televisions,
air conditioners, and speakers, has permeated modern society.
This technological phenomenon has propelled the advent of
smart cities, aiming to optimize operations with limited re-
sources while maximizing the utilization of available assets
to enhance the quality of life. With the proliferation of
inexpensive and readily available devices, most households
have multiple electronic devices that require remote controls
for operation and interaction [1]. As the number of devices
increases each year, so does the number of remote controls
needed to operate them. This traditional method of interaction,
while widespread and commonly used, is not without its flaws.
The limitations of traditional remote controls, such as the
requirement for line of sight and precise pointing, hinder
the user’s freedom of movement and reduce overall com-
fort. Additionally, traditional remote controls have a limited
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operational range and are often constrained by infrared or
radio frequency technology, which can suffer from interference
from other electronic devices. The complexity and number of
buttons on these remotes can be confusing and difficult to
navigate, particularly for people with disabilities or those with
limited dexterity. Moreover, traditional remotes offer limited
customization for individual user preferences and are prone
to physical damage, wear and tear, and battery replacement
issues, which also contribute to environmental concerns due
to increased plastic consumption [2]. Although there have
been advancements in HCI technology, including alternatives
to keyboards and mice and devices utilizing Bluetooth or
WiFi communication, a solution that completely eliminates
the need for additional devices and provides a more intuitive
user experience has yet to be developed [4].

In response to these challenges, we propose SimplyMime,
a hand gesture-based control system for consumer electronics
that addresses the existing limitations of traditional remote
controls. Hand tracking, a natural and intuitive mechanism for
identifying hand movements, has been extensively studied and
demonstrates significant promise in skeleton-based tracking
due to its robustness against various background conditions
[5], [6]. SimplyMime offers an efficient and lightweight solu-
tion capable of real-time hand tracking, making it suitable for
integration into a compact system for any electronic appliance.

A distinctive feature of SimplyMime, setting it apart from
extant solutions, is the incorporation of palmprint recognition
for user authentication. This advanced biometric security mea-
sure substantially enhances the system’s utility by ensuring
that only authorized users can operate the devices. Unlike con-
ventional remote controls and existing gesture-based systems
that may use gestures as passwords, SimplyMime leverages the
uniqueness of palmprints. While some systems use sequential
hand gestures for biometric authentication, relying on the
unique behavioural characteristics and shapes of hand signs,
these methods are more vulnerable to environmental variability
and require extensive image processing and machine learning
algorithms to recognize [7]. SimplyMime’s palmprint recogni-
tion provides a higher level of security due to the complexity
and uniqueness of palm patterns, which are less susceptible to
such variability and offer more reliable authentication.

The state-of-the-art hand gesture recognition techniques
employed by SimplyMime create an efficient and intuitive
control framework for consumer electronics. By obviating the
need for multiple controllers, SimplyMime contributes to a
more organized and aesthetically pleasing living space while
delivering a more immersive and intuitive user experience.
Additionally, the palmprint recognition module facilitates user
verification and authentication, thus incorporating a crucial
security dimension often overlooked in prior solutions. With
minimal computational requirements, SimplyMime is highly
adaptable and reliable, making it an optimal solution for
both residential and commercial applications. A diagrammatic
illustration of SimplyMime’s workflow is depicted in Figure
1.

Contributions of SimplyMime:

o User-centric Design: SimplyMime prioritizes user con-

venience by offering an effortless control experience,
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Fig. 1. Diagrammatic representation of the architectural working of
SimplyMime
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distinguishing it from other technologies in device man-
agement.

o SimplyMime offers a one-stop solution for controlling
multiple devices, reducing the accumulation of any e-
waste.

o The SimplyMime uses a powerful but adaptable paradigm
to determine hand movements in hardware with less
power consumption. In contrast to mainline approaches
with their need for huge sets of training data and powerful
computational resources, the minimization of learning
was achieved through the keypoint-based identification
of gesture, which enables recognizing additional types
of gestures, including intricate ones, with only a slight
adjustment. This flexibility proves indispensable in the
situations when spectrum of possible gestures might be
widened or might be changed in future.

e The implementation of a SSD with FPN makes Sim-
plyMime unique as it boosts the hand detection in
multiple feature maps. This brings a higher detection
rate besides lowering the computational complexity to
make it applicable in real-time applications with limited
resources.

« SimplyMime enhances security by incorporating user ver-
ification and authentication, ensuring authorized access.
Also it is dissimilar from a conventional single biometric
system, wherein our strategy integrates the effectiveness
of the palm print recognition with the flexibility of
siamese networks. This leads to improved security and
reliability of the access so long as only the correct finger
print can unlock the linked devices. The architecture
of the proposed siamese network makes it possible to
achieve one-shot learning, which simply means that min-
imum training data are required in order to authenticate
users with high level of precision. This is more beneficial
where time is of essence especially in situations where
the users have to enroll at a certain time or where the
system has to quickly accommodate new users.

The rest of the paper is organized as follows: Section II
discusses the related research. Section III provides the system-
level architecture of the proposed approach, SimplyMime.
Section IV validates the results and provides a comparative
analysis of SimplyMime against the State-of-the-Art solutions.
Finally, the paper concludes in Section V.
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[I. RELATED RESEARCH

Hand gesture recognition technology has been a subject of
study for several years, with developments in different fields,
including human-computer interaction, gaming, augmented
reality, and assistive technology for those with disabilities. The
hand, in particular, is used extensively for gesturing compared
to other body parts because it is a natural means of human
communication and hence the most appropriate tool for HCI
[5]. This application area has the potential to revolutionize how
we interact with electronic devices in our homes by enabling
simple hand gestures to control them.

A. Sensor-based Methods

The majority of existing methods can be categorized as
sensor-based systems. Utilizing specialized sensors to capture
the movement and orientation of the hand, these methods
capture the hand’s motion and orientation [14]. These sensors
can include accelerometers, gyroscopes, magnetometers, and
other types of sensors that measure the hand’s movement
and position [15], [16]. Sensor-based methods have a number
of advantages over other methods such as the ability to
capture precise information about the hand’s movement and
position and the capacity to function in environments with
poor lighting or visibility, etc. [17], [18]. Inertial sensors in
conjunction with a multilayered perceptron classifier can be
employed to recognize hand gestures [19], [20]. Adopting
a similar methodology, researchers have developed a finger-
worn ring device that captures acceleration data, paired with
an LSTM model for the classification of hand gestures [8],
[21]-[24]. Likewise, the Inviz device incorporates textile-
based flexible capacitive sensor arrays for motion detection
[9]. This approach has been utilized to develop systems that
cater to individuals with paralysis, paresis, weakness, and
restricted range of motion. Other notable developments include
the WristCam [25], a wrist-worn camera sensor that estimates
and recognizes hand trajectories, as well as the EchoFlex [10],
a wearable ultrasonic device that tracks hand movements. The
muscle flexor data from the sensors can be used to develop an
algorithm that combines image processing and neural networks
for gesture recognition. Sensor-based systems offer precise
hand movement and position data even in challenging lighting
conditions. However, their reliance on additional devices limits
their versatility and scalability. Moreover, inaccurate sensor
calibration can lead to poor gesture recognition performance.

B. Vision-based Methods

The integration of computer vision and human-computer
interaction has enabled the development of innovative systems
aimed at addressing sensor-based limitations and providing
users with a more immersive and efficient experience [26].
One of the initial approaches in the development of vision-
based sensors was the utilization of a coloured glove [11].
This method required the user to wear a coloured glove, which
enabled the system to employ a nearest-neighbour approach
for tracking hand movements. Several studies that employed
the use of the Kinect sensor utilized the colour and image

depth data to establish a hand model for the analysis of tracked
hand gestures. The hand gesture tracking can be accomplished
through the implementation of a Kalman filter [12]. However,
it was observed that the gesture recognition accuracy was
relatively low. Similar research utilized RGB-D cameras to
extract hand location data through the use of in-depth skeleton-
joint information from images [27]-[29].

A few works employed neural networks to infer real-time
hand landmarks, which were used to analyze the skeletal
structure of the hand gesture [13], [30]. Despite these efforts,
recognizing gestures from complex backgrounds remains a
challenging task.

Vision-based methods for hand gesture recognition face sev-
eral significant challenges when applied in dynamic and real-
world environments. These challenges include background
clutter, occlusion, and the need for real-time processing.
SimplyMime addresses these challenges through several inno-
vative approaches. The system’s hand-tracking model employs
advanced architecture based on BlazePalm, which is highly
resilient to variable lighting conditions. By utilizing this robust
architecture, SimplyMime ensures consistent performance in
various environments. Additionally, SimplyMime utilizes a
dynamic algorithm to detect gestures on the go, effectively
mitigating the issue of background clutter.

1. SIMPLYMIME: THE PROPOSED SMART REMOTE
CONTROL

The proliferation of consumer electronics has resulted in
the widespread use of traditional remote controls as the
primary means of interaction. However, to effectively replace
such a firmly established technology, an alternative solution
must not only be robust, precise, and intuitive, but also
possess the added benefits of user-friendliness, compatibility
with older devices, and scalability [31]. Our proposed work,
SimplyMime, addresses the shortcomings of existing solutions
while maintaining the immersive experience that traditional
remote controls are capable of delivering. The dynamic hand
gesture recognition module, represents the most advanced,
effective, and ideal replacement for traditional remote controls,
providing a unique blend of state-of-the-art performance and
efficiency.

The underlying architecture of the system incorporates
a hand landmark assignment method, which is utilized to
identify and localize key points across the hand, such as
fingertips, knuckles, and wrists. These landmarks assigned by
the backend model form the basis for the gesture recognition
algorithm, which identifies and classifies gestures based on
the skeletal structure generated. The system is designed to
operate in two distinct modules. The first module, the hand
detection model, is responsible for identifying and isolating the
human hand within an image. The second module, the gesture
recognition model, processes the detected hand to generate a
skeletal structure of the gesture and subsequently recognizes
it.

A. Hand Detection Model

The foundation of an effective hand gesture identification
model is the accurate detection and isolation of the hand from
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TABLE |
COMPARISON OF EXISTING HAND GESTURE RECOGNITION MODELS
Methodology . Requirement of Security
Research Employed Findings and Outcome additional device =~ Module
. - Utilized a built-in LSTM model leveraging data from a finger-worn ring. .
TinyDL . . . Finger-worn
Inertial Sensors - The performance will be impacted by factors such as sensor placement, - None
(2021) [8] . K . R device
variations among users, and changes in hand gesture execution over time.
. . - Relies on textile-based capacitive arrays built into clothing. Wearable textile
Inviz Textile-based h ducti " bl a1 P di o
2015) [9] capacitive arrays - The production of wearable textile capacitive sensor arrays could increase capacitive sensor ~ None
the cost and complexity of the system. Arrays
- Utilizes ultrasound sensors to capture hand movement data, which is then
EchoFlex Ultrasound Imagi analyzed using ML algorithms. Ultrasonographic None
(2017) [10] fasound fmaging - Susceptible to interference from nearby objects or environments with Device on
high acoustic noise
- Employs colour segmentation and a tracking algorithm is applied to estimate
Wang et al Image Processin, the hand pose and motion. Coloured Glove None
(2009) [11] g g - Recognition accuracy would be affected by factors such as lighting u v
conditions,mcolour variations, and occlusions.
- Demonstrates the feasibility of combining various types of sensors for
Feng et al. Kinect S human motion tracking. Microsoft Kinect N
(2014) [12] 1nect sensors - Requires a high-performance computing device to achieve real-time Sensor one
performance
SHREC Skeleton-based hand - Achieved high accuracy in recognizing hand gestures in various real-world
I, . None None
(2021) [13] gesture recognition scenarios
SimplyMime CNN-based skeletal - Delivers intuitive control without additional devices N Palmprint
(Current Paper)  pose estimation - Incorporates palmprint authentication to verify and authenticate users one aimprint -
Authentication
the given image [32]. To achieve this, SimplyMime employs
state-of-the-art neural network technology for localizing the TR
coordinates of the palm. While conventional RCNN models
have been widely used for object localization, they require
significant computational power, making them less suitable
for real-time applications [33], [34]. In contrast, the adopted [ 64 x 64 H 64 x 64 H 2x 64 x 64 ]
Single-Shot Detector (SSD) algorithm achieves superior real- L z
time performance by eliminating the need for bounding box g
proposals and subsequent feature re-sampling [35]. This results o
in a more efficient and effective approach to hand detection, =

which is a crucial component of an accurate gesture identifi-
cation system.
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Fig. 2. Visualization of Hand Detection Model in Action

Action Visualisation of the Hand Detection Model is
demonstrated using the Figure. 2.
The architectural network of the gesture detection model

Fig. 3. Comprehensive View: Gesture Recognition Module Architecture
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is illustrated in Figure 3. The feature extraction network pro-
cesses an RGB input image of 224x224 pixels through a series
of convolutional layers, referred to as ConvBlocks, which
serve as the bottleneck for higher abstraction level layers. The
image is passed through 5 single and 6 double ConvBlocks.
These ConvBlocks consist of a series of convolutional layers,
followed by depth-wise and point-wise convolutional layers.
The detailed architecture of our ConvBlocks is depicted in
Figure 4. Our model architecture exhibits significant devia-
tions from traditional SSD models, such as MobileNetV2-
SSD, tailored to the unique characteristics of hand gesture
recognition. Given that hands can be effectively encapsulated
within square bounding boxes, we have optimized our model
by focusing solely on square aspect ratios, leading to a
substantial reduction in the number of anchors by a factor of
approximately 3 to 5, thus streamlining the detection process.

Further enhancing the model’s performance, we have in-
corporated a Feature Pyramid Network (FPN) into our ar-
chitecture. This approach, akin to the multi-scale feature
extraction techniques employed in later versions of the YOLO
architecture (V3-V5), such as PANet and CSPNet, improves
our model’s ability to capture details across different scales.
This represents a departure from the original Faster R-CNN
architecture, which relies on a single-scale feature map ex-
tracted from the last layer of a backbone network (VGG or
ResNet) for region proposal and object detection.

The model is trained on three datasets: an in-the-wild dataset
for diverse conditions, an in-house dataset for consistent
hand angles, and a synthetic dataset for various angles and
environments. This comprehensive training approach ensures
inference speed and accuracy, outperforming MobileNetV2-
SSD in both aspects [36].

B. Hand Landmark Detection Model

0. WRIST 11. MIDDLE_FINGER_DIP
1. THUMB_CMC 12. MIDDLE_FINGER_TIP
2. THUMB_MCP 13. RING_FINGER_MCP
3. THUMB_IP 14. RING_FINGER_PIP

4. THUMB_TIP 15. RING_FINGER_DIP

5. INDEX_FINGER_MCP 16. RING_FINGER_TIP

6. INDEX_FINGER_PIP 17. PINKY_MCP

7. INDEX_FINGER_DIP 18. PINKY_PIP

8. INDEX_FINGER_TIP 19. PINKY_DIP

9. MIDDLE_FINGER_MCP
10. MIDDLE_FINGER_PIP

20. PINKY_TIP

Fig. 5. Key-point Indexes of All Hand Landmarks

The subsequent stage in SimplyMime’s pipeline is to extract
critical points from the isolated hand region after successful
localization in the image. For this purpose, we employ a
modified version of the Convolutional Pose Machines (CPM)
network, extensively used in human pose estimation [37].
The CPMs generate a confidence map for each key point,
represented as a Gaussian centered at the true position. These
maps are created based on the input image patch size, with

the final location of each key point determined by identifying
the peak in the corresponding confidence map. The model
constructs a palm skeleton by designating 21 landmarks at
various positions throughout the palm.

Dynamic Gesture Detection Algorithm: After extracting the
key points from the hand region, they are further analyzed
by the gesture detection engine. The 21 important locations
extracted indicate different hand regions, as shown in Figure
5. These landmarks serve as the foundation for identifying the
gesture the user intends to create. This processed information
is then used to control SimplyMime-enabled devices. The
proposed algorithm assigns a FingerState value to each digit.
An open finger is designated as 1, while a folded finger is
denoted as 0. To determine the FingerState, we leverage the Y-
axis coordinates of the metacarpophalangeal (MCP) joint and
the fingertip. The unique location and alignment of the thumb
necessitate calculating its slope to ascertain its FingerState.
This approach results in more precise and accurate gesture
recognition, enhancing the system’s overall performance.

-
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Fig. 6.  Working Results and Subsequent Arrays Generated by the
Landmark Detection Model

[1,1,0,0,1]

Through the use of a posture array, each gesture can be
accurately identified and differentiated. These posture arrays
can be designated as trigger functions to control a diverse
range of consumer electronics. Additionally, the MCP of the
middle finger is employed as the focal point to align and
center the camera, ensuring that the palm remains in view.
The midpoint between the tips of the thumb and index finger
is used to locate the cursor if necessary for a specific device.
Figure 6 demonstrates several images and their corresponding
posture arrays.

C. Palm Print Authentication Module

Without robust security mechanisms, these systems can be
easily compromised, leading to data breaches, unauthorized
access to sensitive information, and potential damage to de-
vices. SimplyMime employs PalmPrint identification, utilizing
Siamese Network architectures, a common approach used in
similarity recognition tasks [38], [39]. Our Siamese Neural
Network consists of three identical feature extraction blocks
sharing the same weights. This weight sharing enables the
network to converge faster compared to training three separate
models. The network generates a 4096-dimensional feature



IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

vector for each input image, and the similarity between two
images is computed using the Euclidean distance between
these vectors. The two palms’ resemblance is confirmed by
calculating the difference between their sets of embeddings
using the Euclidean distance function. To verify the legitimacy
of the user, a predefined threshold has been established. Access
to the system is restricted if the dissimilarity measure exceeds
the threshold, ensuring that only authorized individuals have
access to the system. This multi-factor approach ensures
that only authorized individuals have access to the system,
protecting against unauthorized attempts to control consumer
electronics.

During the training process, the network is presented with
three input images: an anchor image, a positive image, and
a negative image, as shown in Figure 7. The anchor and
positive images correspond to the palm print of the same
individual, while the negative image represents the palm print
of a different individual. The network is trained for 100 epochs
using the Triplet Loss function, with the Adam optimizer.
The XceptionNet [40] serves as the base model, acting as the
encoder. Two distances constitute the training process’s output,
and these are inputted into the triplet loss function [41], [42],
denoted by:

TripleLoss = i:[Hf(Tf) — f(@))|?
< (1)
—[If(zf) = faP)I? + o

In Equation I, the function f(x) maps input images to
a 4096-dimensional embedding. The anchor, positive, and
negative samples are denoted as a, p, and n, respectively.
The margin parameter « controls the relative distance between
positive and negative pairs to maximize their separation.

The selection of a 224x224 pixel input resolution is a
deliberate choice as it strikes a balance between computational
efficiency and the level of detail necessary for accurate hand
gesture recognition and palm print authentication. Our hand
gesture detection employs the BlazePalm [43] model as a
feature extractor, while palm print authentication is facilitated
by the XceptionNet model [40]. Both models are pre-trained
and belong to established convolutional neural network archi-
tectures, which are typically optimized for this specific input
size (224 x 224 pixels). This alignment with standard input
dimensions allows for leveraging the inherent advantages of
these well-established models, thereby enhancing the overall
performance and reliability of our system.

IV. EXPERIMENTAL RESULTS

We conducted extensive testing on three benchmark
datasets. The first dataset assessed the model’s ability to
accurately detect gestures in images, resulting in an impres-
sive 96.16%. accuracy [44]. The second dataset [45] was
utilized to evaluate the model’s detection rate, yielding an
accuracy of 87.37%. Further, we evaluated the proposed
Siamese network-based palmprint authentication system using
the CASIA dataset [46], resulting in an accuracy rate of over
90%. Benchmark datasets utilized are shown in Figure. 8.

TABLE Il
RESULTS OF PROPOSED HAND GESTURE RECOGNITION MODEL ON
THE HANDS DATASET [44]

Gesture name  Total frames Accurately predicted frames Accuracy %

Collab 750 670 89.33
TimeOut 750 686 91.46
XSign 750 704 93.86
Eight_VRF 750 708 94.40
Seven_VRF 750 714 95.20
Eight_VRF 750 718 95.73
Horiz_ HRF 750 727 96.93
Span_VRF 750 728 97.06
Six_VRF 750 732 97.60
Five_VRF 750 733 97.73
Four_VRF 750 736 98.13
Three_VRF 750 738 98.40
Two_VRF 750 739 98.53
One_VRF 750 741 98.80
Punch_VRF 750 742 98.93
Total 11250 10816 96.16%

A. HANDS Dataset

The HANDS dataset comprises a substantial corpus of sam-
ples collected from 5 diverse participants, consisting of 3 male
and 2 female individuals [44]. The participants were instructed
to perform 16 pre-defined gestures, including 12 single-handed
gestures performed with both arms and 4 double-handed ges-
tures. Each gesture was captured in 150 RGB frames, resulting
in a total of 11,250 images across all participants. Additionally,
the gestures were captured from varying distances, resulting
in a diverse range of depths and variations in hand poses.
This dataset was specifically chosen to evaluate SimplyMime’s
gesture detection capabilities due to its comprehensive range of
gestures and the inclusion of varied hand poses and distances,
which are critical for assessing the robustness and accuracy
of gesture recognition models. The dataset’s extensive variety
and depth make it particularly suited for testing the resilience
of SimplyMime’s architecture in real-world scenarios. Upon
evaluation of the dataset, our proposed model achieved an
overall accuracy of 96.16%. These performances are further
highlighted in Figure 9 and Table II, illustrating the gesture-
specific results.

To evaluate the effectiveness of the SimplyMime system,
we conducted a comparative analysis against other notable
models- Generative Adversarial Networks for hand gesture
detection [47], MobileNetV2 architecture [48] as shown in
Table III.

B. FreiHand Dataset

The FreiHand dataset is a benchmark dataset specifically
designed to evaluate the performance of hand detection and
hand pose estimation models [45]. The dataset contains over
32,560 frames of synchronized RGB and depth data, captured
using Microsoft Kinect v2 sensors, collected from 32 partic-
ipants. The participants were asked to perform a variety of
actions, including American Sign Language signs, counting,
and moving their fingers to their kinematic limits. They
also interacted with various objects such as workshop tools
(e.g., drills, wrenches, screwdrivers) and kitchen supplies (e.g.,
chopsticks, cutlery, bottles). These diverse actions and object
interactions ensure that the dataset comprehensively captures
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Fig. 8. Benchmark Datasets Utilized in SimplyMime Experimentation

TABLE IlI
COMPARISON OF SIMPLYMIME WITH THE EXISTING SOLUTION
Research Approach Accuracy
Kim et al. (2017) [49] CNN 90%
Dang et al. (2018) [50] CNN with Parallel Convo-  91.28%
lution
Nunez et al. (2018) [51] CNN+LSTM 95.7%
Sagayam et al. (2019) [5S2] HMM + SSA 90.74%
Chung et al. (2019) [53] Deep CNN 95.61%
Sharma et al. (2020) [54] KNN+ORB 95.81%
Tasmere et al. (2021) [55] CNN 94.61%
Dang et al. (2022) [48] MobileNetV2 94%
Feng et al. (2022) [47] GANs 96%
Xiong et al. (2023) [56] Deep CNN 85.75%
Leelakittisin et al. (2023) GLF-CNN 88.34%
[57]
SimplyMime CNN based Skeletal Pose  96%
Estimation

different types of grasps and hand movements, making it ideal
for testing the robustness of hand detection models.

Additionally, while YOLO is often regarded as faster than
SSD, its grid-based method can struggle with the detection
of small objects. Particularly, YOLO models even with the
integration of FPN, may not extract features as effectively as
SSD for small objects. This is because SSD specifically lever-
ages multiple feature maps from different levels of the network
to make predictions, capturing more detailed information. A
detailed performance analysis, depicted in Figure 11, compares
the inference speed and performance of our model with that of
Faster R-CNN and YOLO, demonstrating the tailored efficacy
of our architecture for hand gesture recognition.

Table IV presents a comparative analysis of the performance
metrics for Raspberry Pi 4, Jetson Nano, and Arduino Portenta
H7 across different configurations. It highlights the latency,
RAM usage, flash memory consumption, and accuracy for
both quantized (int8) and unoptimized (float32) models. The
results indicate varying performance characteristics depending
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on the hardware and model optimizations, with each device
showcasing unique strengths in specific configurations.

In addition to evaluating the performance of the proposed
model, we assessed the accuracy of our palmprint identifica-
tion component using the CASIA Palmprint Image Database
(CASIA-Palmprint) [46]. This dataset comprises 5,502 palm-
print images captured from 312 subjects, providing a diverse
and comprehensive collection of palmprints under various
lighting conditions. For our experiments, we utilized a subset
of the data, focusing on images taken in the lowest wavelength
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sample and white light, resulting in a dataset with 12,000
samples in total. This subset was chosen to rigorously test
the model’s performance under different lighting conditions,
crucial for real-world applicability.

We pre-processed the dataset leveraging a custom data
loader that generated test triplets from the CASIA dataset,
where a triplet consists of an anchor image, a positive im-
age, and a negative image. During training, the model was
presented with these triplets, using the triplet loss function to
optimize the embedding space, ensuring that similar images
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TABLE IV
DEVICE PERFORMANCE COMPARISON OF SIMPLYMIME ON VARIOUS DEVICES [RASPBERRY PI 4, JETSON NANO, AND ARDUINO PORTENTA H7

Device Configuration Latency (per | Latency (model) | RAM Flash Accuracy
frame)

Raspberry Pi 4 (RAM - 8GB, Pro- | Quantized (int8) 1 ms 3 ms 412K | 229.3K 94.90%
cessor Family — CortexA)

Unoptimized (float32) 1 ms 8 ms 1.4M | 310.9K 94.90%
Jetson Nano (RAM - 4GB, Processor | Quantized (int8) 1 ms 9 ms 1.IM | 229.3K 94.90%
Family — CortexA)

Unoptimized (float32) I ms 4 ms I.IM | 3109K 94.90%
Arduino Portenta H7 (RAM - | Quantized (int8) 1 ms 71 ms 1.IM | 229.3K 94.90%
440KB, Processor Family - Cor-
texM?7)

Unoptimized (float32) 1 ms 115 ms 1.IM | 310.9K 94.90%
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TABLE V
MODEL'S PERFORMANCE ON VARIOUS DATASETS
Evaluation Metric FrieHand [45] SHREC’17
Gesture) [58]

Total images 32560 280000
Truly detected images 28448 221536
Falsely detected images 4112 58464
Accuracy 87.37% 79.12%
Error 12.62% 20.87%
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Fig. 12. Confusion Matrix Generated by the Siamese Networks

are closer together while dissimilar images are further apart.

The proposed model’s training metrics are depicted in
Figure 10. When trained, the model weights and biases were
adjusted to better discriminate between the three inputs. Figure
12 illustrates the confusion matrix acquired from the test set
of the data.

Our evaluation of the SimplyMime model on these bench-
mark datasets validates its strong performance in hand gesture
recognition and palmprint identification. The HANDS dataset
was selected for its comprehensive gesture variety and diverse
participant demographics, providing a thorough test of gesture
recognition capabilities. The FreiHand dataset was chosen for
its challenging conditions that mimic real-world scenarios, en-
suring robustness in various environments. The CASIA dataset
was employed to rigorously test the palmprint authentication
system under different lighting conditions. These datasets col-
lectively demonstrate SimplyMime’s efficacy, outperformance
of existing solutions, and enhanced practicality and usability
in real-world scenarios. This innovative combination of hand
gesture recognition and palmprint identification represents a
significant advancement in human-computer interaction.

C. Evaluation of SimplyMime Usabability

We performed Usability Testing (UT) of SimplyMime with
the help of 44 engineering students, faculty, staffs from VIT-
AP University . The participants were asked to use Sim-
plyMime while at the same time completing a comprehen-
sively oriented questionnaire. Some of these self-developed
questions consist of perceived easy interface, satisfied the
‘easier to operate than the original remote control’ condition,
and satisfaction with the system. Some of the following
responses indicated that a significant population of users
regarded SimplyMime to be highly usable, or more preferable
to conventional remote controls. In addition, the responses
obtained showed high satisfaction with the technology with
variations in the perceived ease of the technology.

Figure. 13 shows the detailing responses of the partic-
ipants from VIT-AP University who tested SimplyMime’s
usability. The graphs encompass data about the age of the
participants, the participants’ generalized willingness towards
using SimplyMime, the willingness to employ SimplyMime
ahead of the standard remote control, and the satisfaction
of the SimplyMime technology. This clear overview allows
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Fig. 13. Usability Testing and User Feedback of SimplyMime

identifying how people from various age groups can further
assess the usability and efficiency of SimplyMime.

V. CONCLUSION AND FUTURE ENHANCEMENT

In this paper, we present SimplyMime, a novel hand gesture-
based control system that aims to provide an immersive,
efficient, and secure user experience. Eliminating the need
for multiple remote controls, the system leverages advanced
hand gesture recognition techniques, to create a sophisticated
architecture that can recognize a wide range of hand gestures
with high accuracy. Additionally, SimplyMime incorporates a
palmprint authentication module, which enhances the security
of the system by ensuring that only authorized users can
access the device. Through thorough testing and evaluation,
SimplyMime achieved accuracy levels of 96.16% for hand
detection, 87.37% for gesture recognition, and 90% for palm-
print authentication. These results serve as a testament to the
effectiveness and efficiency of SimplyMime. Overall, Sim-
plyMime offers significant advantages over traditional remote
control systems, making it an excellent alternative for users
looking for a more intuitive and efficient way of controlling
their consumer electronics.

Despite the impressive performance of SimplyMime, there
is still scope for further enhancements. Future improvements
to the accuracy and dependability of the system could come
from adding more sensors, like proximity and depth sensors,
to increase the system’s robustness. Subsequent developments
will also try to lower the processing power needed while
raising the model’s accuracy.
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