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ABSTRACT

The utilization of consumer electronics, such as televisions, set-top boxes, home theaters, and
air conditioners, has become increasingly prevalent in modern society as technology continues
to evolve. As new devices enter our homes each year, the accumulation of multiple infrared
remote controls to operate them not only results in a waste of energy and resources, but also
creates a cumbersome and cluttered environment for the user. This paper presents a novel system,
named SimplyMime, which aims to eliminate the need for multiple remote controls for consumer
electronics and provide the user with intuitive control without the need for additional devices.

SimplyMime leverages a dynamic hand gesture recognition architecture, incorporating Artificial
Intelligence and Human-Computer Interaction, to create a sophisticated system that enables users
to interact with a vast majority of consumer electronics with ease. Additionally, SimplyMime has a
security aspect where it can verify and authenticate the user utilising the palmprint, which ensures
that only authorized users can control the devices. The performance of the proposed method for
detecting and recognizing gestures in a stream of motion was thoroughly tested and validated
using multiple benchmark datasets, resulting in commendable accuracy levels.

One of the distinct advantages of the proposed method is its minimal computational power
requirements, making it highly adaptable and reliable in a wide range of circumstances. The
paper proposes incorporating this technology into all consumer electronic devices that currently
require a secondary remote for operation, thus promoting a more efficient and sustainable living
environment.
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I. Introduction

Smart electronics, such as televisions, air conditioners, speakers, and ceiling fans, have become ubiquitous in modern
society. Thus driving the framework of smart cities and smart villages which are intended to operate optimally with
limited resources while best utilizing the available resources to improve quality of life [1], [2]. With the proliferation
of inexpensive and readily available devices, most households have multiple electronic devices that require remote
controls for operation and interaction [3]. As the number of devices increases each year, so too does the number of
remote controls needed to operate them. This traditional method of interaction, while widespread and commonly
used, is not without its flaws. The use of multiple remote controls not only wastes resources and increases the use
of plastic, but also makes it difficult to locate and operate the correct remote for a given device [4].

The first remote-control devices were introduced in the 1950s, but it wasn’t until the 1970s that infrared-based
remotes began to appear on the market [5]. Despite some advancements in human-computer interaction (HCI)
technology, such as keyboard and mouse alternatives and devices that use Bluetooth or WiFi communication, these
new approaches have not been able to fully replace traditional remote controls due to a lack of seamless functionality.
However, recent advances in HCI technology, such as voice commands, mimics, and gestures used in devices such
as tablets, smartphones, and smart homes, have shown that there is still potential for improvement in the field [6].

SimplyMime is a hand gesture-based control system for consumer electronics that addresses the shortcomings of
traditional remote controls. Hand tracking is a natural and intuitive mechanism for identifying hand movements,
and it has been studied for a long time. Skeleton-based hand tracking, due to its resistance to various background
conditions, has proven to be a popular choice for this type of technology [7]. SimplyMime offers a lightweight
solution that can track hands and provide real-time output, enabling it to be incorporated into a compact system
that can be installed in any electronic appliance. Furthermore, traditional remote controls lack security features.
To further enhance security, SimplyMime incorporates facial recognition and detection to authenticate and validate
the user’s identity. This added security measure ensures that only authorized users are able to control the devices,
providing an additional layer of protection for users.
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Figure 1. Diagrammatic representation of the architectural working of SimplyMime

SimplyMime harnesses the power of hand detection technology to recognize various user gestures, as outlined in
Section IV. This allows for the execution of specific actions, such as controlling embedded devices, such as turning
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them ON/OFF, adjusting speeds and volumes, among others. It offers an efficient and intuitive means of interacting
with consumer electronics.

The main objectives of SimplyMime are the following:

o User-centric Design: As discussed in Section III, various technologies have been proposed to control different
devices, but few have given consideration to the user’s convenience. SimplyMime prioritizes ease of use for
the end user.

o Seamless Integration: The SimplyMime system is designed to be integrated seamlessly into any device
without altering its internal architecture, making it easy for users to migrate from traditional remote controls
to this new technology.

« Sustainable Solutions: SimplyMime offers a one-stop solution for controlling multiple devices, reducing the
accumulation of e-waste such as remote controls and other controllers.

« Advanced Security: SimplyMime includes a security authentication component that verifies and authenticates
the user before granting access, providing an added layer of security, unlike traditional remote controls.

Rest of the paper is organized as follows: Section II outlines novel contributions of the current paper. Section III
discusses about the existing related research. Section IV provides the system level architecture of the proposed
SimplyMime and outlines the novel methods proposed for hand detection, hand landmark detection and Palm print
authentication. Section V is used to validate the results of the proposed SimplyMime system and also provides a
comparative analysis of SimplyMime against the state of the art solutions. Finally, the paper concludes in Section
VI

I1. Novel Contributions of the Current Paper

1) Problem Addressed

The traditional remote controls require line of sight and precise pointing, hindering the user’s freedom of movement
and reducing the overall comfort level. As discussed earlier, even the recent contributions fail to develop a solution
which eliminated the requirement of additional device completely, and provides a better intuitive experience to the
user, resulting in unreliable and frustrating user experiences.

2) Solution Proposed by SimplyMime

SimplyMime is a state-of-the-art system that employs advanced hand gesture recognition techniques, leveraging
the latest advancements in Artificial Intelligence and Human-Computer Interaction, to create a highly efficient and
intuitive control framework for consumer electronics. The system utilizes a camera to capture the user’s hand
gestures, which are then translated into commands for electronic devices. The dynamic architecture of SimplyMime
enables it to adapt to various hand gestures and provide a seamless user experience. The architecture is equipped
with a palm print authentication module that ensures the device is only accessible to authorized users.

The SimplyMime system is designed to eliminate the need for multiple remote controls, providing users with a
streamlined and organized living space. By removing the need for additional devices, SimplyMime offers a more
sustainable solution that saves energy and resources. Moreover, the intuitive nature of the system provides users
with greater comfort and convenience, as they no longer have to search for and operate multiple remote controls.
Additionally, the dynamic architecture of SimplyMime enables it to adapt to new gestures, ensuring that it can keep
up with the changing needs of users.

3) Significance of the Proposed Solution

Our proposed solution, SimplyMime, offers several advantages over traditional remote control systems. First, it
eliminates the need for multiple controllers, leading to a cleaner, more organized living space. Second, the system
offers a more immersive and intuitive experience for users, making it easier to interact with electronic devices.
Moreover, our pipeline incorporates a security feature that is often overlooked in previous solutions, by enabling
verification and authentication of the user through the use of palmprint recognition. This added security measure
ensures that only authorized users are able to control the devices, providing an additional layer of protection for users.
We believe that SimplyMime’s innovative approach to remote control systems has the potential to revolutionize the
way users interact with their consumer electronics. Its minimal computational requirements make it highly adaptable
and reliable in a wide range of circumstances, making it an ideal solution for households and businesses alike.
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II1. Prior Related Research

Hand gesture recognition technology has been a subject of study for several years, with developments in different
fields, including human-computer interaction, gaming, augmented reality, and assistive technology for those with
disabilities. The hand, in particular, is used extensively for gesturing compared to other body parts because it is
a natural means of human communication and therefore the most appropriate tool for HCI [7]. And evidently,
controlling electronic devices with our hands is a natural and highly intuitive method of interaction. The use of
hand gesture recognition to operate consumer electronics such as televisions and home appliances is also gaining
traction [8]. This application area has the potential to revolutionise how we interact with electronic devices in our
homes by enabling simple hand gestures to control them. However the efforts to develop a reliable and robust hand
gesture recognition system for this application ares is still lacking.

Variability in how individuals make gestures is one of the greatest obstacles to hand gesture recognition. People
can perform the same gesture differently based on their age, gender, cultural background, and physical capabilities.
Researchers have developed various techniques for capturing and analysing hand gestures, including computer
vision, machine learning, and sensor-based approaches [9].

A. Sensor-based Methods

The majority of existing methods can be divided into two categories, with sensor-based systems constituting the
first. Utilizing specialised sensors to capture the movement and orientation of the hand, sensor-based methods for
hand gesture recognition capture the hand’s motion and the orientation. These sensors may include accelerometers,
gyroscopes, magnetometers, and other types of sensors that can measure the hand’s movement and position [10].
Sensor-based methods have a number of advantages over other methods, including the ability to capture precise
information about the hand’s movement and position and the capacity to function in environments with poor lighting
or visibility. In a recent study, the authors employed the utilization of inertial sensors, specifically accelerometers
and gyroscopes, in conjunction with a multilayered perceptron classifier to recognize hand gestures [11]. Adopting
a similar methodology, other researchers have developed a finger-worn ring device that captures acceleration data,
paired with an LSTM model for the classification of hand gestures [12]-[14]. Likewise, Inviz device incorporates
textile-based flexible capacitive sensor arrays for motion detection [15]. This approach has been utilized to develop
systems that cater to individuals with paralysis, paresis, weakness, and restricted range of motion. Other notable
developments include the WristCam [16], a wrist-worn camera sensor that estimates and recognizes hand trajectories,
as well as the EchoFlex [17], a wearable ultrasonic device that tracks hand movements through a novel method.
The research makes use of the muscle flexor data collected by the proposed device to develop an algorithm for
gesture recognition that combines image processing and neural networks.

Sensor-based systems provide precise information about the hand’s movement and position and can function in
environments with poor lighting or visibility. However, the requirement for the user to wear additional devices
restricts the versatility and scalability of these systems. In many instances, faulty sensor calibration can result in
errors in gesture recognition, resulting in abysmal performance.

B. Vision-based Methods

The integration of computer vision and human-computer interaction has enabled the development of innovative
systems aimed at addressing limitations and providing users with a more immersive and efficient experience
when interacting with machines. One of the initial approaches in the development of vision-based sensors was
the utilization of a colored glove [18]. This method required the user to wear a colored glove, which enabled the
system to employ a nearest-neighbor approach for tracking hand movements at interactive rates. Several studies that
employed the use of the Kinect sensor utilized color and image depth data to establish a hand model for the analysis
of tracked hand gestures. The hand gesture tracking was accomplished through the implementation of a Kalman
filter [19]. However, it was observed that the gesture recognition accuracy was relatively low. Similar research
utilized RGB-D cameras to extract hand location data through the use of in-depth skeleton-joint information from
images [20], [21]. Furthermore, similar to the architecture of SimplyMime, a few works employed neural networks
to infer real-time hand landmarks, which were used to establish a skeletal structure of the hand gesture [22], [23].

Computer vision-based systems are non-intrusive and more versatile than sensor-based systems, but they can
be affected by poor lighting or visibility. Moreover, recognizing gestures from complex backgrounds is still a
challenging task. As a reason, SimplyMime focuses on developing robust and reliable hand gesture recognition
systems that can overcome these challenges and enable natural and intuitive interactions with electronic devices.
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Table I
COMPARISON OF EXISTING HAND GESTURE RECOGNITION MODELS
Methodology . Requirement of Requirement Security
Research Employed Findings and Outcome additional device of Calibration Module
- Achieved an accuracy of 98.33%.
Teachasrisaksakul et al. Inertial Sensors - However, the performance will be impacted Accelerometer and Yes None
(2018) [11] o by external factors, such as the user’s body Gyroscope ;

movements or the environmental conditions

- Utilized a built-in LSTM model that leveraged
data from a finger-worn ring.
Inertial Sensors - The performance will be impacted by factors Finger-worn device  Yes None
such as sensor placement, variations among users,
and changes in hand gesture execution over time.

TinyDL (2021)
[12]

- Relies on textile-based capacitive arrays built into

Inviz (2015) Textile-based clothing. . . - Wearghle textile
.. - The production of wearable textile capacitive capacitive sensor Yes None
[15] capacitive arrays .
sensor arrays could increase the cost and Arrays
complexity of the system.
- Utilizes ultrasound sensors to capture hand
EchoFlex Ultrasound movement data, which is then analyzed using ML Ultrasonographic
(2017) [17] Imaging algorithms. Device Yes None
- Susceptible to interference from nearby objects
or environments with high acoustic noise
- Employs colour segmentation and a tracking
algorithm is applied to estimate the hand pose and
Wang et al. (2009) . motion.
[18] Tmage Processing _ Recognition accuracy would be affected by Coloured Glove No None
factors such as lighting conditions, colour
variations, and occlusions.
- Demonstrates the feasibility of combining various
Feng et al. (2014) Kinect Sensors types Qf sensors for human motion tragkmg. ] Microsoft Kinect Yes None
[19] - Requires a high-performance computing device Sensor
to achieve real-time performance
Skeleton-based . . . -
SHREC (2021) hand gesture - Achieved high accuracy in recognizing hand None No None

[23]

Recognition gestures in various real-world scenarios

- Delivers intuitive control without additional
. . CNN based . .
SimplyMime devices Palmprint based
Skeletal Pose . N . None No e
(Current Paper) L - Incorporates palmprint authentication to verify Authentication
Estimation .
and authenticate users

IV. SimplyMime: The Proposed Smart Remote Control

The proliferation of consumer electronics has resulted in the widespread use of traditional remote controls as the
primary means of interaction. However, in order to effectively replace such a firmly established technology, an
alternative solution must not only be robust, precise, and intuitive, but also possess the added benefits of user-
friendliness, compatibility with older devices, and scalability [8]. Our proposed work, SimplyMime, addresses the
shortcomings of existing solutions, while also maintaining the immersive experience that traditional remote controls
are capable of delivering. The dynamic hand gesture recognition module, represents the most advanced, effective,
and ideal replacement for traditional remote controls, providing a unique blend of state-of-the-art performance and
efficiency.

The underlying architecture of the system incorporates a hand landmark assignment method, which is utilized to
identify and localize key points across the hand, such as finger tips, knuckles, and wrists. These landmarks, assigned
by the backend model, form the basis for the gesture recognition algorithm, which is able to identify and classify
gestures based on the skeletal structure generated. The system is designed to operate in two distinct modules, which
are discussed in greater detail in the following sections. The first module, the hand detection model, is responsible
for identifying and isolating the human hand within an image. The second module, the gesture recognition model,
processes the detected hand to generate a skeletal structure of the gesture and subsequently recognizes it. The
suggested approach constitutes a noteworthy progression in the domain of hand gesture detection, showing potential
as a viable substitute for conventional human-computer interaction techniques.
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A. Hand Detection Model

The foundation of an effective hand gesture identification model is the accurate detection and isolation of the
hand from the given image. To achieve this, SimplyMime employs state-of-the-art neural network technology for
localizing the coordinates of the palm. Our model specifically utilizes the Single Shot Detector (SSD) architecture
[24]. While conventional RCNN models have been widely used for object localization, they require significant
computational power, making them less reliable for real-time applications [25]. In contrast, our SSD algorithm
achieves superior real-time performance by eliminating the need for bounding box proposals and the subsequent
feature re-sampling stage. This allows for a more efficient and effective approach to hand detection, which is a
crucial component of an accurate gesture identification system.

loc : (ex, ¢y, w, h)
conf : (0.92,0.001, 0.04, 0.003...)

[ Ground Truth Boxes ] [ 8 x 6 feature Map ] [ Final Output ]

Figure 2. Working overview of the Hand detection model
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Figure 3. Comprehensive view of the Gesture recognition module’s architecture

The hand detection model employed in SimplyMime utilizes a unique approach in which it is initially trained on
human palms rather than the entire hand. This approach allows the network to more easily perceive patterns and
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generate bounding boxes, as the palms and fists are more rigid objects when compared to a human hand with
articulated fingers. In the task of detecting human hands, the last layer of the model creates substantially smaller
anchor boxes, as human hands are smaller objects and thus require smaller anchor boxes. The architectural network
of SimplyMime’s detection model is illustrated in Figure 3. The feature extraction network takes an input RGB
image of 224x224px and is followed by a series of convolutional layers, referred to as ConvBlocks, which serve as
the bottleneck for the higher abstraction level layers. Essentially, the image is passed through 5 single and 6 double
ConvBlocks. The introduced ConvBlocks consist of a series of convolutional layers, followed by a depth-wise and a
point-wise convolutional layer. The detailed architecture of our Convblocks is depicted in the Figure 4. Furthermore,
our network outperformed a popular light-weight model, MobileNetV2-SSD [26], in terms of both accuracy and
inference speed.

(e gy

: 5 x 5 Depth-wise Conv i

e —— |
i 5 x 5 Depth-wise Conv E i Ix1 Coan / Project i
i v E : J  Activation i
H 1 x 1 Conv ' E 5 x 5 Depth-wise Conv | |
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i 9 Activation {1 1 x 1 Conv / Expand i
R g e a ~ :
Single Conv Block E 69 Activation i

| SR o daketnd e lotucld -
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Figure 4. Inner structure of the devised Convolution blocks

The detection architecture of SimplyMime is designed to be highly robust and accurate, and this is achieved through
the use of a diverse set of training data. To ensure that the model is able to generalize well to a wide range of
scenarios, it is initially trained on three different sources of data. The first of these is an in-the-wild dataset, which
comprises a diverse set of images captured in various geographical locations and under different lighting conditions,
allowing the model to learn to detect hands under a wide variety of conditions. The second data source is an in-
house dataset, which is specifically designed to cover all possible hand angles in a controlled environment. This
dataset allows the model to learn to detect hands under consistent conditions, and the combination of these two
datasets allows for a well-represented and diversified dataset. Finally, the model is further trained on a synthetic
dataset to ensure that it is able to detect hands under a wide range of angles and in a variety of environments,
further improving its robustness and accuracy.

B. Hand Landmark Detection Model

Having successfully localized the hand in the image, the next step in SimplyMime’s pipeline is to extract key-points
from the isolated hand region. For this purpose, we employ a modified version of the Convolutional Pose Machines
(CPM) network, which has been extensively used in the field of human pose estimation [27]. The CPMs provide a
confidence map for each keypoint, represented as a Gaussian centered at the true position. These maps are generated
based on the size of the input image patch, and the final location of each keypoint is determined by identifying the
peak in the corresponding confidence map. By assigning 21 landmarks across different points across the palm, the
model achieves to generate a skeletal structure of the palm.

Dynamic Gesture Detection Algorithm

After extracting the keypoints from the hand region, they are transferred to the gesture detection engine for further
analysis. These keypoints, which consist of 21 points, represent distinct areas of the hand and are illustrated in Figure
5. They serve as the basis for identifying the gesture that the user intends to create. This processed information is
then utilized to control the SimplyMime-enabled devices. Our algorithm incorporates a sophisticated technique that
assigns a FingerState value to each digit. An open finger is designated as 1, while a folded finger is denoted as
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0. WRIST 11. MIDDLE FINGER_DIP
1. THUMB_CMC 12. MIDDLE_FINGER_TIP
2. THUMB_MCP 13. RING_FINGER_MCP
3. THUMB_IP 14. RING _FINGER_PIP

4. THUMB_TIP 15. RING_FINGER_DIP
5.INDEX FINGER MCP  16. RING FINGER TIP

6. INDEX_FINGER_PIP 17. PINKY MCP

7. INDEX_FINGER_DIP 18. PINKY_PIP

8. INDEX_FINGER TIP 19. PINKY DIP

9. MIDDLE_FINGER_MCP  20. PINKY_TIP

10. MIDDLE FINGER_PIP

Figure 5. Key-point indexes of all hand landmarks

0. To determine the FingerState, we leveraged the Y-axis coordinates of the metacarpophalangeal (MCP) joint and
the fingertip. Nevertheless, the thumb’s unique location and alignment necessitated calculating its slope to ascertain
its FingerState. This approach results in more precise and accurate gesture recognition and enhances the system’s
overall performance.

The concluding stage of the process involves the recognition of gestures by analyzing the extracted keypoints from
the hand region. Through the use of a posture array, each gesture can be accurately identified and differentiated
from one another. These posture arrays, each unique to a particular gesture, can be designated as trigger
functions to regulate a diverse range of consumer electronics. To add a dynamic element to the algorithm, the
metacarpophalangeal joint (MCP) of the middle finger is employed as the focal point to align and center the
camera, ensuring that the palm remains in view. Moreover, the midpoint between the tips of the thumb and index
finger is used to locate the cursor, if necessary, for a specific device. Figure 6 demonstrates several images and
their corresponding posture arrays.

C. Palm Print Authentication Module

The protection of security is of paramount importance in hand gesture-based systems utilized for controlling
consumer electronics, as these systems are susceptible to unauthorized access and control [28]. Without robust
security mechanisms, these systems can be easily compromised, leading to data breaches, unauthorized access to
sensitive information, and potential damage to devices. Therefore, it is essential to incorporate advanced security
measures during the design and development of hand gesture-based systems to mitigate these risks. The integration
of strong security measures is critical for ensuring the reliability and integrity of hand gesture-based systems for
consumer electronics.

SimplyMime employs advanced biometric authentication methods, specifically, PalmPrint identification. To achieve
this, we utilize a Siamese Network architecture, a common approach used in similarity recognition tasks like
facial recognition [29]. Our network includes two parallel feature extraction blocks that process two distinct palm
images, producing a 4096-dimensional tensor for each image. By measuring the dissimilarity between the two sets
of embeddings utilizing the euclidean distance function, the similarity between the two palms is verified. A pre-
determined threshold is established to establish the authenticity of the user. Access to the system is restricted if the
dissimilarity measure exceeds the threshold, ensuring that only authorized individuals have access to the system.
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Figure 6. Working results and subsequent arrays generated by the landmark detection model
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This multi-factor approach ensures that only authorized individuals have access to the system, protecting against
unauthorized attempts to control the consumer electronics. Furthermore, implementing these security measures
guarantees the protection of personal and sensitive information, enhancing the system’s reliability and integrity.

During the training process, the network is presented with three input images, including an anchor image, a positive
image, and a negative image. The anchor and positive images correspond to the palm print of the same individual,
while the negative image represents the palm print of a different individual. The network is trained for 100 epochs
using the Triplet Loss function, which is optimized using Adam optimizer [30]. The XceptionNet [31] serves as
the base model, acting as the encoder. The output of the training process is a set of two distances, which are input
into the Triplet Loss function [32], as shown in Equation 1:

TripleLoss = > _[If(xf) = f(=])]* 0

N

—[1f (@) = fF@)]? + o]
Figure 7 illustrates the architectural functioning of the SimplyMime’s authentication module.

In the Equation 1, the function f(x) maps each input image to a 4096-dimensional embedding, represented by
a tensor. The input images, denoted as a, p, and n, respectively correspond to the anchor, positive, and negative
samples used in the triplet loss function. The margin parameter « is used to control the relative distance between
the positive and negative pairs, with the goal of maximizing the separation between them.

D. Hardware Implementation and Setup

The hardware setup of SimplyMime is a crucial aspect of its overall design and functionality. The camera is mounted
on a cuboidal cardboard structure that is equipped with a motor on its right side, which enables control over the
Y-axis movement. The cardboard structure is further mounted on a CD disk which is connected to another motor,
allowing for control over the X-axis movement. These motors are connected to an On-board microcontroller, which
facilitates communication between the hardware components and the software algorithms. Figure 9 provide a visual
representation of the hardware setup, while the circuit diagram in the Figure 8 illustrates the connections between
the various components. The hardware setup is designed to be compact, portable, and easy to set up, enabling users
to easily control consumer electronics with hand gestures.

9
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Figure 7. Working pipeline of the Siamese network based authentication model
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Figure 8. Circuit implementation of SimplyMime
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Figure 9. Hardware setup of SimplyMime

V. Experimental Results

In order to thoroughly evaluate the performance and accuracy of our hand gesture recognition model, we conducted
extensive testing on two benchmark datasets. The first dataset was utilized to assess the model’s ability to accurately
detect gestures in images, resulting in an impressive 96.16% accuracy [33]. The second dataset [34] was utilized
to evaluate the model’s detection rate, yielding a accuracy of 87.37%. Additionally, we also evaluated our Siamese
network-based palmprint authentication system using the CASIA dataset [35], resulting in an accuracy rate of
over 90%. These results demonstrate the effectiveness and robustness of our proposed model in identifying and
authenticating hand gestures for controlling consumer electronics. Figures 10(a), 10(b), and 10(c) set our few
samples from all the utilised benchmark datasets.

A. HANDS Dataset

The HANDS dataset comprises a substantial corpus of samples collected from 5 diverse participants, consisting of 3
male and 2 female individuals [33]. The participants were instructed to perform 16 pre-defined gestures, comprising
of 12 single-handed gestures performed with both arms, and 4 double-handed gestures. Each gesture was captured
in 150 RGB frames, resulting in a total of 11,250 images across all participants. Additionally, the gestures were
captured from varying distances, resulting in a diverse range of depths and variations in the hand poses.

Upon evaluation of the dataset, our proposed model achieved an overall accuracy of 96.16%. The evaluation metric,
the recall in particular, is extremely crucial for evaluating SimplyMime as they provide an understanding of how well
the model is able to correctly identify hand gestures among the input data, and balance the trade-off between false
positives and false negatives. These metrics aid in evaluating the overall performance of the model and the ability
of the model to generalize to unseen data. The Recall is used compute the proportion of true positive predictions
among all actual positive instances in the data. In the context of SimplyMime, a high recall score indicates that
the model is able to identify a high proportion of true hand gestures among all gestures present in the input data.
These performances are further highlighted in Figure 11 and Table II, where the gesture-specific results are also
illustrated.

Furthermore, in order to evaluate the effectiveness of our proposed system, we conducted a comparative analysis
against other notable models in the field. One such study utilized Generative Adversarial Networks for hand
gesture detection [36], while another employed a similar pipeline to ours and leveraged the popular MobileNetV2
architecture as the baseline model [37]. Despite the high accuracy results achieved by these models, they required
significant computational power. In contrast, our proposed system, SimplyMime, achieved comparable performance
and precision while requiring significantly less computational resources as shown in Table III.

B. FreiHand Dataset

A robust hand gesture-based control system requires a strong hand detector as its backbone. The hand detector’s
primary function is to accurately localize the hand region within an image, which is crucial for the subsequent gesture
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(b) FreiHand Dataset [34]

(c) CASIA Dataset [35]

Figure 10. Benchmark datasets utilized in SimplyMime Experimentation
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Figure 11. Results of various Gestures classified and labeled

12



A PREPRINT - APRIL 10, 2023

Table 11
RESULTS OF OUR HAND GESTURE RECOGNITION MODEL ON THE HANDS DATASET [33]

Gesture name Total frames Accurately predicted frames Falsely predicted frames Accuracy % Error % Recall

Collab 750 670 80 89.33 10.67 0.89
TimeOut 750 686 64 91.46 8.53 0.91
XSign 750 704 46 93.86 6.13 0.94
Eight_VRF 750 708 42 94.40 5.60 0.94
Seven_VRF 750 714 36 95.20 4.80 0.95
Eight_VRF 750 718 32 95.73 4.26 0.96
Horiz_HRF 750 727 23 96.93 3.06 0.97
Span_VRF 750 728 22 97.06 2.93 0.97
Six_VRF 750 732 18 97.60 2.40 0.98
Five_VRF 750 733 17 97.73 2.26 0.98
Four_VRF 750 736 14 98.13 1.86 0.98
Three_VRF 750 738 12 98.40 1.60 0.98
Two_VRF 750 739 11 98.53 1.46 0.99
One_VRF 750 741 9 98.80 1.20 0.99
Punch_VRF 750 742 8 98.93 1.06 0.99
Total 11250 10816 434 96.16 3.85 0.9613
Table III
COMPARISON OF OUR HAND GESTURE RECOGNITION MODEL AGAINST EXISTING SOLUTION
Research Architecture Used Accuracy
Feng et al. (2022) [36] GANs 96%
Dang et al. (2022) [37] MobileNetV2 94%
SimplyMime CNN based skeletal 96%

pose estimation

recognition stage. Therefore, to evaluate the performance of our hand gesture recognition model, SimplyMime, we
also conducted evaluations to measure the capacity of our hand detector. The results of these evaluations provide
insight into the model’s ability to accurately detect and localize the hand region, which is crucial for the overall
performance of the system. Additionally, by comparing the results of our hand detector with those of other models,
we can gain a better understanding of the performance of our system in relation to the state-of-the-art.

The FreiHand dataset is a benchmark dataset specifically designed to evaluate the performance of hand detection
and hand pose estimation models [34]. The dataset contains over 32,560 frames of synchronized RGB and depth
data, captured using Microsoft Kinect v2 sensors, collected by 32 people. This dataset is considered to be one of
the most challenging datasets for hand detection and pose estimation, as it contains a wide range of hand poses and
motion, captured under various lighting conditions and backgrounds. To evaluate the performance of SimplyMime,
we used the Freihand dataset to test our model’s ability to detect hands and estimate hand poses. The dataset
was particularly useful in evaluating the model’s performance under challenging conditions such as low resolution,
low contrast, and occlusions [34]. Our model was able to achieve a high level of accuracy in detecting hands and

estimating hand poses, even under these challenging conditions. Our system’s results on the dataset are depicted in
Table IV.

Table IV
MODEL’S PERFORMANCE ON FRIEHAND DATASET [34]

Evaluation Metric Value
Total images 32560
Truly detected images 28448
Falsely detected images 4112
Accuracy 87.37%
Error 12.62%
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Figure 12. Performance measures of the proposed palm print authentication model
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C. Evaluation of Palm Print Identification Module

In addition to evaluating the performance of our hand gesture recognition model, we also sought to assess the
accuracy of our palmprint identification component. To do so, we utilized the CASIA Dataset [35], which comprises
a large and diverse collection of palmprint images. The dataset includes images from over 100 individuals, captured
under various lighting conditions. However, we utilised a subset of the data, particularly the images taken in lowest
wavelength sample and white light specifically. As a result, we acquired a dataset with 12000 sample in total. Further
on, we pre-processed the dataset leveraging a custom data loader that generated test triplets from the CASIA dataset,
where a triplet consists of an anchor image, a positive image, and a negative image. By training our model on these
triplets, it is able to learn to differentiate between the palmprints of different individuals and accurately identify a
user based on their palmprint. We trained our model using a triplet loss function [29] and Adam optimizer [30],
which allows the model to optimize its error by comparing the similarity between the anchor and positive images
to that of the anchor and negative images. This approach allows the model to learn the underlying features of a
palmprint that are unique to an individual, which enables it to accurately identify a user based on their palmprint.
The proposed model’s training metrics are depicted in the Figure 12.

One of the key factors for optimized performance of our model is the Triplet Loss [29]. We utilised Triplet loss to
compare the relative similarity of three inputs: an anchor image, a positive image, and a negative image. The anchor
image is taken to be the “neutral” image, while the positive image is a image from the same subject, in our case,
and the negative image is from a different subject. The functions was utilised to minimize the distance between
the anchor and positive images, while maximizing the distance between the anchor and negative images. This is
done by adjusting the model’s weights and biases to better discriminate between the three inputs. As a result, the
model becomes better at recognizing the similarities and differences between the anchor and positive images, and
can more effectively differentiate between the anchor and negative images. The Figure 13 illustrates the confusion
matrix acquired from the test set of the data.

Finally, the evaluation results of our proposed SimplyMime model on multiple benchmark datasets indicate its
effectiveness in both hand gesture recognition and palmprint identification. Compared to existing solutions, our
model has demonstrated superior performance. Further, by incorporating palmprint identification as an additional
security measure, the model’s practicality and usability in real-world applications have been further enhanced,
positioning it as a viable alternative to conventional remote control devices. The novel combination of hand gesture
recognition and palmprint identification in one system presents an exciting advancement in the field of human-
computer interaction.

VI. Conclusion

In conclusion, this paper presents SimplyMime, a novel hand gesture-based control system that aims to provide
an immersive, efficient, and secure user experience while eliminating the need for multiple remote controls for
consumer electronics. The system leverages advanced hand gesture recognition techniques, incorporating the latest
developments in Artificial Intelligence and Human-Computer Interaction, to create a sophisticated architecture that
can recognize a wide range of hand gestures with exceptional accuracy. Additionally, SimplyMime incorporates a
palm print authentication module, which enhances the security of the system by ensuring that only authorized
users can access the device. Through thorough testing and evaluation, SimplyMime demonstrated remarkable
performance, achieving high accuracy levels of 96.16%, 87.37%, and 90% in hand detection, recognition, and
palm print authentication, respectively. These results served as a testament to the effectiveness and efficiency of
SimplyMime. Overall, SimplyMime offers significant advantages over traditional remote control systems, making
it an excellent alternative for users looking for a more intuitive and efficient way of controlling their consumer
electronics.

Despite the impressive performance of SimplyMime, there is still scope for improvement and further research. In the
future, we plan to enhance the robustness of the system by incorporating additional sensors, such as proximity and
depth sensors, to improve the accuracy and reliability of the system. Moreover, we aim to reduce the computational
power required while improving the accuracy of the model. Another area of future research is the potential for
SimplyMime to be integrated into other applications, such as virtual and augmented reality, to expand its capabilities
and utility. By incorporating these enhancements, SimplyMime has the potential to become a highly versatile
and widely adopted hand gesture-based control system that can revolutionize the way we interact with consumer
electronics.
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