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Abstract Plant diseases prevent a plant from reaching
its full potential. They are directly responsible for re-
ducing the quality of crops and increasing the quantity
of agricultural yield losses. The management, contain-
ment, and prevention of diseases depend on their pre-
cise and timely detection and severity evaluation. This
paper aims to automatically detect and localize plant
disease in real time. In this research, two state-of-the-
art object detector-based models have been developed
for disease detection and localization. Additionally, the
best-performing model has been selected as the com-
puting model of the solution, “aGROdet 2.0”, for auto-
matic and real-time detection of plant diseases. Several
publicly available datasets have been used to evaluate
the solution and to avoid any bias from the datasets.
A mean average precision of 91.2% has been obtained.
A mobile interface has also been created to access the
solution. This solution helps farmers easily detect plant
diseases.
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1 Introduction

Agriculture plays a significant role in the global food
supply chain and economy [1]. However, various con-
ditions like climate change, rapidly increasing popu-
lation, over exploitation of natural resources, natural
calamities, and plant diseases adversely affect the crop
yield. Plant disease affects the crops qualitatively and
quantitatively, resulting in billions of dollars in financial
losses [8]. An on-time and accurate detection of the dis-
ease can prevent its spread and help farmers take con-
trol measures, which has economical and environmental
benefits and thereby avoids significant economic losses.

Plant diseases are conditional on the time of the
year and kind of vegetation and can be prompted by
either environmental factors or live organisms. Plants
can contract biotic diseases from fungal, bacterial, vi-
ral, and algal pathogens, as shown in Fig. 1, as well as
abiotic diseases from factors such as lack of nutrition,
extreme temperatures, excessive moisture, and sudden
temperature changes. Diseases can appear in different
parts of the plant, from stems to fruits, and can occur
at any stage during a plant’s development [56]. Discol-
oration, shape shifts, wilting, galls, spots, mildew, and
cankers are all possible symptoms [37].

Healthy Plant Infected Plant

Pathogens

Fig. 1 Biotic Disease Infection.
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Traditionally, domain experts or plant pathologists
used to identify the disease by visually examining the
infected leaves [74]. This method, however, is very time-
consuming and labor-intensive [78]. The accuracy of
this process also depends on the experience and pro-
ficiency of the experts. This type of expert service is
either not always available to the smallholder farmers
in remote villages or they are expensive. Thus, it cre-
ates a burden to the smallholder farmers’ finances. An
automatic detection system that can identify plant dis-
eases is a suitable alternative to such labor-intensive
and expensive work.

Various computer vision and image processing tech-
niques [33,67,71,75] have been explored and developed
over the years to detect and identify plant diseases.
Deep Learning, a sub-field of machine learning, has
grown in prominence. Deep learning techniques auto-
matically extract high-level data features during train-
ing and provide high accuracy in various computer vi-
sion and natural language processing tasks. They are
now extensively [15, 16, 18, 20, 32, 50, 53, 59] employed
in plant disease identification.

1.1 Challenges in Detecting Plant Disease

Automated plant disease detection faces several chal-
lenges:

1. The similarity of symptoms between diseases [25,35]
makes the detection process difficult.

2. At various stages of disease, symptoms may vary.
For example, leaf spot disease appears as little pur-
ple dots, but the small dots change into circular
spots of quarter inch diameter and with a black cen-
ter spot [6]. Large scale data collection which covers
every stage of a disease is needed.

3. Variation of humidity, soil water content, tempera-
ture, rainfall, CO2, C and N content in soil vary and
cause abiotic stress induced symptoms [86] along
with diseases caused by biotic stress.

4. Plant images, captured in uncontrolled settings like
field, orchard/vine, difference of illumination [61],
shadow [64, 66], angle of capture [88], presence of
pests, or disease residues make the detection process
complex.

1.2 Problem Addressed in the Current Paper

This article aims to identify plant diseases automati-
cally and in real time so that even smallholder farmers
in remote villages can perform accurate disease identi-
fication on their own.

1.3 Proposed Solution

In this research, we propose a novel method to auto-
matically, and in real-time detect plant diseases without
any expert service. The solution is capable of detecting
the disease from image and video of the infected leaves.
Two state-of-the-art object detectors that can detect an
object from a real time video, have been evaluated to
select the object detector for “aGROdet 2.0”. However,
leaf images have been used for the experiment. The cur-
rent solution assists farmers with the automated detec-
tion of plant disease so that the necessary actions can
be taken on time. The solution can be accessed through
a mobile interface.

1.4 Major Contribution of the Current Paper

The main contributions of the current work are as fol-
lows:
– The proposed object detection-based approach pre-

cisely localizes the infected leaves along with disease
detection. It is easily accessed through the mobile
interface “aGROdet”.

– It is capable of detecting all the infected leaves of
an image.

– The method is fully automated as disease detection
is done using images of the leaves. Therefore, no
expert guidance is required for disease detection.

– Faster evaluation of the disease without paying an
expert guidance service fee is also possible as there
is no delay involved in securing an expert’s time.

– It provides a real time solution which helps farmers
to promptly take control measures.

– Extensive performance analysis has been performed
using three publicly available datasets which con-
sist of images taken at uncontrolled environments.
It proves the robustness of the approach.
The rest of the paper is organized in the following

order: Section 2 presents recent work on plant disease
detection. In Section 3, the proposed method for plant
disease detection is described. Section 4 presents the
experiments and the mobile interface. Section 5 demon-
strates the results and evaluates the performance of the
method. A comparative analysis with existing research
is also presented. Finally, the current paper is concluded
with suggestions for future work in Section 6.

2 Prior Research Work

Machine learning and deep learning technologies sup-
ported by various embedded systems [29], graphical pro-
cessing units (GPU), tensor processing units (TPU),
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AI-accelerators, edge processors, and IoT sensors have
all changed the traditional, arduous, and time-consuming
plant disease detection to more accurate, fast, and easy
detection. In recent years, machine learning and deep
learning techniques are predominantly being used in
plant disease detection. Computer vision is being largely
employed for this. Various image-based datasets have
been proposed for different plants, crops, and fruits.
Some are in laboratory settings [36] and some are in
normal field settings [28]. In this section, works related
to plant disease identification, localization, and track-
ing are presented.

2.1 Machine Learning-based Approaches

Among various approaches of plant disease detection,
machine learning-based approaches have gained popu-
larity among the research community for a long time,
even before the monumental growth in deep learning
technologies. Table 1 describes several of the works which
are machine learning based. Support vector machines
(SVMs) and K-means clustering are the two most com-
monly used classifiers in detecting various plant dis-
eases. These classifiers have been used separately [11,12,
72,76] or in combination with other methods [46,84,85].

A multi-class SVM has been used to classify grape
leaf diseases like black measles, black rot, and leaf blight
in [38]. Leaf areas affected by the disease have been
extracted with K-means clustering. Feature dimension
reduction by principal component analysis (PCA) re-
sulted in better accuracy than gray-level co-occurrence
matrix (GLCM) features. However, the use of the PlantVil-
lage dataset renders the methods not really applicable
to real life scenarios.

K-means clustering with a rule-based system has
been used in [43] to classify between healthy leaf and
infected soybean leaf. Downy Mildew, Frog Eye, and
Septoria Leaf Blight have been classified with an SVM
classifier. However, the paper is unable to provide an
automatic method for plant disease detection.

Another effort was made in [60] to automatically
diagnose plant diseases using leaf images. Local binary
patterns (LBPs) and one-class classification retrieved
leaf features. The algorithm improved with each new
image. This approach recognized new diseases and in-
terpreted them as a new reference section. However,
deep learning-based systems provide better accuracy
than ML classifiers and the feature extraction process
is automatic.

2.2 Deep Learning-based Approaches

In the last few years, more works on plant disease de-
tection using deep learning technologies are being pub-
lished. This is due to the high accuracy achievable through
these networks. The majority of the works are com-
puter vision based and use convolutional neural net-
works (CNNs). Three types of solutions are provided:
classification-based, object detection-based, and image
segmentation-based.

2.2.1 Classification-based Approaches

Deep neural networks, especially CNNs, are predomi-
nantly used in classification-based methods. CNNs vary
from custom CNNs to well known CNNs. This section
describes some recent plant disease classification re-
search. Corn Rust and Northern Leaf Blight along with
healthy corn leaves have been classified in [51] using
custom CNNs. Some field corn leaves images have been
used with corn leaves of the PlantVillage [36] dataset.
In [87], a global pooling dilated CNN has been used for
six cucumber leaf diseases identification, whereas the
authors in [44] used well known CNNs and Entropy-
ELM-based feature selection methods to classify the
disease.

CNNs extract the features from an image automat-
ically and those features are classified using various
classifiers. Compared to traditional machine learning
methods, which rely heavily on image processing, these
new methods are significantly more effective [79]. Apple
leaf diseases have been identified with a combined Effi-
cientNetB4 and attention network [80], DenseNet and
XceptionNet as a feature extractor, and finally classifi-
cation through SVM [22], an ensemble of pre-trained
DenseNet121, EfficientNetB7, and NoisyStudent net-
works [17]. These processes have achieved high accu-
racy. SSD with Inception and Rainbow concatenation
[40] structure has also been used to detect five types of
apple diseases. The proposed model has achieved 78.8%
mean average precision (mAP).

A modified Inception structure identified grape leaf
diseases in [47]. Dense connectivity with the Inception
structure improved the features. Data augmentation
has also increased the dataset size. The accuracy of the
method is moderate compared to the existing works.

Well known and well performing CNNs are predom-
inant in disease detection [16, 18]. The use of custom
CNNs [15, 20, 32, 50] is also a very popular preference
among researchers. In both cases, the CNN is mostly
used for automatic feature extraction and SVM [23,39],
MLP [49], Softmax [34], etc. are used as the classifier.
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Table 1 Prior Research Works on Plant Disease Detection
Papers Year Crop Methods Remarks
Kaur, et al. [43] 2018 Soybean K-means clustering + SVM. Not fully automatic.
Ma, et al. [50] 2018 Cucumber DCNN Field Data has been used.
Picon, et al. [62] 2019 Wheat Deep Residual Neural Network Three types of wheat diseases

have been detected. Tested
the method in different mobile
devices,

Liu, et al. [48] 2020 Tomato Improved YOLOv3 Twelve types of tomato dis-
eases/pests have been identi-
fied.

Jiang, et al. [39] 2020 Rice CNN + SVM Four types of rice diseases
have been detected along with
healthy leaf.

Ng, et al. [59] 2021 Grape Faster R-CNN with InceptionV2
backbone

Grape leaves infected with
three types diseases along
with healthy leaves have been
detected.

Chen, et al. [24] 2022 Plants CACPNET Peanut field data has also
been used with PlantVillage
dataset.

He, et al. [34] 2022 Plants DIR-BiRN Use of PlantVillage dataset
makes the methods far from
real life scenarios.

Liu, et al. [49] 2022 Tomato DCCAM-MRNet Six types of tomato diseases
have been identified. Field
data has been used.

Borhani, et al. [19] 2022 Plant Vision Transformer The method has been eval-
uated with three different
datasets.

Khan, et al. [44] 2022 Cucumber CNN + Entropy-ELM Feature Selec-
tion

Six diseases have been de-
tected.

Mitra, et al. [54] 2022 Plants Custom CNN + Pixel-based method Automatic detection and lo-
calization of plant diseases.

Javidan, et al. [38] 2023 Grape SVM + K-means clustering + PCA Use of PlantVillage dataset
makes the methods far from
real life scenarios.

aGROdet 2.0
(Current Pa-
per)

2023 Plants YOLOv8 Real time and automatic
detection of plant dis-
eases.

DCNN → Deep Convolutional Neural Network; DIR-BiRN → Disease Image Recognition-Bilinear Residual Networks;
DCCAM-MRNet → Dilated Convolution and Coordinate Attention Mechanism Mixed Residual Connection Network;
CACPNET → Channel Attention and Channel Pruning Network.

Despite being able to correctly identify the diseases
with high accuracy, CNN-based classification does not
localize the disease. However, the extent of the dis-
ease, can be determined from the percentage of damage.
Image segmentation-based approaches are suitable for
that.

2.2.2 Image Segmentation-based Approaches

The second type of approach is image segmentation
based. It is basically a regions-of-interest (ROI) deep
CNN. This type of detection has two stages. In the first
stage, object regions are proposed and in the second
stage classification is done from those features and lo-
calized with bounding boxes.

Using several ROI based structures, nine distinct
pests and diseases of tomato plants were identified in
[30]. In certain circumstances, data augmentation has
increased mAP by as much as 30%. A faster R-CNN
has been used with an InceptionV2 backbone to detect
grape leaf diseases [59]. The model runs on a smart-
phone with 97.9% accuracy. Faster R-CNNs have also
been used to identify rice false smut disease [73], tomato
diseases [81], and diseases of five different plants [26].

Mask-RCNN has been used to detect wheat mosaic
virus [45], strawberry diseases [13, 14], and apple leaf
diseases [53]. Articles also employ multiple ROI-based
formats. Faster R-CNN and Mask R-CNN were applied
to identify and detect diseased segments in [82]. Mask
R-CNN and ensemble subspace discriminant analysis
classifiers were employed to detect infected apple leaves
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in [70]. However, as these image segmentation-based
approaches have two stages, they are slower than one-
stage detectors [5]. Table 2 [21] indicates how the infer-
ence time differs for one-stage and two-stage detectors.
The lowest inference times for both high and low reso-
lution images are for one-stage detectors.

2.2.3 Object Detection-based Approaches

The third type of disease detection is object detector
based. These approaches can localize the disease along
with precise identification using single stage object de-
tectors. As in these types of object detectors, any num-
ber of objects are found and classified using a bounding
box in a single stage, it takes less time to detect objects.
Hence, this type of object detector is used for various
real time object detection applications.

Anthracnose lesion on apples has been detected us-
ing the YOLOv3 network [77]. To improve the result,
DenseNet has been used as the backbone feature ex-
tractor in YOLOv3. The image dataset has been ex-
panded using traditional data augmentation techniques
and CycleGAN [89]. The DF-Tiny-YOLO structure was
introduced in [27] to identify diseases in apple leaves.
The use of smaller CNN kernels accomplishes these
goals by decreasing the number of dimensions in the
features being used and by increasing the depth of the
network without increasing its complexity. Various ver-
sions of YOLO [48,57] have been used in detecting var-
ious plant diseases.

2.3 Gaps in the Existing Solutions

The above discussion presents several research stud-
ies in the plant disease domain. They have their own
strengths and weaknesses.
– Classification-based approaches only identify the dis-

ease; they do not localize it. Therefore, these meth-
ods cannot provide any information on disease sever-
ity.

– Object detection and image segmentation-based ap-
proaches, on the other hand, localize the disease as
well as identify it. Image segmentation-based ap-
proaches can provide more precise information on
disease severity than object detector-based meth-
ods. However, image segmentation-based approaches
demand more computational power.

– The majority of the papers do not use field datasets,
which makes them perform poorly with field data.

– Due to the rapid growth of deep learning technolo-
gies and AI-assisted embedded systems, solutions
with state-of-the-art networks, capable of keeping
pace with technological progress, are required.

– To take any control measures, rapid and on-time dis-
ease detection is necessary. More research on meth-
ods which are efficient, smaller in size, and can infer
faster is needed. Hence the disease can be detected
in real time while taking the photo/video of the in-
fected plants/trees.

In summary, more research focusing on real time
disease detection is necessary, which will eventually help
in early detection and automatic tracking of the disease.

3 Model and Methodology

3.1 Overview

As mentioned in Section 2, among the various plant dis-
ease detection approaches, the object detection-based
approach has the advantage of localizing the disease,
along with identification. Object detection is a com-
puter vision technique that is used for counting objects,
tracking object location, and accurately identifying ob-
jects in an image or video frame.

In this research, to identify the plant disease in real
time, we used an efficient, fast, small-sized deep learn-
ing model. Initially, we chose two different members
of the “You Only Look Once” (YOLO) [68] family to
experiment with. Two state-of-the-art object detectors,
YOLOv8 [41] and YOLOv5 [42] have been used to de-
tect and localize the plant diseases, and their perfor-
mance has been compared to select the final model. In-
stead of a controlled environment using datasets [53,54],
field data and data collected under the sun, have been
used. These scenarios match real-world environments.
The selected model is the core computing component
of the solution, “aGROdet 2.0.”

Fig. 2 shows an overview of “aGROdet 2.0”. If any
plants are infected with diseases, farmers capture im-
ages of the infected leaves using the mobile interface of
“aGROdet 2.0”. It then predicts the disease. The details
of the mobile interface are discussed in Section 4.5.

The proposed YOLO object detector-based detec-
tion method detects the disease from the full image in
only one evaluation and with only one forward pass.
The network breaks the image into regions/grids and
predicts bounding boxes and probabilities for each re-
gion. The predicted probabilities are used to give these
boxes weights. This process is very fast and it does not
need a complex operational pipeline. Hence, it is suit-
able for real time disease detection of large crop fields.
The small size and high efficiency of the YOLO models
make them suitable for implementation in edge comput-
ing hardware. The different versions of each member of
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Table 2 Inference Time Comparison between One-stage and Two-stage Object Detectors [21]

Stage Architecture Feature Extractor Image Res-
olution

Inference
Time (ms)

Two Faster RCNN FPN ResNet50 High 105.09
Low 48.00

One Fully Convolutional One-
Stage Object Detection

FPN ResNet50 High 95.00

Low 42.25
One RetinaNet FPNLite + MobileNetV2 High 63.20

Low 26.12
One YOLOv3 DarkNet-53 High 70.81

Low 40.19

aGROdet

Fig. 2 Overview of aGROdet 2.0.

YOLO, namely nano, small, medium, larger, and ex-
tra large allow them to scale for any type of crop field.
However, the scaling part has not been addressed in
this article.

3.2 Model Architecture for Disease Detection and
Localization

3.2.1 YOLOv5

It is the fifth member of the YOLO family. There are a
total of five variants of it: nano, small, medium, large,
and extra large. Accuracy increases with the size of
the models. The smaller the model size, the shorter
is the training time. In our work, the medium version
(YOLOv5m) has been used.

The idea of the YOLO models is to connect class
labels with bounding boxes in an end-to-end differen-
tiable network. Here, a single CNN predicts bounding
boxes with class probabilities [68]. YOLO has three pri-
mary components:

– Backbone: CSP-Darknet53 serves as the backbone
for YOLOv5. CSP stand for Cross Stage Partial. It
extracts the features from the image.

– Neck: It uses a variant of Spatial Pyramid Pooling
(SPP) as the neck. It helps the network to perform
accurately on unseen data. The Path Aggregation
Network (PANet) has been modified by including
the BottleNeckCSP in its architecture.

– Head: Uses neck features for box and class predic-
tion. The same head as YOLOv3 and YOLOv4 is
used by YOLOv5. It is made up of three convolu-
tion layers that predict where the bounding boxes
(x, y, height, and width), objectness scores, and ob-
ject classes will be.

The following equations [42] are used to calculate
the target bounding boxes in YOLOv5:

bx = (2 · σ(tx) − 0.5) + cx (1)
by = (2 · σ(ty) − 0.5) + cy (2)
bw = pw · (2 · σ(tw))2v (3)
bh = ph · (2 · σ(th))2 (4)

Fig. 3 shows the terms appearing in these equations.
bx, by, bw, bh are the center, width, and height of the
predicted bounding box, tx, ty, tw, and th are the out-
puts of the neural networks, cx and cy are the cell’s top
left corner of the anchor box, and pw and ph are the
anchor’s width and height.
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pw

ph

cx

cy
bw

bh
𝜎(𝑡𝑦)

𝜎(𝑡𝑥)

𝑏𝑥 = (2. 𝜎 𝑡𝑥 − 0.5) + 𝑐𝑥

𝑏𝑦 = (2. 𝜎 𝑡𝑦 − 0.5) + 𝑐𝑦

𝑏𝑤 = 𝑝𝑤. 2. 𝜎 𝑡𝑤
2

𝑏ℎ = 𝑝ℎ. 2. 𝜎 𝑡ℎ
2

Fig. 3 Equation formulation for the target bounding box in
YOLOv5 [69]

Binary Cross Entropy loss is used to calculate class
loss and objectness loss whereas Complete Intersection
over Union loss is used to calculate location loss. YOLOv5
uses logistic regression to predict the confidence score
of each box. Hence, each box predicts the class type
associated with the bounding box using multilevel clas-
sification.

When the network sees a leaf for the disease detec-
tion, the image is divided into S ×S grids. The grid cell
contributes in detecting when the center of the object
falls on that grid. For each grid cell, bounding boxes
and confidence scores are predicted. No object means
zero confidence score. The intersection over union of the
predicted bounding box and the ground truth bounding
box calculates the confidence scores [68].

3.2.2 YOLOv8

The newest member of the YOLO family is YOLOv8
[41]. This state-of-the-art model is used for instance
segmentation along with classification and object de-
tection. The biggest difference between YOLOv8 and
the other YOLO models is its anchor-free nature. It
directly predicts the center of an object rather than
the offset from a known prior or anchor box. As a re-
sult, the number of box predictions have been reduced
and the overall system becomes faster by speeding up
the Non-Maximum Suppression [10]. Architecture-wise
there are certain modifications: the earlier C2f module
is replaced by the C3 module, the first 3 × 3 conv in
the bottleneck is changed to 6 × 6, and the first 1 × 1
conv in the bottleneck is replaced by 3 × 3. Without
mandating channel dimensions, neck features are fused
directly. The YOLOv8m variant has been used in our
work. Table 3 describes the structures of the YOLOv5m
and YOLOv8m models.

Data augmentation plays a significant role in YOLOv5
and YOLOv8 training. One of these is mosaic augmen-
tation. This is done by putting together four images,
which forces the model to learn how to recognize ob-
jects in new places, with partial occlusion, and against
different pixels around them.

4 Experimental Validation

In this section, our proposed plant leaf detection method
has been evaluated with two state-of-the-art object de-
tectors, YOLOv8 and YOLOv5, and three publicly avail-
able datasets. In both cases, the medium variants of
the model have been used. In our initial work [53], the
PlantVillage dataset [36] had been used. However, im-
ages in the PlantVillage dataset are taken in laboratory
settings. So, they are far from the real world data and
the model does not perform well with real life field data
when it is trained on it [36]. To avoid this issue, differ-
ent settings datasets, e.g., field data, samples extracted
from the field but photo was captured in the sunlight
with a more structured environment, and the labora-
tory settings images, have been utilized in this work.
Fig. 4 describes the total experimental process.

Dataset 

Collection

Image 

Annotation

Image 

Augmentation

Model 

Training & 

Validation

Performance 

Evaluation

Transform 

to 

TFLite Converter

Access through

Mobile App

Lite

aGROdet

xxx

Fig. 4 aGROdet 2.0 Developmental Workflow

4.1 Dataset

Three different datasets have been used to select the
perfect object detector model for the aGROdet 2.0 frame-
work. The datasets are described in Table 4.

4.1.1 DiaMOS Plant Dataset

This dataset [28] contains a total of 3505 images of pear
leaves and fruits. It was published in 2021. Among the
3505 images there are 3006 leaf images and 499 fruit im-
ages at various stages of growth. Images of three pear
diseases: Spot, Curl, and Slug and healthy pear leaves
are included in the leaves section of the dataset. The
fruit section consists of four phases: fruit set, nut fruit,
fruit growth and ripening [28]. The photos were cap-
tured using a Honor 6× smartphone and a Canon EOS
60D camera. Images are of two resolutions: 2976×3968
and 3456 × 5184. Fig. 5 shows sample images of each
class.
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Table 3 Comparison between YOLOv5m and YOLOv8m.

Model No. of Layers No. of Parameters Size (MB) No. of GFLPOS
YOLOv8m 295 25858057 52.0 78.7
YOLOv5m 291 20879400 42.1 47.9

Table 4 Dataset Details
Dataset Name Publication Year Dataset Details
DiaMOS Plant [28] 2021 3 pear diseases: Spot, Curl, and Slug + healthy pear

leaves. Total 3006 leaf images and 499 fruit images
at various stages of growth.

Wheat Leaf [31] 2021 2 wheat diseases: Septoria and Stripe Rust + healthy
wheat leaves. Total 407 images.

Rice Leaf Disease [9] 2017 3 rice leaf diseases: Bacterial Leaf Blight, Brown
Spot, Leaf Smut. Total 120 images.

CurlHealthy

Slug Spot

Fig. 5 Sample Images from DiaMOS Plant Dataset

4.1.2 Wheat Leaf Dataset

The second dataset is the Wheat Leaf dataset [31]. The
dataset has a total of 407 images. It has three cat-
egories: healthy wheat leaf, Septoria disease infected
wheat leaf, and Stripe rust disease infected wheat leaf.
There are 102 healthy leaves, 97 Septoria affected leaves,
and 208 Stripe rust affected leaves in the dataset. A
Canon EOS 5D Mark III was used to capture those im-
ages at the Holeta wheat farm, Ethiopia. These images
are real field data captured in an uncontrolled environ-
ment. Fig. 6 shows sample images of the three classes.

4.1.3 Rice Leaf Disease

This dataset [9] contains 120 images of three rice leaf
diseases: Bacterial Leaf Blight, Brown Spot, and Leaf
Smut. These diseases usually affect leaves. When a plant
is infected with Bacterial Leaf Blight, several inches
of yellow and white elongated lesions are visible on
the leaf tip. Brown Spots are circular or oval in shape
and vary in color from dark brown to reddish brown.
Leaf Smut are spread all over the leaf and are usually

Healthy Septoria Stripe Rust

Fig. 6 Sample Images from Wheat Leaf Dataset

smaller in size than Brown Spots. They are also red-
dish brown in color [65]. The images were taken with
a white background under the sun with a Nikon D90
digital SLR camera with 12.3 megapixels from a village
named Shertha in the Western part of India. Sample
images of each class from the dataset [9] are shown in
Fig. 7.

Fig. 7 Sample Images from Rice Leaf Disease Dataset

Table 5 summarizes various aspects of pear, wheat,
and rice leaf diseases: crop name, disease name, full
name of the disease if different from the common name,
type of the pathogen, name of the pathogen, and the
symptoms of the disease.
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Table 5 Details of the Diseases
Crop Name Disease

Common
Name

Disease Full
Name if oth-
erwise

Caused By Pathogen Symptoms

Pear Curl Variety of rea-
sons.

Leaf curling.

Pear Slug Sawfly Caliora cerasi Inner tissues of the leaf gets
exposed. Finally, the leaf dries
and changes to brown color.

Pear Spot Fungus Fabraea macu-
lata

Brown spots on the leaf.

Wheat Septoria Septoria tritici
blotch (STB)

Fungus Mycosphaerella
graminicola

Necrotic lesions on leaves and
stems. [63]

Wheat Stripe Rust
(Yellow Rust)

Fungus Puccinia stri-
iformis

Small, round, tightly packed
on seedling leaves and yellow
stripes on mature plants. [58]

Rice Bacterial Leaf
Blight

Bacteria Xanthomonas
oryzae

Initial symptoms water-
soaked lesions at leaf edges
and tips. Finally, grayish-
white leaf lesions and leaf
drying. [2]

Rice Brown Spot Fungus Cochliobolus
miyabeanus

Initial small, circular yellow ir
brown lesions change to large
circular or oval leasions with
reddish brown margin. [3]

Rice Leaf Smut Fungus Entyloma
oryzae

Slightly elevated angular,
black spots.

4.2 Image Annotation

An important stage in object detector training is the
annotation of images with ground truth. In the train-
ing datasets, bounding boxes are drawn across the ob-
jects. MakeSense.AI [4], an open source image annota-
tion tool, was used to annotate the data, and the Rect
tool was utilized to annotate images. Annotation files
are saved in “.xml” format and provide the coordinates
of the bounding box’s two diagonally placed corners.
Different colors are used for different classes when la-
beling. The DiaMOS Plant dataset already contains an-
notation for YOLO models. However, the Wheat Leaf
and Rice Leaf Disease datasets have been annotated by
us.

4.3 Image Augmentation

Default image augmentation techniques: HSV adjust-
ment, translation, scaling, left to right flip, and mo-
saic augmentation have been used. For better perfor-
mance, mosaic augmentation is turned off for the last
ten epochs for YOLOv8. The data augmentation pa-
rameters are kept as default: Blur parameter p is set
to 0.01 and blur limit to (3, 7), MedianBlur parame-
ter p to 0.01 and blur limit to (3, 7), ToGray to 0.01,
CLAHE parameter p to 0.01 and clip limit to (1, 4.0),
tile grid size to (8, 8). 8 data loader workers have been
employed for YOLOv8 and 2 for YOLOv5.

4.4 Training

The networks have been trained on a system with an
NVIDIA Tesla T4 GPU, 25.5 GB system RAM, and 15
GB GPU RAM. PyTorch has been used as the deep
learning framework. We followed the procedure in [41,
42]. The models were trained for 100 epochs (YOLOv8)
and 150 epochs (YOLOv5). A Stochastic Gradient De-
cent optimizer with a default learning rate of 0.01 has
been used. Batch sizes were kept at 32 for YOLOv8 and
at 16 for YOLOv5.

4.5 aGROdet 2.0 Mobile Interface

The development of the “aGROdet 2.0” mobile inter-
face has been done in Android Studio IDE using JAVA.
The Nexus 5 API 30 emulator has been used to emulate
the application.

Fig. 8 shows the application interface. The leftmost
figure in Fig. 8 shows the first screen. Using the “PHOTO”
button, the user can take a picture of the plant leaf.
Once the photo is captured, the “DETECT” button al-
lows the user to show the result.

For our experiment, images stored in Google Drive
have been used. When the “PHOTO’ button was pressed,
the image from the drive was selected instead of actual
field photo capture. However, this interface will be up-
dated in future work, when a video option will also be
available.
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Fig. 8 Disease Detection through the aGROdet 2.0 Mobile In-
terface.

5 Performance Evaluation

5.1 Performance Metrics

To evaluate the performance of the framework, several
performance metrics have been calculated for the two
object detectors using the aforementioned datasets. The
metrics calculated are: precision, recall, f1-score, IoU,
and mAP [52].

Precision describes how many of the confirmed iden-
tifications turned out to be accurate. It is defined as:

Precision = TP

TP + FP
(5)

Recall states the percentage of true positives that
were correctly classified as being positive. Recall is de-
fined as:

Recall = TP

TP + FN
(6)

F1-score measures the model’s accuracy on the dataset.
It is defined as:

F1 − Score = 2 × Precision × Recall

Precision + Recall
(7)

Intersection over Union (IoU) measures the overlap
between predicted boundary and ground truth bound-
ary as in Eq. 8.

IoU = Area of Intersection
Area of Union

= TP

TP + FP + FN
(8)

In the above expressions, TP, FP, TN, and FN are true
positive, false positive, true negative, and false negative,
respectively. The average precision changes based on
the IoU threshold value. IoU varies from 0.5 to 0.95.

The area under the precision and recall curve defines
the average precision of the object detector. mAP is
calculated from the average precision APi using Eq. 9:

mAP = 1
N

N∑
i=1

APi, (9)

where N is the total number of classes. mAP takes into
consideration both false positives (FP) and false nega-
tives (FN) and considers the trade-off between precision
and recall [53]. Because of this, mAP is an excellent
metric for detection tasks. The validation dataset has
been used to evaluate the model.

5.2 Results

In this section, the performance of “aGROdet 2.0” is
described and analyzed with regard to both the object
detector models and all the datasets.

5.2.1 YOLOv5

Performance Metrics of YOLOv5 have been plotted in
Fig. 9(a) - 9(l) for different datasets. The first column
shows the metrics plot for the DiaMOS Plant dataset,
the second column is for the Wheat Leaf dataset, and
the third column is for the Rice Leaf Disease dataset.
The Precision vs. Confidence plot has been shown in
Fig. 9(a) -9(c). Fig. 9(d)- 9(f) show the Recall vs. Con-
fidence plot. Fig. 9(g)- 9(i) are the Precision and Recall
plots. Fig. 9(j)- 9(l) show the F1-Score vs. Confidence
plots.

YOLOv5 has shown higher precision for the Wheat
Leaf and DiaMOS Plant datasets than the Rice Leaf
Disease dataset. Higher recall has been achieved for
DiaMOS Plant and Rice Leaf Disease datasets. Higher
number of FP has lowered the precision of YOLOv5
model in the case of Rice Leaf Disease datasets. In sev-
eral cases of Bacteria leaf blight and Brown spot are
wrongly predicted as Leaf smut disease. Similarly, lower
recall has been attained for the Wheat Leaf dataset be-
cause of higher number of FN. When the IoU thresh-
old value is set to 0.5, the highest mAP of 0.894 has
been achieved for DiaMOS Plant dataset. The F1-score
of YOLOv5 is also highest for DiaMOS Plant dataset.
This is due to the higher number of training data in
DiaMOS Plant dataset. In Rice Leaf Disease dataset,
the leaves are placed on white paper and the image was
taken under the sun. Each image contains a single leaf.

Table 6 describes how mAP50 of YOLOv5 model
varies with image size for different datasets. It shows
that when the image size is 640×640, YOLOv5 achieves
better mAP in case of Wheat Leaf and DiaMOS Plant
datasets. Hence, we chose an image size of 640×640 dur-
ing performance comparison of YOLOv5 and YOLOv8.

Fig. 10(b) shows the predicted results of the ground
truths of Fig. 10(a). These samples are from the Di-
aMOS Plant dataset.

There are certain cases in the DiaMOS Plant dataset
when there are discrepancies in detecting the disease.
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YOLOv5

(a)

wheat

(b) (c)DiaMOS
YOLOv5

(d)

wheat

(e) (f)

(g)

wheat

(h) (i)

(j)

wheat

(k) (l)

Fig. 9 Performance Metrics Plots of YOLOv5 for different datasets. (a)-(c) Precision and Confidence Plot. (d)-(f) Recall and
Confidence Plot. (g)-(i) Precision and Recall Plot. (j)-(l) F1-Score and Confidence Plot. The first column is for the DiaMOS Plant
dataset, the second column is for the Wheat Leaf dataset, and the third column is for the Rice Leaf Disease Dataset.
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Table 6 Influence of Image Size on YOLOv5 Model.

Dataset No. of Images Image Size GFLPOS Training Time mAP50
Wheat Leaf 407 640 47.9 0.384 0.819
Wheat Leaf 407 416 47.9 0.233 0.813
Rice Leaf Disease 120 640 47.9 0.171 0.872
Rice Leaf Disease 120 416 47.9 0.117 0.925
DiaMOS Plant 3007 640 47.9 2.754 0.894
DiaMOS Plant 3007 416 47.9 1.408 0.882

DiaMOS YOLO5 results

More Wrong Not complete annotation

(a) Ground Truths

DiaMOS YOLO5 results

More Wrong Not complete annotation

(b) Predictions

Fig. 10 Disease Detection by YOLOv5. Samples are from the DiaMOS Plant dataset.

YOLOv5 misdiagnosed the diseases as in the first three
columns of Fig. 11. The reason for this wrong predic-
tion is mostly the position of the leaves, especially when
the infected leaves are not on the front side, occluded
by other leaves, placed at an angle, the resolution of
the rear infected leaf is lower than the front infected
leaf, there is uneven sunlight, or there is a presence of
shadow. This happened due to the absence of such vari-
ations of data in the training dataset. If annotation is
incomplete or not all the occurrence of instances in an
image are not annotated, the training becomes partial.
It increases FN and reduces recall. Fig. 12 shows some
of the non-fully annotated data from DiaMOS Plant
dataset. There were two cases when the model was able
to detect all the instances, instead of incomplete anno-
tation. The results are shown in the last two columns of
Fig. 11. However, missing annotations represent poor
data quality [28] which adversely affect the detection
performance [83]. Hence, complete annotation will gen-
erate better performance of the model.

Fig. 13(a) and 13(b) show the ground truths and the
predicted values from the Wheat Leaf dataset. However,
there are certain scenarios, as in Fig. 14, when there is
discrepancy between the the predicted value and the
ground truths. Not all instances have been detected or

DiaMOS YOLO5 results

More Wrong

Fig. 11 Discrepancy from the ground truths for YOLOv5.
Samples are from the DiaMOS Plant dataset. The top row
shows the ground truths and the bottom row shows the pre-
dictions.

DiaMOS YOLO5 results

More Wrong Not complete annotation

Fig. 12 Discrepancy in annotation in the DiaMOS Plant
dataset. Yellow circles and ovals show the missing annotation.

missed. As a result, FN is increased. This happened
when the image is crowded with wheat leaves and leaves
on the background are not focused.

Fig. 15(a) and 15(b) show the correctly and wrongly
predicted results from the Rice Leaf Diseases dataset,
respectively. The model shows a high confidence score
for Bacteria leaf blight and Brown spot. However, more
data was necessary for Leaf smut disease as the con-
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yolov5

(a) Ground Truths

Wheat
yolov5

(b) Predictions

Fig. 13 Disease Detection by YOLOv5. Samples are from the Wheat Leaf dataset.

Wheat
yolov5

Not all correct

More Fig. 14 Discrepancy from the ground truths for YOLOv5.
Samples are from the Wheat Leaf dataset. Odd images (from
left) are the ground truths and the even images are the predic-
tions.

fidence score for the particular class is not so high.
In some cases, Bacteria leaf blight and Brown spot are
wrongly predicted as Leaf smut disease is generating
higher false positives for Leaf smut class.

Rice
yolov5

(a) Correctly Detected Results. The top row shows the ground
truths and the bottom row shows the predictions.

DiaMOS YOLO5 results not 
detected correctly

(b) Results for not correctly detected samples from Rice Leaf
Disease dataset. The top row shows the ground truths and the
bottom row shows the predictions.

Fig. 15 Disease Detection by YOLOv5. Samples are from the
Rice Leaf Disease dataset.

5.2.2 YOLOv8

Fig. 16(a)-16(l) depict the performance metrics for YOLOv8.
Metrics plots for the DiaMOS Plant dataset, the Wheat
Leaf dataset, and the Rice Leaf Disease dataset are pre-
sented in the first, second, and third columns, respec-
tively. Fig. 16(a)-16(c) depict plots of precision versus
confidence. The plots of recall against confidence are
displayed in Fig. 16(d)-16(f). Precision and recall plots
can be seen in Fig. 16(g)- Fig. 16(i). The plots of f1-
score versus confidence are displayed in Fig. 16(j)-16(l).

YOLOv8 achieved higher precision compared to YOLOv5
for DiaMOS Plant and Rice Leaf Disease datasets. Bet-
ter recall than that of YOLOv5 has been achieved for
Wheat Leaf and Rice Leaf Disease datasets too. How-
ever, we have achieved lower recall in YOLOv8 com-
pared to YOLOv5 for DiaMOS Plant dataset. YOLOv8
excels in f1-score. In terms of mAP50, YOLOv8 and
YOLOv5 perform similar for the DiaMOS Plant and
Wheat Leaf datasets but YOLOv8 outperforms YOLOv5
for Rice Leaf Disease dataset. Image size was kept at
640 × 640 for both.

Fig. 17(b) and 17(a) show some sample predicted re-
sults by YOLOv8 and the corresponding ground truths
from the DiaMOS Plant dataset.

There are some instances within the DiaMOS Plant
dataset in which YOLOv8 did not perform as well as
YOLOv5. The diseases were incorrectly diagnosed, as
shown in Fig. 18. The reasons are the same as YOLOv5
and the main cause is not having a right image or due
to some incomplete annotation in the dataset.
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Yolov8 DiaMOS

(a)

Wheat 640 YOLO8

(b)

Rice YOLO8

(c)
Yolov8 DiaMOS

(d)

Wheat 640 YOLO8

(e)

Rice YOLO8

(f)
Yolov8 DiaMOS

(g) (h)

Rice YOLO8

(i)
Yolov8 DiaMOS

(j) (k)

Rice YOLO8

(l)

Fig. 16 Performance Metrics Plots of YOLOv8 for different datasets. (a)-(c) Precision and Confidence Plot. (d)-(f) Recall and
Confidence Plot. (g)-(i) Precision and Recall Plot. (j)-(l) F1-Score and Confidence Plot. The first column is for the DiaMOS Plant
dataset, the second column is for the Wheat Leaf dataset, and the third column is for the Rice Leaf Disease Dataset.
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DiaMOS YOLO8 results

(a) Ground Truths

DiaMOS YOLO8 results

(b) Predictions

Fig. 17 Disease Detection by YOLOv8. Samples are from the DiaMOS Plant dataset.

DiaMOS YOLO8 results not 
detected correctly/ missed

More

Fig. 18 Discrepancy from the ground truths for YOLOv8.
Samples are from the DiaMOS Plant dataset. The top row
shows the ground truths and the bottom row shows the pre-
dictions.

The ground truths and the predicted values taken
from the Wheat Leaf dataset are displayed in the figures
referred to as Fig. 19(a) and 19(b), respectively. Here,
there are also some instances, such as the one shown
in Fig. 20, in which there is a disparity between the
predicted value and the ground truths which is expected
for an image overcrowded with leaves.

Fig. 21(a) and 21(b) demonstrate the ground truths
and the predicted values from the Rice Leaf Diseases
with high confidence scores. Here also there are some
cases when misdiagnosis happened, as in Fig. 22. Here
also, there are FP cases of Leaf smut disease.

Table 7 compares the performance metrics calcu-
lated for the two models for the three datasets. YOLOv8
performs similar to YOLOv5 for DiaMOS Plant and
Wheat Leaf datasets but excels for Rice Leaf Disease
dataset. So, YOLOv8 has finally been selected as the
plant disease detector model. The performance metrics
calculated for both networks show that the overall per-

formance of YOLOv8 is better than YOLOv5. However,
YOLOv8 took more time to train for the datasets used.

Table 8 compares the performance of “aGROdet
2.0,” the plant disease detector, with existing works.
Accuracy (ACC) and mean average precision (mAP)
have been used to evaluate the performance of the vari-
ous methods. “aGROdet 2.0” was able to achieve a high
mAP even when field data was used, whereas the other
works are totally based on the laboratory dataset.

Table 9 shows the inference times for the YOLOv8
model. It also states the pre- and post-processing times
of the test image. When the symptom of a disease is
not very clear or resembles other disease symptoms, the
model takes longer time to detect. For simpler image or
where the symptoms are clear, the model takes much
a shorter time. As the inference time is in msec, if a
video is used as the input instead of an image, a real-
time detection of disease can be possible due to such
fast inference process. This will be validated in future.

6 Conclusion and Future Work

Similar to all forms of life, plants are vulnerable to a
wide range of diseases. Disease can prevent a plant from
reaching its maximum growth potential [7,54]. It is well
known that plant diseases are a leading cause of eco-
nomic loss [55] due to harvest loss. All trees and plants
must be free of any and all diseases. This is only possi-
ble when the disease is detected early which demands
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Table 7 Performance Metrics Comparison between YOLOv5 and YOLOv8.

Detection
Network

Dataset Class Precision Recall F1-Score mAP@50

YOLOv5 DiaMOS Plant Healthy 1.000 0.964 0.870 0.995
Curl 0.706 0.765 0.734 0.748
Slug 0.949 0.905 0.926 0.976
Spot 0.801 0.876 0.837 0.857
Overall 0.864 0.877 0.870 0.894

YOLOv5 Wheat Leaf Healthy 0.831 0.667 0.740 0.698
Septoria 0.887 0.900 0.893 0.947
Stripe rust 0.809 0.679 0.770 0.812
Overall 0.869 0.749 0.796 0.819

YOLOv5 Rice Leaf Diseases Bacteria leaf blight 0.727 0.998 0.841 0.962
Brown spot 0.869 0.834 0.851 0.869
Leaf smut 0.640 0.778 0.700 0.783
Overall 0.745 0.870 0.805 0.872

YOLOv8 DiaMOS Plant Healthy 0.974 1.000 0.987 0.995
Curl 0.851 0.706 0.772 0.767
Slug 0.937 0.91 0.923 0.972
Spot 0.752 0.843 0.795 0.839
Overall 0.879 0.865 0.872 0.893

YOLOv8 Wheat Leaf Healthy 0.658 0.694 0.676 0.693
Septoria 0.949 0.933 0.941 0.983
Stripe rust 0.807 0.698 0.749 0.772
Overall 0.805 0.775 0.790 0.816

YOLOv8 Rice Leaf Diseases Bacteria leaf blight 1.000 0.869 0.930 0.982
Brown spot 0.795 0.875 0.833 0.894
Leaf smut 0.721 0.889 0.800 0.861
Overall 0.838 0.878 0.858 0.912

Table 8 Comparative Analysis with the Existing Works

Papers Year Plant
Type

Method Metric Remarks

Javidan et al. [38] 2023 Grape SVM + K-means clus-
tering + PCA

ACC=98.97% Use of PlantVillage
dataset makes the meth-
ods far from real life
scenarios.

Morbekar et al. [57] 2020 Plants YOLO - Use of PlantVillage
dataset makes the meth-
ods far from real life
scenarios.

Tial et al. [77] 2019 Apple Improved YOLOv3 ACC=95.57% Only one disease of a sin-
gle plant has been de-
tected.

Liu et al. [48] 2020 Tomato Improved YOLOv3 ACC=92.39% Tested with only one type
of plant.

Mitra et al. [53] 2022 Apple Mask R-CNN mAP=83.8% PlantVillage dataset has
been used. No real field
data has been tested.

aGROdet [54] 2022 Plants Custom CNN + Pixel-
based method

ACC=98.58% PlantVillage dataset has
been used. No real field
data has been tested.

aGROdet 2.0 (Cur-
rent Paper)

2023 Plants YOLOv8 mAP=91.2% Real time and au-
tomatic detection of
plant disease. Field
data has been used.

ACC → Accuracy; mAP → Mean Average Precision.
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(a) Ground Truths (b) Predictions

Fig. 19 Disease Detection by YOLOv8. Samples are from the Wheat Leaf dataset.

Table 9 Inference Time for YOLOv8 Model for Each Dataset
Datasets Time (ms)

Pre-process Inference Post-process
DiaMOS Plant 1.4 8.6 1.9
Wheat Leaf 0.2-1.7 11.1-14.2 0.8-1.2
Rice Leaf Disease 0.2 10.5-12.3 0.8-1.0

Fig. 20 Discrepancy from the ground truths for YOLOv8.
Samples are from the Wheat Leaf dataset. The top row shows
the ground truths and the bottom row shows the predictions.

Yolo8 Rice

Not Correct

Correct

(a) Ground Truths

Yolo8 Rice

Not Correct

Correct

(b) Predictions

Fig. 21 Disease Detection by YOLOv8. Samples are from the
Rice Leaf Disease dataset.

Yolo8 Rice

Not Correct

Correct

Fig. 22 Not correctly detected samples of the Rice Leaf Dis-
ease Diseases dataset by YOLOv8. The top row shows the
ground truths and the bottom row shows the predictions.

automatic and real time disease detection. In this pa-
per, we have enhanced the work in [53] for automatic
and real-time detection of plant diseases.

There are many ways this work can be enhanced
further.

– More robust solution is needed for different light-
ing conditions, shadows, specular reflection, and the
presence of insects.

– Some preliminary work on shadow removal has been
done in [54] but more work is required in this area.

– Disease manifestations are different at different growth
stages of plants. Datasets with such division is nec-
essary.

– Data collection through smart phone camera is re-
quired to reflect the real world scenario.

– We hope that our work will help researchers pre-
annotate new pear, rice, and wheat leaves infected
with the addressed diseases and aid in the formation
of a new dataset without much human effort.
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