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Abstract—The world of connected devices has been attributed
to applications that relied upon multitude of devices to acquire
and distribute data over extremely diverse networks. This caused
a plethora of potential threats. In the field of IT security, the
concept of digital baits, or honeypots, which are typically net-
work components (computer systems, access points, or switches)
launched to be interrogated, savaged, and impacted, is currently
popular as it allows scientists to comprehend further on assault
patterns and behavior. Combining the inherent modularity with
the administration enabled by the container makes security
management simple and permits dispersed deployments, re-
sulting in a very dynamic system. This study delivers several
contributions in this regard. First, it comprehends the patterns,
methods, and malware types that container honeypots deal with
thus examining new developments in existing honeypot research
to fill gaps in knowledge about the honeypot technology. A
broad range of independently initiated and jointly conducted
container honeypot strategies and studies that encompass various
methodologies is surveyed. Second, using numerous use cases that
aid scientific research, we address and investigate a number of
challenges pertaining to container honeypots, such as identifica-
tion problems, honeypot security issues, and dependability issues.
Furthermore, based on our extensive honeypot research, we
developed VIKRANT, a containerized research honeypot which
assists researchers as well as enthusiasts in generating real-time
flow data for threat intelligence. The configured approach was
monitored resulting in several data points that allowed relevant
conclusions about the malevolent users’ activities.

Index Terms—Cyber Security, IDS, Deception, Virtualization,
Containers, Honeypots, Flow data

I. INTRODUCTION

In the constantly evolving world of cybersecurity, threats
and attacks are always adapting and becoming more sophis-
ticated. While malware and viruses have always been the
primary subjects of discussions about cybersecurity, a recent
study has shown a striking finding that in 62% of assault cases,
non-malware approaches involving human intervention on the
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computer are mostly utilized [1]. This information emphasizes
how crucial it is to comprehend and address the human
component since it is significant for the successful conduct
of cyberattacks. Autonomous machine learning is insufficient
to halt devoted attackers as former deal with pre-existing
attack patterns while adversaries are improving their tradecraft
to get beyond legacy security measures. Finding malicious
activity in a system or network is the biggest difficulty in
the modern era of internet and communication technology.
Cyber warriors struggle to stop and identify complex attacks
like Advanced Persistent Threat (APT) centered incursions,
despite the defense-in-depth method, which deploys many
layers of conventional security controls throughout the target
network. The conventional method that is used to minimize
activities related to invasion is an intrusion detection system
(IDS) [2]. IDSs are crucial for protecting both business and
personal systems [3]–[5]. They can be typically categorized
into passive and active types [6]. Passive IDSs do not actively
try to stop or obstruct attacker activity. Active IDSs take
the initiative to communicate with the adversary in order to
halt an attack [7]. The most widely used type of IDS is
the firewall, which is a component of almost all corporate
networks’ internet security. They are normally classified as
passive network defense mechanisms.

The basic objective of a firewall is to prevent unautho-
rized entry to or exit from a system or network [3], [4], [8].
A firewall operates as the network’s administrator, reviewing
access requests. The internal network, which might be seen
as safe, and the external network or the Internet, which is
known to be harmful, are separated by a network firewall.
They accept or reject particular packets in accordance with
the predefined defense policy( combination of configurable
rules) [9]. The firewall is not equipped to handle new attacks,
nevertheless, for which the security policy of the firewall
has not yet outlined any rules. These types of systems
typically perform a rule-based analysis of network activity.
Only inbound communications that a firewall has already
been mapped up to accept are allowed. Figure. 1 provides
an overview of pertinent security methods and primitives on
several layers [10]. Publishing security events and indicators
of compromise (IoCs) facilitate rapid and significant inference
in relation to efficient defenses against cyber attacks [11].
However, the present threat intelligence gathering solutions do
not make it simple for threat detection systems to communicate
and share knowledge, especially Intrusion Detection Systems
(IDS) that use Machine Learning (ML) approaches [12], [13].
By generating a herd immunity against novel (potentially
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undiscovered) assaults and malware, the coupling of proactive
threat information sharing and defensive mitigation measures
enables the development of resilient entities [14]. In this
situation, a honeypot is useful since it collects and updates data
on recent traffic thus enhancing the ability to detect malicious
activities.

When a system is accessed fraudulently, systems called
honeypots are used to track, monitor, and analyze behavior
patterns [11], [15]–[17]. They fall within the category of ac-
tively operating network security mechanisms and are only put
in place expecting to be attacked. Attractiveness to an assailant
is a crucial aspect of a good honeypot, ie. attractiveness refers
to the honeypot appearing to be precisely the target that the
adversary is seeking. A honeypot is a key security provision
designed to compromise its assets to examine illicit accessing
in search of potential security flaws in running systems thus
reducing the hazards [15], [18]. It can assist in addressing
the shortcomings of other existing security techniques because
of its distinctive design and application capabilities. Besides
thwarting attempts to attack actual systems, they enable in-
telligence about hostile intent, competence, and strategies.
Honeypots often excel in data collection, possibly providing
intrusion detection patterns, packet analysis, and inter-network
analysis, as well as quick screening and fine-tuning. Some GUI
based honeypots, for instance, let you choose an event message
to generate ignore rules that filter out normal communications.
In most cases, honeypots are installed in networks where they
serve as both sensors and decoys [19].

The purpose of honeypot information security [20] is to
entice attackers into fictitious environments so as to:

• Discover their interests
• How do they engage in striving to fulfill their objectives
• Explore how to halt bullying.
An enterprise typically engages a few vulnerable systems

or services and allows a few plot holes to be untied while
establishing a honeypot approach. The honeypot entices in-
truders into a secure setting by exposing sensitive information.
Researchers in cyber security could watch how the offenders
behave while gathering crucial data including endpoints, open
ports, and file systems being downloaded. Defense-focused
security teams can utilize this information to enhance security
measures and put new defenses in place to flee similar assaults.
Furthermore, honeypots have an advantage over firewalls since
they can help offset both identified and unidentified threats,
providing them the capacity to receive and handle threats that
were previously unseen. Over 3,312 open-source honeypot
projects were available to the public on GitHub at the time
this article was written. These include large-scale open-source
alliances, open-source enthusiast initiatives, and commercial
honeypots. There is no dispute that there are also a significant
number of customized production solutions, and research hon-
eypots documented in articles and conference papers further
increase this number.

The security community is quite excited about software con-
tainerization, a fairly young technique. To construct segregated
user-space environments for their programs, leading software
enterprises like Microsoft, Google, and Facebook containers
operate by combining all of an application’s constituent parts,

such as binaries, libraries, and all of their dependencies, into
a single aspect entitled a container image [21], were using
containers.

Implementing containers simplifies the software develop-
ment process, boosts safety and stability, and reduces the
likelihood of configuration errors in systems by segregating
processes and allowing various applications to operate con-
currently [22]. Additionally, containers make system adminis-
tration simpler by shifting the burden of managing program
dependencies from the systems engineer to the container
designer. Developers may quickly develop on one host and
switch to others because of containers’ portability. Applica-
tions that need to be migrated from cloud servers to more
compact edge endpoints can especially benefit from portability
[23], [24]. Container adaptive reuse has the possibility of
lowering expenses and promoting resource efficiency [25],
[26]. Security measures are continually developing, and con-
tainers are a pervasive technology. Monolithic apps, which are
often expensive to redesign or split into microservices, are not
suitable for containers. The possibility of cross-contamination
between a production process and a honeypot can be almost
eliminated by employing a cloud infrastructure [27]. Any
enterprise prepared to make the first ventures into the world of
honeypot deployments would profit greatly from the cloud’s
tremendous flexibility in terms of container honeypot deploy-
ment locations.

Our Contribution: The contributions of our works have
been enumerated below:

• By leveraging containerization and a centralized network
tracking framework, our work comprehends genuinely
feasible active security solutions for critical system in-
frastructures that are the focus of increasingly complex
attacks.

• Information leakages that occurred when setting up con-
tainerized honeypots were carefully explored and ex-
amined. We explored the fundamental causes of these
information leaks in more depth to benefit researchers.

• Highlighted how these seemingly trivial information leaks
can actually pose significant security risks to the honeypot
framework by exploring several use case assaults. Though
not limited, we were able to pinpoint eight use cases
that, if they materialized, would lead to assaults. We also
detailed attack vectors and mitigation techniques for each
use case.

• Effectively designed and implemented a multidimen-
sional deception framework based on containers, entitled
VIKRANT, that provided enthusiasts with an ample quan-
tity of flow data for deeper analysis of invasion.

Novelty: Although research on honeypots has increased re-
cently, our study stands out because it is the first in-depth anal-
ysis to examine containerized honeypot models that thoroughly
investigated the container technology for developing it, and
enumerated potential use cases based on the challenges asso-
ciated thereafter. There is widespread agreement that container
honeypots have the potential to improve security. But for their
performance in actual-world circumstances to be supported,
an empirical investigation is required. We determine container
honeypots’ actual performance in spotting threats in dynamic
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Figure 1: Breakdown of Essential Security Approaches

and complex communication contexts by putting them through
tests and simulations. Our paper offers a thorough analysis of
advancements in the container-based honeypot, spanning its
technology and highlighting it with extensive citations from
the literature. A typical honeypot survey covers a broad range
of threats and attack vectors, therefore its effects may not be
as significant as those of containerization. Figure. 2 represents
the overall taxonomy derived from our research.

The following queries were answered by our findings:

• How could honeypots based on containers be used to
protect information services against hostile intrusions?

• What benefits arise from using docker containers to
deploy the honeypot?

• What factors are correlated with containers to deploy the
honeypot?

The advancement of the document could be summed up as-
section II offers an overview of the honeypot’s key aspects,
section III explains the specifics of the containerization tech-
nology utilized for the honeypot, section IV outlines the
variety of threats that users of honeypot containers could expe-
rience at various points throughout the development pipeline.
Section V details research findings-inspired use case investi-
gations. Section VI describes the honeypot allied works, and
section VII details the framework of VIKRANT. Section VIII
discusses the results and Section IX outlines inferences drawn

from our research. Section X enumerates the containerized
honeypot provision for various uses, respectively. Finally,
section XI concludes the work.

II. PRELIMINARIES

A. Workflow Anatomy of Honeypot

All honeypots perform the same basic operations ( Figure.
3). In order to entice intruders, they first disclose several
services and port numbers [15]. The next step is to log at
least the timeline, location, source address of the invasion
(often the IP address), and payload exchanged during the
connection attempt. If they are not explicitly instructed to
be ignored, all connectivity initiatives should be logged and
flagged so that an incident handling team may get activated.
The significant advantage of an effective honeypot is thus
utilized in data analysis, whether that be by performing deep
packet inspection, login attempt analysis, or grouping similar
inquiries into a single event. The evaluation relies on how
adeptly and successfully each honeypot does this.

B. Emulation services and levels

Every honeypot typically replicates one or more applica-
tions, and in order to do so, they have to be configured to
listen on the appropriate TCP and UDP (including ICMP)
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ports. Numerous honeypots replicate only a minimal number
of ports. A port that has previously been bound to the host
machine cannot be used by a honeypot. For instance, in order
to simulate NetBIOS features, Windows-based honeypots must
disable files and printer sharing on a host and SMB(Server
Message Block) / CIFS( Common Internet File System). The
majority of attackers do not perform network analysis and
fingerprinting. They seek out a port, discover it, and swiftly
attempt to learn what it is running. Network stack emulation is
crucial when an attacker uses a comprehensive fingerprinting
platform (like Nmap and Xprobe2) [28], which tends to happen
in a low minority of incidents.

C. Logging and Alerting

Without reliable warning and tracking, a honeypot is unpro-
ductive [29]. On sensors or a centralized interface, all honey-
pots show connectivity incidents as flags. Criticality grades at
each sensor, originating Internet address, port, or even attack
fingerprint ought to be possible to set in alerts. Even though
certain probes to a honeypot are more suspicious than others,
all should be scrutinized. For instance, a probe coming via
a more secure site can signal a more severe vulnerability.
The majority of honeypots permit fine-tuning future warnings
based on the existing alarms, usually to segregate actual traffic.
A robust honeypot makes the process of fine-tuning faster and
easier. The logs collected by a honeypot could be coupled to
firewall logs, IDS alarms, and many other system logs. As
a result, a holistic profile of suspicious transactions inside an
organization may be constructed and is possible to set up alerts
that are more appropriate with fewer false positives. A SIEM
(Security Information and Event Management) can receive
alarms from the honeypot or can be inspected straightfor-
wardly in the honeypot manager’s dashboard. While properly
configured honeypots can act as high-priority SIEM alarms,
they shouldn’t produce as many logs as Sysmon (System
Monitor) or Windows Activity logging. When the only alerts
produced are those that indicate an assault, it is simpler to
filter out false positives due to this strategy.

D. Approaches for Deployment

Sacrificial Lamb (SL), Proximity Decoys(PD), Deception
Port (DP), Minefields, and Redirection Shield (RS) are five
effective forms for deploying decoys [15]. A typical system
that is willing to be penetrated by attackers, such as Cuckoo
Sandbox [30], is regarded as a sacrificial lamb. It has no
alliances with production networks. It could be an off-the-
shelf PC from a store, a switch, or a gateway. In a typical
implementation, the OS is loaded, a few services are enabled,
and then the system is left on the network to see what actually
occurs. Additional network implications would be necessary
as they lack integrated traffic screening capabilities. Deception
ports are honeypots that imitate numerous services on multiple
ports. For instance, on port 80, SMTP is imitated, on port
20 FTP is mimicked, and so on. In simplest terms, these
honeypots observe the OS they are using and then portray
these services in that context. These kinds of honeypots are
frequently seen in Honeyd honeypot [31], [32]. A content

rich enhancement to this methodology of using honeypots is
Spectre [33].

Proximity Decoys(PD) method is intended to be the most
efficient and least noticeable of all for legal reasons. When
the honeypot joins the same subnet as the primary servers, it
becomes a part of their network and are permitted to keep
an eye on activity related to the network. Additionally, if
a malicious assault is discovered in the proximity of the
production environment, it will be simple to either record
the assault or reroute traffic. This helps to prevent the spread
of viruses and worms. Research honeypot deployment using
VMware and User mode Linux are two examples of these
types of honeypots [34].

Redirection shield honeypots are essentially taking the place
of production environments by redirecting ports or rerouting
traffic (refer Figure. 4(a)). These measures serve as barriers,
therefore will soon be the most advanced constituent of hon-
eypots seeking commercial application. It could be expanded
to offer commercial services to larger networks. Minefield
deployment of honeypots is designated at the outer edge of
the organization’s network (refer Figure. 4(b)). They explode
when they get hit (usually by an intruder). IDS and vulnera-
bility scanners are however installed in the network to assure
absolute security. Consequently, both leverage the information
in the honeypots to raise alarms rather than keeping an eye on
the production servers. Hence, there is only a minimal chance
of false alarms being generated. These honeypots, which trap,
trick, track, or tarpit intruders, essentially serve as a third
line of defense. LaBrea and Honeyd, both when employed
in passive mode [35], and Mantrap [36] are among examples.

To yield the most relevant (and helpful) results, a honeypot
must be connected in some way to the entity that a potential
attacker is interested in. This could be accomplished using a
licensed web domain or even a phony company website. Fur-
thermore, installing a honeypot inside the company’s existing
cloud perimeter, if feasible, can also aid in the detection of tar-
geted assaults, however, its seclusion should be meticulously
orchestrated.

E. Challenges in Honeypot

For an expert, it is not hard to distinguish honeypots as bait
devices. Low interaction honeypots rarely manage intricate
services underneath since they are mimicked [37]. The system
could be successfully undermined by making such an effort.
Since we are dealing with the network stack in honeypots
with modest levels of involvement, finding information over
the network becomes critical. For instance, honeypots like
Honeyd [32] frequently cut off connections when they are
unable to handle them. Honeyd disconnects the connection
if the SYN package has a related vulnerability. With this
knowledge, hackers can use any tool that can help in verifying
connections through a honeypot to discover the system as a
honeypot [38]. The output of the program itself will disclose
any dropped connections to an intrusive party.

In containerized honeypots, performance and efficiency im-
provements are made feasible by employing a single shared
kernel, however, this also makes container breakout attainable
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Figure 4: Redirection Shields and Minefield Deployment Strategy of Honeypots

with a simple exploit. The most prominent challenge is the
possibility that an attacker may successfully use a honeypot
as a launching pad for a lateral breakthrough into the real
production network. Hence required to keep it separate from
all other networks. This may seem like a straightforward
process, but all it takes is one abandoned system or one firewall
rule modification to turn a basic task into something quite
harmful [18]. The time commitment and associated expenses
involved in managing a honeypot present another challenge.
Inherently, configuration and renovations of the system are
necessitated. Not just that, the organization’s security person-
nel must utilize the captured behavior in order to make it
useful. The organization of this system and its integration with

security protocols will take a significant amount of time. The
information could result in actionable intelligence, such as the
ability to block an adversary’s connectivity, set up rules for
an intrusion prevention system, even create or update malware
signatures.

By hosting a honeypot on a public cloud system, some of
the aforementioned difficulties can be circumvented. Complete
separation from any production network is offered by the pub-
lic cloud [29], [39]. Additionally, there is no requirement for
specialized technology or exclusive infrastructure connections.
Snapshots can be used to restore a system to its previous
configuration prior to the intrusion once a system has been
compromised and the data has been gathered. By choosing
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the appropriate geographical regions inside the cloud system
setup, a cloud computing infrastructure can be deployed any-
where in the world for a honeypot implementation. With a
couple of button presses, a detector may be set in East Japan
one day and can be migrated to Central India the next day. This
is excellent for research and information gathering because
detectable intrusions and adversaries can vary greatly relying
on where the vulnerable device is housed. Some honeypot
solutions, like the Thinkst (Cloud) Canary [40], have also been
designed around a private cloud server. Devices called canary
honeypots are placed in key areas of the client’s connection.
When an actual perpetrator inadvertently interacts with any of
these sensors, they instantly communicate to a single cloud-
based system, enabling the client to observe peripheral traffic
as well as lateral displacement within the production process.
When it comes to honeypots, positioning and significance are
also directly correlated. The usage of honeypots has legal and
regulatory implications as well. Several providers of cloud
services need not appreciate the thought of letting hackers
penetrate their infrastructures and depositing malware on their
systems [24]. Admittedly, there is a likelihood that if the
host is compromised, it may then be utilized to exploit other
online targets which inturn can pollute the cloud provider’s
credibility.

III. CONTAINERISATION IN HONEYPOTS

Virtualization is a technique that offers an interface for
external spectators to view internal operating system (OS)
activities. Virtual Machines (VMs) streamline the isolation
between a computer system’s virtual space and the real system
underneath it, enhancing security against network service
breaches [41]–[43]. A monolithic operating system manages
entire firmware resources in a nonvirtualized system. A new
layer of software called the Virtual Machine Monitor(VMM)
is present in a virtualized system that builds a Virtual Ma-
chine(VM) environment. Traditionally, honeypots have been
set up as virtual computers or as hypervisor services. Crit-
icalities brought on by the overheads added by hypervisors,
especially for low-end embedded devices, necessitated further
research into strategies based on lighter virtualization options,
like containers. Virtualization at the OS level, like Linux
Containers or Docker containers, has gained traction with the
continuous infrastructure transfer to the cloud for a number of
reasons. The use of the Docker Engine and containers makes
Docker one of the most popular open-source implementations
of this. Since operating system images are not there in con-
tainers, they consume minimal resources than conventional
or hardware virtualization environments. A container image
created for an application and all of its dependencies are
published in a public/ private registry so that an infinite number
of users can operate in the same application context [44], [45].
Due to Docker’s popularity, the terms docker and container
have been used interchangeably in this article.

A. Configuration

Honeypots must be properly set up to draw in the right
victims, much like realistic traps [17], [46]. As a result, the

programmers of the honeypots should deliberate about what
events ought to be watched, whose transactions should be
observed, when certain initiatives should be noticed, and so
on. A honeypot that is improperly set up not only keeps
failing to attract its victim but also leaves itself vulnerable
to hijacking by adversaries [17], [47]. Additionally, it might
be very challenging to interpret the data after blindly gathering
a huge amount of network events. Henceforth, it is crucial that
honeypots are set up to achieve certain goals.

In a typical design, the gateway should ideally be the only
connection made to the sacrificial host; it shouldn’t have access
to the internet absolutely. A prebuilt VM image with Docker
container installed ought to be used to maintain this host
updated. Using various tool like Packer [48], the updating of
this docker VM image can be automated. The gateway host
should be configured so that it may be seen from the Internet.
The sacrificial VM should ideally run on its own exclusive
physical hardware to eliminate information disclosure as an
outcome of CPU vulnerabilities.

B. Docker Architecture

The Docker daemon, which controls the formation, ex-
ecution, and propagation of Docker containers, and the
Docker client interact according to a client-server configura-
tion [49](refer Figure. 5). It is possible for a Docker client to
operate on the same system as the Docker daemon or to con-
nect to a remote Docker daemon. The client communicates
to the daemon using REST API, UNIX sockets, or a network
interface. A series of containers can be interacted with using
Docker Compose, which is another Docker client.

1) Docker daemon: Docker daemon (dockerd) handles
Docker objects like images, containers, networking, and vol-
ume while observing Docker API requests. Daemons can
interact with one another to administer Docker services.

2) Docker Client: Docker Client is the preferred method
of communication for Docker users(docker). It articulates with
the daemon to manage the formation, administration, as well
as dissemination of containers. When a command like docker
run is used, the dockerd service receives and executes this
command from the client. Docker API is utilized by the
docker command. Additionally, the client interacts with several
daemons.

3) Docker Objects: Users build and employ images, con-
tainers, networks, volumes, plugins, and other objects whilst
using Docker [49].

• Image: An image, which is a read-only template, is used
to generate the Docker container. Often, an image is based
on another image and then modified [50], [51]. An image
is created by layering on top of an earlier one and then
subsequently modified. To construct an image, write a
Dockerfile with a concise structure specifying the actions
required to build and execute the image. Every command
in a Dockerfile adds a new layer to the image [50], [52].

• Container: A container is a runnable snapshot of an image
[53], [54]. By using Docker API or CLI, a container
can be created, started, stopped, moved, or destroyed.
A container can attach memory to it, communicate with
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multiple ports, or generate a new image based on its
existing state. A container is often quite well segregated
from its host system as well as other containers. Each
container has its own networking stack.

• Volumes: The suitable technique for storing data pro-
duced by containers is through volumes. Bind mounts
depend on the host machine’s Kernel and directory struc-
ture, however, Docker manages storage volumes predom-
inantly [54], [55]. The volume’s composition is persistent
outside of a specific container’s lifespan.

• Network: Network drivers used by Docker provide sup-
port for networking containers. The bridge and overlay
drivers are the two network drivers that Docker by de-
fault makes available. However, writing a network driver
plugin to construct drivers is a laborious operation [56].

C. Upperhand of Containers in Honeypot Deployment

Being that they are frequently utilized to isolate a specific
application, containers seem to be a lightweight substitute for
full-machine virtualization [42], [57], [58]. The concept of
microservices has made containers extremely popular. There is
no requirement for a bootup period as containers use the kernel
of the host OS and hence containerized application could be
deployed in a few seconds. Docker is an open-source software
framework for creating, deploying, and managing virtualized
container technology on a shared operating system (OS) [59].
Docker has swiftly gained popularity due to the advantages
that docker containers offer. Docker’s primary benefits include
rapidity, mobility, scalability, faster service, and density [60].

• While the programmer is in charge of maintaining the
apps inside the docker container, the administrator is in
charge of deploying and maintaining the server containing
containers. Since all necessary dependencies are included
in the programmes and are fully tested, containers can
operate in any environment.

• Applications developed using Docker containers are
portable that can be transported readily as a single pack-
age while maintaining the same efficiency.

• Scalability can be illustrated, for instance, a web appli-
cation executing inside a Docker container and hosted by
the Apache web server linked to a MySQL database back-
end running inside a separate Docker container. Without
changing the configuration of the front end or back end,
the application can scale by adding more Apache nodes
to handle more web traffic.

• Since containers are so small, the time needed to build
one is amazingly fast. As containers are compact, con-
struction, debugging, and distribution may be accom-
plished more quickly. After being developed, containers
can be pushed for testing before being used in the
production environment.

• Since all the components required to operate a program
are contained within the container, containers also allevi-
ate platform compliance concerns. Then, using the same
operating system as all other containers, the image can
operate in a contained environment. The host operating
system places restrictions on the container’s ability to

utilize the system’s physical resources, thus one container
cannot exhaust the host’s resources entirely. As a result,
any issues and challenges in a certain container will only
affect that container.

D. Containerization for Security
Integrating security features into the steadily growing con-

tainer system is one area that requires a significant amount
of work. The containerization of honeypot applications has
enormous potential, and several noted advantages of this
strategy are outlined here [53].

• Trivializing and Customizing: The concept that containers
are virtually replaceable is one of the most appealing
features to use them for honeypot implementation. It is
simple to delete a container completely and re-deploy it
with no system disturbance if it is compromised by mal-
ware [49]. Containers allow for fine-grained administrator
management and are extremely configurable. Everything,
including execution and permissions, can be regulated al-
lowing control over the resources that a certain container
is allowed to access.

• Container Isolation: Three key Linux Kernel mechanisms
[53]— Namespaces, CGroups, and Capabilities —achieve
containerized honeypot isolation.
1) Namespaces: A key Linux feature for resource isola-
tion across many containers is namespaces. Entity table
instances along with other constructs linked to kernel
global resources can be separated using namespaces.
They segregate hostnames, system files, users, services,
and other components. There will be distinct mount tables
and root directories for each system files namespace as a
result [41], [53]. For instance, the PID namespace ensures
that a job will only view activities that are in its own
PID namespace. Many researchers examined the Docker
container escape issue and provided a security strategy
based on namespace status [61] and information leakage
pathways inside containers [62], [63].
2) CGroups: Linux features that regulate resource uti-
lization such as including CPU running time, storage,
input/output, and communications bandwidth, impose lia-
bility for resource allocation. CGroups restrict the number
of resources that can be used in contrast to namespaces,
which regulate which assets a container honeypot could
see. Further, it prevents containers from consuming all
resources and depriving other processes. ContainerDrone,
a real-time defense against DoS assaults presented by
Chen et al. [64], makes use of cgroup solutions.
3) Capabilities: The divergence between roots privi-
lege and non-roots privilege is transformed into fine-
grained access control via capabilities [65]. As a re-
sult, containers typically do not need complete root
access(assuming the capability exists to perform the nec-
essary activities). There are forty-one capabilities that
can be used for a range of activities [66]. For instance,
CAP_NET_BIND_SERVICE allows a port below 1024 to
be opened by the container, CAP_KILL avoid requesting
authorization before sending signals. SELinux, as imple-
mented in RedHat, or MAC (Mandatory Access Control)
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Figure 5: Comprehensive process flow of the containerized honeypot, including its underpinnings

techniques like AppArmor, used in Ubuntu are additional
honeypot container security measures [67]. Conversely, it
is debatable if the confinement layer is sufficient for a
honeypot solution considering that the OS is shared.

• Docker and IPtables: When Docker honeypot is installed
on a host that is connected to the internet, IPtables rules
can be set to limit access to containers and other services
that are running on the host [68]. The two custom iptable
chains DOCKER-USER and DOCKER that Docker in-
stalls make sure that incoming traffic always is examined
foremost. The DOCKER chain contains all of Docker’s
iptables regulations. This chain should not be calibrated.
If required, add rules to the DOCKER-USER chain that
execute prior to Docker’s rules.

E. Container Honeypots versus Conventional Honeypots

Compared to conventional honeypots, container honeypots
use a fundamentally different technology. A container honey-
pot leverages containerization technology and operates inside
a sandbox container with its own distinctive file system, ac-
tivities, and communications. This isolation adds an additional
degree of protection by barring successful assaults from having
an effect on the underlying system. Traditional honeypots
tend to be resource-intensive, mandating memory, CPU, and
storage space on a dedicated machine. Contrarily, container
honeypots are compact, reliable, and efficient since they share
the underlying system’s kernel, thereby minimizing overhead.
The speed of deployment is another significant distinction.
It can take quite a while to set up a typical honeypot as
the operating system must be manually programmed and a
separate machine must be provisioned. However, container
honeypots can be quickly set up by utilizing assembled images
and platforms like Docker. A dedicated IP address, which is

possibly limited in quantity, is frequently needed for standard
honeypots [69]. Container honeypots, on the flip hand, could
utilize exactly the same IP address as the system that hosts
them, optimizing resource utilization. In addition, container
honeypots use namespaces as a way to isolate their internet
traffic and increase security, while traditional honeypots re-
quire a distinct network or VLAN for effective isolation.

Frequent modifications, upgrades, and inspection of the
underlying OS are required for standard honeypots in terms
of administration and support. In contrast, container honeypots
gain access to security patches and updates of the host system,
which requires minimal maintenance. Container honeypots
also provide better scalability. Conventional honeypot scaling
may turn out to be difficult as it is resource-intensive, neces-
sitating the use of additional specialized systems. Container
honeypots are highly efficient for large-scale implementations
since they expand simply by adding new containers. Besides,
they utilize resources more effectively, enabling greater distri-
bution of computational power. In terms of security, container
honeypots offer a better level of protection by containing po-
tentially harmful behaviors in a controllable setting. They can
be readily replaced in the event of a compromise, decreasing
downtime as well as the likelihood of damage. Due to their
effective resource usage and flexibility to operate on already
existing facilities, they could be even more cost-effective.
Ultimately, they are beneficial in contemporary security initia-
tives as they offer a sandboxed setting for analyzing attacker
action, facilitating effective research of possible threats. The
comparison is summarised in Table I.

IV. DOCKER HONEYPOT THREAT LANDSCAPE

Since containerization technology is still relatively new
compared to full virtualization, deploying containers as hon-
eypots has generated considerable discourse. Furthermore, it
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Table I: Summary of Container Honeypots v/s Conventional
Honeypots

Items Normal Honeypot Container Honeypot
Isolation Runs on host system Runs in isolated container

Resource Utilization Resource-intensive, May require
dedicated IP address

Lightweight and efficient, Shares IP
with host system

Speed of Deployment Takes time to set up Rapid deployment using containers
Scalability Limited Easily scalable with containers

Management/Maintenance Requires OS maintenance Benefits from host system updates
Scalability Limited scalability Easily scalable with containers

Recovery Time Slower recovery after attack Faster recovery with container replace
Flexibility OS dependent Container dependent
Security Potentially less secure Enhanced security with isolation

could be simple for some administrators to disregard potential
setup concerns like the ones pictured following.

A. Base Images
The base images themselves can contain the majority of

the vulnerabilities [70]. When using Docker, the base image
is created from an operating system that is often modified
from another well-known image that is available in Docker
Hub [71], [72]. Besides the original base image, modifi-
cations—whether intentional or unintentional—create several
opportunities for assaults, possibly even by the most unskilled
hackers. Attackers may post images to Docker Hub containing
files laced with viruses, malware, or various potentially haz-
ardous programs. These harmful codes can be unknowingly
activated by users who download these images.

B. Docker Engine API
For container management, the Docker CLI(Command

Line) makes use of the Docker Engine API [49]. This API
can also be directly accessible by remote applications on Linux
systems for debugging and automation purposes like a REST
API. An API is a set of rules or an interface for programming
applications. Regardless of how it is implemented, it is a
standard method for communicating amongst programmes of
a wide range. Representational State Transfer, REST [73], is
a convention that programmers can use to obtain and transfer
files with other apps by sending a request for data in the form
of a specific URL and retrieving information in the payload
of the returning message. The Docker API may be used by
an attacker to escalate their privileges and get access to the
host system if they manage to access a container with elevated
privileges.

C. Docker Hub
Although fraudulent Docker containers have now been

deleted from Docker Hub, the public repository’s vulnerability
to misuse and abuse persists [74], [75]. A supply chain assault,
in which an intruder takes control of a trustworthy image
or repo and then utilizes it to spread fraudulent software to
naive consumers can leverage Docker Hub. Caution should be
exercised while using base images downloaded from Docker
Hub. However, since many administrators feel that conve-
nience frequently outweighs the risk, implementing sensible
security precautions minimizes the risk of an attack. The
Threats, Attack Vectors, and Mitigation Strategy overview for
the Honeypot Container Development Pipeline are outlined
in Table. II. The mapping of threats to real-world exploits is
depicted in Table. III [76].

V. USECASES OF SECURITY ANALYSIS OF CONTAINER
HONEYPOTS

The analysis relies on the assumption that the hacker has
successfully accessed the container honeypot and obtained
root privilege(uid=1) command line capability. Compromised
Docker Honeypots are used for various attacks like [77]. The
following use cases for honeypot security assessments were
deduced during our examination (aspects of potential attacker
behavior) as depicted in Figure. 6.

Denial of Service (DoS)

Fingerprinting Container Honeypot Environments ( U3)

  Container Escape

Denying Storage Space (U1)

UseCases

Denying  Memory/Processor( U2)

 Privilege Escalation (U4)

 Command & Control(U5)

 Cross Container 
 ARP Poisoning (U6)

Side Channel Exploit (U7)

Cryptojacking through Misconfigured Daemon ( U8)

Figure 6: Usecase Observations Assembled by Research Find-
ings

A. Usecases

1) DoS(Denial Of Service) by Denying Storage Space, U1:
Maintaining logs of the attacker’s activities is one of the
functions of the honeypot [18]. In the case of the Containerized
Honeypot they are typically kept in a permanent storage
location that the container could navigate. As a result, the
attacker may employ a security vulnerability to prevent other
containers from accessing storage space, and consequently,
from being executed. Another rationale is to stop Honeypot
from storing the recorded actions and thereby just erase the
attack’s footprints [78]. The core argument of vulnerability is
that there isn’t much storage space available.

The placement of Docker files varies per operating system
[55]. It can be found at /var/lib/docker/ for Ubuntu, Linux
and fedora, at C:\ProgramData\DockerDesktop for windows,
and at ∼/Library/Containers/com.docker.docker/Data/vms/0/
for MacOS. Volumes and bind mounts are two options pro-
vided for containers to archive logs on the host so as to persist
them when the container shuts down. There is a third option for
Linux users using Docker: mounts tmpfs (Figure. 7 illustrates
a clear distinction).

Lessons Learnt:Examining the use case offers significant
revelations that advance our comprehension of container secu-
rity and the function of honeypots in identifying and thwarting
such attacks:

Mitigation Strategies could include:
• Isolated Honeypot Setting: Establish the honeypot in an

isolated region with restricted accessibility and interaction
from outside. To block illicit access to the honeypot, use
network segregation, network regulations, etc.
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Table II: Threats, Attack Vectors, and Mitigation Strategy Overview for Honeypot Container Development Pipeline

Threat Attack Vector Mitigation Strategy

Image Tampering
Attacker gains unauthorized access to the image
repository and makes changes to a container image
without permission.

- Use access-controlled, secure image registries.
- Use digital signatures to confirm the integrity of images.
- Use ongoing image repository monitoring and auditing.

Container Breakout Exploiting vulnerabilities to escape container isolation
and access the host system.

- Update the host system’s and the container runtime’s security
frequently.
- Use secure container configurations best practices.
- Use security tools like SELinux or AppArmor.

Malicious Payload Using containers that include malware, ransomware, or
other hazardous software pre-installed.

- Before deployment, check container images for malware.
- For runtime monitoring, use container security tools.
- Use least privilege concepts for determining container
permissions.

Service Exploitation Attacker takes advantage of flaws in simulated services.

- Keep pushing security updates to emulated services.
- Use network segmentation to separate honeypot traffic.
- Keep an eye out for any exploitation attempts or strange
behavior in service logs.

Harvesting of credentials Attacker targets authentication methods in an effort
to collect login credentials.

- For emulated services, implement multi-factor authentication.
- Monitor for patterns in login attempts that point to credential
harvesting.
- Inform users about safe login procedures

Network Inspection Attacker performs network scans to find possible targets
or weak points in a system.

- Use network segmentation to reduce the visibility of honeypots.
- Use intrusion prevention systems or firewalls to find and stop
scanning activity.
- Maintain a check for strange patterns in network traffic.

Exfiltration Attacks Attacker tries to steal potentially sensitive data from the
honeypot environment.

- Use data loss prevention (DLP) tools to keep an eye on and
stop unauthorized data transfers.
- Implement encryption and access restrictions for the honeypot’s
sensitive data.
- Keep an eye out for oddities in outgoing traffic.

Honeypot Container
Host

File System

Docker Area

Memory

Bind
Mount

Volume

tmpfs
Mount

Figure 7: Storage Pathways of Bind Mount, Volume, and tmps
Mount in Docker Linux Honeypots

• Snapshots of containers: When employing containerized
honeypots, periodically acquire a snapshot of the con-
tainer’s state, particularly the logs. In the event that logs
have been interfered with, snapshots can be utilized as
proof.

• Certificate of Custody: Retain a thorough record of the
line of possession for log files, documenting whoever
retrieved, altered, or distributed the logs. This improves
transparency and accountability.

• Centralized storage and immutable logs: Implement im-
mutable logging for your containerized honeypot, using
technologies like blockchain or write-once storage. Send
logs to a centralized and secure logging server that resides
outside the container environment. This prevents attackers
from directly tampering with logs within the container.

• Establish read-only filesystems: Set containerized honey-
pot with a read-only filesystem. As a result, hackers are

unable to change or delete log files that are kept inside
the container.

• Monitoring of execution behaviour: Implement runtime
security tools that keep watch on the activity of containers
in real-time. Any effort to alter or delete files could lead
to alarms and swift responses.

• Security profiles for containers: Use resource segregation
policies and security policies for containers to limit access
to sensitive data, such as logs, and enforce resource
isolation.

• Replication and backup: Frequently archive container
logs to a safe location off-site. Keep backup copies of
logs to ensure access even in the event of a breach.

2) DoS( Denial Of Service) by Denying Memory/ Pro-
cessor Resources, U2: Denial of memory and processing
resources constitutes further potential danger. Both the host
memory status (/proc/meminfo) and the processor resources
(/proc/procinfo) are accessible for every container instance.
A container has no resource restrictions by default and is
allowed to use all of the given resources that the host’s kernel
optimizer permits, ultimately preventing the execution of other
containers on the host [49]. By looking at the Htop(interactive
real-time process monitoring on Linux/Unix-based platforms)
output, the potential vulnerability could be observed. On Linux
hosts, the kernel will throw an OOME( Out Of Memory
Exception) and initiate terminating processes to release mem-
ory if it finds that there is insufficient memory to carry
out crucial system functionality [79], [80]. Any operation,
including Docker and other vital applications, is vulnerable
to termination. If the incorrect process is terminated, could
theoretically bring the whole system to a halt.

Lessons Learnt:The weaknesses and mitigation measures
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Table III: Mapping of Threats to Real-world Exploits

Threat Impact CVE ID CVSS Score Description

Image Tampering CVE-2019-3841 6.8

When importing data into PVCs from container registries,
Kubevirt/virt-cdi-importer, releases 1.4.0 till 1.5.3, reportedly suppresses
TLS certification checking. The result could expose the container registry
to attacks such as man-in-the-middle, resulting in allowing trusted
container image files to be altered without being noticed.

Container Breakout

CVE-2014-3519 6.5

When utilising simfs, the open_by_handle_at procedure in the vzkernel
version 042stab090.5 of the OpenVZ patch for the Linux kernel 2.6.32
could allow native container consumers with specific capabilities to get
around a container’s envisioned protective mechanism and access any file
on a file system.

CVE-2020-28914 7.1

Kata Containers before version 1.11.5 can be compromised due to incorrect
file permissions. While installing a file or directory as read-only within a
container employing a Kubernetes hostPath Volume, it is mounted as
read-only within the container but remains editable inside the guest system.
In the event of a container breakout, a malicious user could change or
remove files and directories that should be read-only.

CVE-2021-30465 8.5

Container Filesystem escape via Path Traversal could be achieved with runc
previous to 1.0.0-rc95. An attacker builds several containers with particular
mount configurations in order to take advantage of this vulnerability.
A race condition-based symlink-exchange attack is what causes the issue.

CVE-2021-4154 8.8

The Linux kernel’s cgroup v1 parser was found to have a use-after-free bug.
By making use of the fsconfig syscall argument, an insider with user
privileges could elevate their privileges, resulting in a container breakout
and a DoS on the system.

Malicious Payload CVE-2021-43784 5

By simply inserting their own netlink payload that disables all namespaces,
an attacker could take advantage of this vulnerability and get around the
container’s namespace constraints, although they would need some control
over the settings of the container to do so. The people who permit untrusted
images with untrusted configurations to execute on their computers are
those who are most negatively impacted.

CVE-2023-36457 8.8

A management interface for Linux server maintenance and operation is
called 1Panel. When adding container repositories, an authenticated attacker
could deploy an illicit payload to perform injecting commands prior to
version 1.3.6. In version 1.3.6, this flaw had been resolved.

Service Exploitation

CVE-2017-2935 8.8

When handling the Flash Video container file format, Adobe Flash Player
versions 24.0.0.186 and prior have an exploitable memory overflow
vulnerability. A successful exploit could result in the execution of
arbitrary code.

CVE-2018-11756 9.8

If the user-supplied code in the PHP Runtime for Apache OpenWhisk is
susceptible to code exploitation, an attacker could replace it within the
container using a Docker action inheriting from one of the Docker tags
openwhisk/action-php-v7.2:1.0.0 or openwhisk/action-php-v7.1:1.0.1
(or earlier).

CVE-2018-11757 9.8

If a user function inside a container inherits the Docker tag
openwhisk/dockerskeleton:1.3.0 (or older) and is subject to code
exploitation, an attacker may be able to replace it. This is true for Docker
Skeleton Runtime for Apache OpenWhisk.

CVE-2022-39395 9.9

A Golang-based Pipeline Automation (CI/CD) framework, Vela, is
based on Linux container technology. Vela administrators can change the
worker’s setting to explicitly void, use the server component’s setting to
limit access to a list of repositories that are allowed to be enabled, and
disable pull requests if they are not required.

CVE-2022-41942 7.8

A command Injection vulnerability in the gitserver service was discovered
by Sourcegraph, a code intelligence platform. A lack of input validation on
the endpoint’s host parameter led to this vulnerability. It was possible to
craft a request to be sent to the gitserver, which would run commands inside
the container.

CVE-2022-46756 6.7

Versions of Dell VxRail before 7.0.410 have a vulnerability, Container
Escape. This vulnerability could be used by a local, high-privileged attacker
to execute arbitrary OS commands on the operating system under the
container.

CVE-2023-41319 7.2

It is possible to upload customized integrations as a ZIP file using the Fides
webserver API. Although Fides can be set up to accept the addition of
customized Python code, this ZIP file must contain YAML files. It is
possible to go around the sandbox and run any arbitrary code in the
target system.
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Table III: Mapping of Threats to Real-world Exploits (continued..)

Harvesting of
Credentials

CVE-2016-8954 9.8 Given that the credentials for IBM dashDB Local are hard-coded, a remote
attacker could be able to access the database or Docker container.

CVE-2017-1000113 5.5

Passwords were kept in plain text as part of the setting of the Deploy to
Container Plugin. This made those passwords accessible to people with
Jenkins master local file system access or users with Extended Read
access to the jobs it is used in.

CVE-2017-12351 5.7

An authenticated, local attacker could access and send packets that are
outside the boundaries of the guest shell container through the Cisco
NX-OS System. By performing "Unauthorized Internal Interface Access,"
a hacker could take advantage of this vulnerability. For this attack to be
successful, an attacker would require legitimate administrator credentials.

CVE-2018-1223 8.8

Prior to version 0.14.0, Cloud Foundry Container Runtime (kubo-release)
could publish UAA and vCenter credentials to application logs. These
credentials could be used to increase privileges by a malicious user who
has access to read the application logs.

CVE-2018-15763 8.8

IaaS credentials are exposed to application logs in Pivotal Container
Service editions earlier than 1.2.0 due to information exposure. These
credentials may be obtained by a malicious user with access to application
logs, who could then use them to carry out actions.

CVE-2018-5543 8.8
The BIG-IP username and password are passed as command line
parameters for Kubernetes 1.0.0-1.5.0, which make the container’s
credentials public.

CVE-2019-10200 7.2

A bug in OpenShift Container Platform 4 allows users with access to
create pods to schedule workloads on master nodes by default. The master
AWS IAM role’s security credentials can be retrieved by pods running on
master nodes that have permission to access the host network, providing
administrative access to AWS.

CVE-2020-10750 5.5

Before version 1.18.1, when the Kafka data store was utilized, there
existed a vulnerability in jaegertracing/jaeger that allowed sensitive
information to be written to a log file. An attacker who has access to
the container’s log file can use this weakness to learn the Kafka credentials.

CVE-2020-11075 9.9

A shell escape vulnerability in the anchore engine analyzer service during
an image analysis process can be triggered in version 0.7.0 of the Anchore
Engine by using a carefully constructed container image manifest that is
fetched from a registry. In the event of a successful attack, commands that
run in the analyzer setting can be executed with identical privileges as the
user that the anchor engine operates.

CVE-2021-3602 5.5

When creating containers utilizing chroot isolation, Buildah was found
to have an information disclosure issue. Environment variables can be
accessed by running processes in container builds, such as Dockerfile
RUN instructions.

CVE-2022-2403 6.5

The OpenShift Container Platform has a credential breach. Any authorized
OpenShift user or service account could access the external cluster
certificate’s private key since it was improperly saved in the
oauth-serving-cert ConfigMaps.

CVE-2023-24827 7.5

A Software Bill of Materials (SBOM) can be created from filesystems and
container images using the CLI tool and Go library syft. Versions 0.69.0
and 0.69.1of Syft contains a bug that can reveal passwords. The
SYFT_ATTEST_PASSWORD environment variable contains the password,
which is exposed by this bug.

Network Inspection CVE-2020-11939 9.8

Due to the granularity of the overflow primitive and the ability to remotely
manipulate the layout and contents of the heap memory of the nDPI library,
this vulnerability could be exploited to fully execute remote code against
any network inspection stack that is linked against nDPI and utilizes it to
analyze network traffic.

associated with invasions on the accessibility of container
assets are the key insights provided by this study.

Mitigation Strategies could include:

• Limits& Regulations for Resources: Establish rigid CPU
and memory consumption constraints. Enforce these re-
strictions to stop one container from using too many
resources and resulting in a denial of service.

• Allocating Resources Automatically: Implement auto-
matic scheduling and distribution of resource rules that
give priority to significant containers. While dynamically
modifying allotment according to demand, make sure
that honeypots have a minimum amount of committed
resources.

• Response and prevention in real-time: Create autonomous
responses for resource depletion circumstances. Prevent
the breach from spreading to additional containers or
the whole infrastructure by dynamically segregating or
throttling the infected container.

• Scaling and Capacity Planning: Plan to make sure that the
container environment can withstand resource exhaustion
attacks without creating significant disruptions. Extend
the size of the infrastructure to prepare for unexpected
demand.

• Response to Incident Strategy: Create a thorough incident
response strategy that specifies how to identify as well as
resolve resource exhaustion threats. Establish procedures
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for redistributing resources, isolating impaired containers,
and restoring regular operations.

3) Fingerprinting Container Honeypot Environments, U3:
There are numerous ways for an attacker to figure out what
they are within by executing the commands cat /proc/1/cgroup,
cat /proc/1/stat, etc. This agrees with [81] conclusions for as-
sessing the vulnerability of containers towards fingerprinting.
As mentioned by Barron et. al. [82] in their investigation of
attacker habits employing the Cowrie honeypot, it is apparent
that a skilled invader could recognize the honeypot as not
a secure environment and disassociate. As an instance, the
Cowrie honeypot’s default hostname is svr04, knowing the
default values of Cowrie an attacker interacting with this
honeypot will recognize that they are dealing with Cowrie
honeypot.

Lessons Learnt: It offers insightful information about the
methods, causes, and effects of attackers trying to discover
and take advantage of honeypot setups.

Mitigation Strategies could include:

• Diversity and Randomization: To add diversity, randomly
select the reaction times and conduct of honeypots. By
doing this, attackers are hindered from noticing recurring
patterns that might be utilized as fingerprints.

• Monitoring of Traffic and Interactions: To spot anomalous
transfers that can indicate fingerprinting, maintain surveil-
lance on traffic both in and out. Examine interconnections
and patterns of traffic to find prospective intruders.

• Delays and Synthetic Latency: Add fabricated lag and
delays to honeypot sessions. Attackers attempting to track
down fingerprints by observing response timings could be
confused by this.

• Interaction with the Security Community: To the larger
security community, disseminate knowledge and meth-
ods. Work together with others to create workable de-
fenses, and keep current on new fingerprinting strategies.

• Inherent Heterogeneity: Use a variety of operating sys-
tems, network configurations, and container technologies
in deployments. It becomes more difficult for attackers
to identify the characteristics of the honeypot due to the
heterogeneity’s complexity.

• Maintenance and Updates on a Regular Basis: Main-
tain the most recent software updates, security patches,
and patch levels in the honeypot environment. Attackers
frequently depend on known vulnerabilities that can be
reduced by patches.

4) Privilege Escalation through Container Escape, U4:
Since containers offers OS-level virtualization, system files
are shared with the core service for building and maintaining
containers [41]. This promotes system efficiency, lowers the
levels of redundancy among system components, and/or makes
container management easier. Attackers, however, may take
advantage of kernel or service management flaws to abuse the
container host or escape from the container and pose a threat to
other containers on the same host [83], [84]. A compromised
honeypot container that already exists or the deployment of a
newer malignant honeypot container image could exploit the
container breakout threat. RunC, the core runtime being used

to execute container functions, including Docker, containerd,
and similar Linux-based container systems, has major vulner-
ability CVE-2019-5736( Docker containers operating under
basic configurations could be exploited by an adversary to
seize control of the device at the system level [85]). The typical
AppArmor or Security-Enhanced Linux (SELinux) rules on
certain Linux systems, notably Fedora, do not restrict the
utilization of such an exploit. However, this can be avoided
by using user namespaces properly, where the host root is not
mirrored inside of the container’s user namespace [86].

Lessons Learnt: It offers a more thorough understanding of
how fraudulent users take use of vulnerabilities to escape from
confined environments and get illegal access to the host.

Mitigation Strategies could include:

• Hardening the Host: Increase the host system’s security
by following security standard procedures, performing
frequent upgrades, and reducing unused applications and
services.

• Image Verification and Scanning: Before deployment,
inspect container images for vulnerabilities. To maintain
image integrity, use trustworthy image sources and inte-
grate image certification and verification.

• Reduce the Attack Landscape: Uninstall all irrelevant bi-
nary files, software libraries, and scripts from containers.
For a less extensive attack surface and fewer opportunities
for privilege escalation, use minimalist baseline images.

• Isolation of User Namespaces: To prevent probable es-
calated privileges through client manipulation, employ
user namespace for mapping containers user IDs to non-
privileged Id in the host.

• Tracking and Auditing: Engage comprehensive tracking
and observation of container responses. Track the changes
or illicit access efforts that could imply privilege escala-
tion.

• Network guidelines and accessibility control: Implement
stringent network and access constraints to thwart illegit-
imate interactions and shifting between containers.

5) Command & Control through Container Escape, U5
: The honeypot container sends a communication to the
assailant’s server in search of its next instructions once it has
been compromised. It will follow the instructions from the C2
(Command and Control) server of the attacker and may add
new software [87]. Once the attacker fully controls the con-
tainer host, they are free to run any code. A botnet—a cluster
of infected computers—is often devised for this as a malicious
payload that spreads laterally. Typically, hackers can do the
following operations [88] via command and control(C&C):

• Data Robbery: Financial records and other private firm
secrets could be collected or transmitted to an assailant’s
server.

• Shutdown: An attacker could take down one or more
devices or possibly the entire network of a corporation.

• Reboot: Devices that are compromised could be abruptly
and frequently rebooted, disrupting regular corporate op-
erations.

• Distributed Denial of Service: DDoS assaults saturate
servers or networks with internet traffic, turning them
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ineffective.
An intruder who is not permitted to access the corporate
network therefore can take complete control of the network.

Lessons Learnt: It deepens our comprehension of how
adversaries use containerized settings to hide, persist, and take
control of compromised machines.

Mitigation Strategies could include:
• Analysis of behaviour: Establish standards for typi-

cal container behaviour employing behavioural analysis
tools, and look for any abnormalities that would suggest
C&C activity.

• Sandboxing and Dynamic Evaluation: For dubious con-
tainers, conduct dynamic evaluation and sandboxing. Per-
mit regular activities to continue while isolating poten-
tially impaired containers for additional analysis.

• Runtime Security for Containers: To avoid unapproved
container escape, adopt a reliable container environment
that ensures isolation and accessibility rules. Control con-
tainer privileges by employing solutions like Seccomp,
SELinux, AppArmor, etc.

• Runtime Anomaly Detection: Establish behavioural and
anomaly recognition criteria to spot shady behaviour
suggestive of C&C attempts.

• Filtering of Egress Traffic: To restrict communications
from containers, establish egress filtration of traffic. Ver-
ify and control the parts and procedures that containers
are permitted to use.

6) Cross Container ARP Poisoning, U6: The bridged net-
work (default) interface in the Docker configuration aids the
networking of containers [49]. Virtualized layer 2 networks
are created when containers within the same host are bridged
while employing a simple (but popular) container network in
the ensemble. This configuration is typical for Kubernetes(
framework for executing and managing containers from nu-
merous container runtimes [89]) deployments. The NET_RAW
linux capability, which gives Pods low-level access to network
interactions, is another prevalent practise. When these two
aspects are coupled, a malevolent pod could utilize the ARP
protocol( layer 2 protocol to translate MAC addresses to IP
addresses [90]) to pretend to be another pod on the same
node’s IP address. As a result, other pods on the node
potentially connect with the attacker’s pod rather than the
authentic Pod. Utilizing Pod.spec.securityContext.capabilities
to disable the NET_RAW capability from pods as a corrective
solution can be considered.

Lessons Learnt: It provides us better understand how at-
tackers use ARP flaws to disrupt network communication,
snoop on data being sent between containers, and thus gain
unauthorised access.

Mitigation Strategies could include:
• Identifying ARP Spoofing: In the honeypot environment,

deploy ARP spoofing detection tools. Use tools that
can recognise aberrant ARP behaviour and send out
alarms on occurrence, such as when MAC-IP mappings
unexpectedly shifts.

• ARP Static Entries: To thwart attacks relying on ARP
spoofing, establish static ARP entries within containers.

By doing so, attackers are unable to alter ARP mappings,
ensuring their accuracy.

• Network Telemetry: Utilise telemetry and network mon-
itoring tools to monitor and record ARP traffic among
containers. For the purpose of capturing and analysing
ARP data between containers, use network monitoring
and telemetry tools. ARP poisoning may be indicated by
peculiar patterns, consequently keep monitoring out for
these.

7) Cross Container Side Channel Exploit, U7: The ability
to observe the CPU and memory consumption by the attacker
who seized control of the container creates the opportunity for
a side channel attack. Using a side-channel attack, a protected
perimeter can be breached via exploiting technical weaknesses
rather than directly attacking it with brute force technique
[91]. For programmable units belonging to different security
domains, Sprabery et.al [92] provided a hardware-software
method that will mitigate cache based side-channels. This
method combines the cache partitioning capabilities of the
Intel CAT architecture with cutting-edge scheduling strategies
and state-cleansing technologies to provide cache based side-
channel free processing for Linux oriented containers and
virtualization software.

Lessons Learnt: It improves our knowledge of how attackers
might take advantage of minute fluctuations in usage of
resources like CPU memory cache; and network connections,
to steal details from nearby containers.

Mitigation Strategies could include:

• Policies for Container Scheduling: Make use of schedul-
ing principles for containers that guarantee a physical
distinction of containers from the underlying hardware,
lowering the possibility of inadvertent sharing of re-
sources.

• Memory and CPU Affinity: Affinity settings for the
CPU and memory guarantee that containers are assigned
to different physical cores or memory banks, thwarting
cache-based side channel attacks.

• Surveillance of Shared Resources: Maintain an eye out for
any unconventional behaviour involving shared resources,
especially the CPU cache or RAM. Establish safeguards
for identifying and preventing inappropriate sharing of
assets.

• Effective Resource Isolation: To reduce the risk of ex-
ploitation of shared resources, use container orchestration
technologies for allocating exclusive resources (RAM,
CPU, etc.) to all containers container.

8) Cryptojacking through Misconfigured Daemon, U8:
Cryptojacking describes a situation in which an assailant gains
unauthorized access and abuses computational resources to
mine bitcoins [93], [94]. Four successive actions typically
make up a cryptojacking attack- Target system compromise,
mining code execution, communication with mining pooled
servers, and evade detection over extended periods of time
[95]. The Honeypot Docker daemon, which by default mon-
itors Unix socket, confronts a restful API that enables users
to communicate with the daemon. The default for connecting
to the Docker service remotely utilizing REST API, which
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enables creating, activating, and stopping containers, is TCP
port 2375 or 2376. The daemon could be customized to
listen to TCP socket if remote management is desired. The
problem is that utilizing a TCP socket by default lacks a
verification or approval mechanism. Everyone who had access
to the daemon has ultimate control. As part of opportunistic
attacks intended to illegally mine bitcoin, a new cryptojacking
campaign has been discovered that targets susceptible Docker
and Kubernetes infrastructures [96].

Lessons Learnt: It highlights the possible repercussions
of improper daemon settings and the simplicity with which
attackers take advantage of such errors to use CPU resources
for the illegal mining of cryptocurrency covertly.

Mitigation Strategies could include:
• Auditing Runtime Integrity: Utilise technologies for run-

time integrity monitoring that constantly monitor con-
tainers behaviour and parameters involved. Notifications
or automatic reactions can be set off by any illegal
alterations.

• AI and Machine Learning: Utilise ML and AI techniques
to find cryptojacking behaviour patterns that could remain
undetected by conventional methods.

• Solutions Based on Blockchain: To track and validate
legal container setups and operations, consider blockchain
technology. Any changes that are not authorized can be
instantly identified and fixed.

• Architecture with Zero Trust: Embrace a zero-trust archi-
tecture in which every interaction is regarded as having
the potential to be harmful. Apply micro-segmentation,
constant verification, and rigorous access constraints.

• Integration of Threat intelligence: To keep up with trends
and warning signs of cryptojacking, integrate threat intel-
ligence channels. With the aid of this knowledge, emer-
gent dangers can be proactively identified and countered.

The overall lessons learned from the usecase investigations are
summarised in Table.IV.

VI. RELATED WORKS

A. Selection of Primary Studies

We created a combination of keywords (honeypot/honeynet/
contanerized honeypot/ docker honeypot/ research and pro-
duction honeypot) in the search string and sent it to specific
search engines in order to gather the collection of pertinent
research. The title, keywords, and abstract were all searched
against. Springer, ACM, ScienceDirect, Google Scholar, and
Scopus are a few databases in addition to IEEE xplore Digital
library. Iterations of forward and backward snowballing were
also used to ensure that almost all papers meeting the criteria
for inclusion is included. Both qualitative and quantitative
research papers on honeypots are included in this extensive
search spanning the years from 2013 to the present. Although
research on honeypots was conducted for a very long time,
the usage of docker containers for honeypots only became
common after 2013. Numerous honeypots belonging to several
categories, including the Database Honeypot, Web, Service,
Distributed, SCADA, Honeypot for USB, High-Interaction
Honeypots, etc., were uncovered. Other language articles and

the extended conference edition of a report that has a journal
edition were excluded. From the list of open-source honeypots
returned by the search engine, we choose those that went
public after 2013 when Docker container technology began
to gain broad popularity.

B. Findings

After applying the inclusion and exclusion criteria, the
results are narrowed down to 19 honeypots as listed in the
Table V.

TCP proxy and SSH honeypot is offered by Glutton [98].
Between the attacker and the server, the SSH proxy acts as
a MITM(Man In The Middle) to log everything in plain text.
However, TCP proxies do not yet have logging capabilities.
IPP honeypot [102] mimics a printer that is connected to
the Internet and supports the Internet Printing Protocol. It
incorporates techniques from several existing honeypots, in-
cluding Elasticpot, Citrix Honeypot, and ADBHoneypot (for
support of output plugins). It needs regular maintenance and
supervision to make sure that it is established, revised, and ob-
served appropriately. A honeypot framework called DDoSPot
[100] is used to track and monitor UDP-based Distributed
Denial of Service (DDoS) attacks. The honeypot servers and
services are supported by the platform as pots, which are
very straightforward plugins, are NTP server- that offers 3
NTP packet response modes(Client, Control, monlist) , SSDP
server- responds to legitimate multicast (M-SEARCH) queries
and offers a very limited and lightweight MiniUPnP emulation.
It is entirely customizable, similar to NTP, DNS server-
attempts to mimic actual DNS service as closely as possible
by sending all requests to a legitimate DNS resolver and
returning results for queries. To capture brute force attempts
and the interaction with the attacker’s shell, an SSH and Telnet
honeypot with medium to high engagement levels was set
up in Cowrie [105]. It substitutes for SSH as well as telnet
in high interaction mode (as proxy) for observing adversary
activities in another machine. It simulates a UNIX system in
Python when in medium interaction mode (shell). The SSH-
Honeypot [115] logs the client’s IP address, username, and
password while listening for incoming SSH connections. This
honeypot has a low interaction level and excludes login at-
tempts from hackers or malware. It was not intended for use in
production and was originally built to gather basic intelligence
about brute-force attacks. The gathered data is mounted to
VOLUME ["/home/honeycomb/log", "/home/honeycomb/rsa"]
directory in the docker file linked to the honeypot. In the
honeypot [114], the attacker is exposed to actual vulnerable
programmes, however, all communication with the machine
is recorded in clear-text. To make the deployment of the
honeypot simpler, Lyrebird uses Docker containers by default.
Both the mitmproxy dump file and a human readable HTML
report contain information about the attacker’s activity.

Attackers typically utilize search engines and particularly
suited search queries to discover potential targets. The Lukas
Rist [113] Glastopf honeypot offers such keywords (also
known as dork) in order to entice visitors in and further
harvests them from queries, thus increasing its attack vector.
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Table IV: Summary of the Usecase Studies

Use Case Attack Vectors Mitigation strategies

DoS(Denial Of Service)by Denying
Storage Space

Prevent other containers from accessing the storage space
of honeypot logs.
Prevent Honeypot from keeping the action logs and
merely erasing the attack’s traces.

Isolated honeypot setting
Snapshots of containers
Certificate of Custody
Establish read-only filesystems
Monitoring of execution behaviour
Security profiles for containers
Replication and Backup

DoS(Denial Of Service)by Denying
Memory/ Processor Resource Denial of memory and processing resources.

Limits & Regulations for resources
Allocating resources automatically
Response and prevention in real-time
Scaling and capacity planning
Response to incident strategy

Fingerprinting Container Honeypot
Environments

By carrying out certain commands, an attacker can figure
out details about the targets.

Diversity and randomization
Monitoring of traffic and interactions
Delays and synthetic latency
Interaction with the security community
Inherent heterogeneity
Maintenance and update on regular basis

Privilege Escalation through Container
Escape

Utilize kernel or service management shortcomings to
misuse the container host or elude the container.

Hardening the host
Image verification and scanning
Reduce attack landscape
Isolation of user namespaces
Tracking and Auditing
Network guidelines and accessibility control

Command & Control through
Container Escape

Attacker fully controls the container host and runs
any code.

Analysis of behaviour
Sandboxing and dynamic evaluation
Runtime security for containers
Runtime anomaly detection
Filtering of egress traffic

CrossContainer ARP Poisoning Bridge between containers on the same host.
Identifying ARP spoofing
ARP static entries
Network telemetry

Cross Container Side Channel Exploit
Protected perimeters can be cracked by taking advantage
of technical vulnerabilities rather than charging it using
brute force attacks.

Policies for container scheduling
Memory and CPU affinity
Surveillance of shared resources
Effective resource isolation

Cryptojacking through Misconfigured
Daemon

Compromise Target system.
Mining code execution.
Communication with Mining pooled Servers.
Evade detection over extended periods of time.

Auditing runtime integrity
AI and machine learning
Solutions based on Blockchain
Architecture with zero trust
Integration of threat intelligence

A built-in PHP sandbox is used for remote file inclusion,
whereas POST requests are used for local file inclusion. For
centralized data collection, HPFeeds logging is enabled. Dion-
aea honeypot [111] tracks malware by monitoring exploitable
weak points revealed by services provided to a network. To
be informed when it can read from or write to a socket,
dionaea uses libev( high-performance event loop/event model
). For IPv4 as well as IPv6, dionaea can provide services
using TCP/UDP and TLS. If necessary, it can implement rate
restrictions and accounting constraints for each connection to
TCP and TLS connections.

There are instances when you only need a straightforward
credential-collecting honeypot. Then we could utilize Herald-
ing honeypot [109] which supports ftp(File Transfer Protocol),
telnet, ssh (Secure Socket Shell), http(Hyper Text transfer
protocol), https(HTTPSecure), pop3(Post Office Protocol),
pop3s (POP3Server), imap(Internet Message Access proto-
col), imaps(IMAP over SSL/TLS), smtp(Simple Mail Transfer
Protocol), vnc(Virtual Network Computing), postgresql, and
socks5. It maintains pertinent information in three files: log
auth.csv, log session.csv, and log session.json. Conpot [108]
is an ICS honeypot designed to gather information about the
objectives and tactics of adversaries aiming to compromise

industrial control systems. To broaden the honeypots’ attack
surface and enhance their deceiving powers, it offered the
option of hosting a unique human-machine user experience.
The services’ response times can be purposefully decelerated
to simulate the behavior of a system that is constantly under
demand.

The Android Debug Bridge (ADB) [104] is a framework
intended to monitor actual and emulation-based smartphones,
Televisions, and Video recorders linked to a specific system. It
includes a number of commands (such as adb shell, adb push,
and others) that help developers push content to the device
during debugging. Typically, a USB cable is employed for it,
and there are numerous authentication and protection systems
in place.

T-Pot [116] is an all-in-one, popular, preferably decentral-
ized, multiarch (amd64, arm64) honey trap architecture that
supports more than 20 honeypots, a wide range of visualization
capabilities using the Elastic Stack, dynamic real-time threat
mappings, and a variety of security features to enhance the
deception scenario. T-Pot is grounded on the Debian 11 (Bulls-
eye) Net installer and makes use of docker as well as docker-
compose to accomplish its objectives of running multiple
tools concurrently thus fully utilizing the host’s hardware.
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Table V: Learning Experience of Container Implemented Honeypots

HONEYPOT YEAR INTERACTION
LEVEL

LANGUAGES
USED

SIMULATED
SERVICES ROLE OPENSOURCE APPLICATION SCALABILITY

medpot [97] 2022 LIH Go, Dockerfile,
Shell, Makefile Emulate HL7 / FHIR Server yes Medical Field

glutton [98] 2021 LIH Go, Dockerfile SSH and TCP proxy Server yes Web Application

Citrix Honeypot [99] 2020 LIH HTML, Python,
Dockerfile

Detect and log CVE-2019-19781
(remote code execution vulnerability) scan
and exploitation attempts.

Server yes Citrix ADC(Application
Delivery Controller)

ddospot [100] 2020 LIH Python,Dockerfile Tracking and monitoring UDP-based
DDoS attacks. Server yes General

dicompot [101] 2020 LIH Go, Dockerfile Digital Imaging and Communications
in Medicine (DICOM) Server yes Medical

IPP Honey [102] 2020 LIH Python, C++,
Shell, Dockerfile Simulates printer service Server yes Printer

mailoney [103] 2020 LIH Python, Dockerfile SMTP Server yes E-mail

ADBHoney [104] 2019 LIH Python, Dockerfile Android Debug Bridge(ADB) over
TCP/IP Server yes Emulated and real

phones/TVs/DVRs
Cowrie [105] 2019 LIH-MIH Python, Dockerfile SSH and Telnet Server yes General

endlessh [106] 2019 LIH-MIH
C, Shell, Roff,
Python, Makefile,
Dockerfile

SSH Server yes General

CiscoASA [107] 2018 LIH
Javascript, Python,
CSS, HTML,
Dockerfile

Detect CVE-2018-0101,
a DoS and remote code execution
vulnerability

Server yes Cisco Routers

Conpot [108] 2018 LIH Python, Dockerfile
Collect intelligence about the motives
and methods of adversaries targeting
industrial control systems.

Server yes ICS/SCADA

heralding [109] 2017 LIH Python, Dockerfile
ftp, telnet, ssh, http, https, pop3, pop3s,
imap, imaps, smtp, vnc, postgresql
and socks5.

Server yes General

mysql-honeypotd [110] 2017 LIH C, Shell, Dockerfile,
Makefile Mimic MySQL Database Server yes Database

Storage server

dionaea [111] 2016 LIH
Python, C, Cmake,
Shell, Dockerfile,
HTML

Detect shellcodes, support ipv6, TFTP
and TLS. Server yes General

MongoDB-HoneyProxy [112] 2016 MIH Javascript, Dockerfile Proxy and log all traffic to a dummy
mongodb server. Server yes Database

Storage server

glastopf [113] 2016 LIH
Python, HTML,
Hack, Shell,
Dockerfile, CSS

Local file incorporation using files out
of a virtualized system files, remote file
integration using a built-in PHP Sandbox,
and HTML insertion leveraging POST
methods

Server yes WebApplication

Lyrebird [114] 2016 HIH Python, Dockerfile Man-in-the-middle SSH interception Server yes General

ssh-honeypot [115] 2016 LIH C, Shell, Dockerfile,
Makefile

Fake sshd that logs ip addresses,
usernames, and passwords. Server yes General

The T-Pot GitHub repository contains all of the source code
and configuration files. The docker directory contains each
individual Dockerfile and its config. It also provides a web
interface for easy understanding.

VII. EXPERIMENTAL SETUP

A. Preliminary Exploration

We experimented with honeypots inspired by Deutsche
Telekom’s work [116]. In our previous work [69] we were
able to operate multiple honeypot sensors along the same
connection interface without experiencing any issues, making
the total mechanism relatively minimal maintenance. Many
ports are exposed to inbound transmission, which makes
them prone to tampering. We further comprehended data
by thoroughly examining and assessing everything gathered
through honeypot exploration. However, the lack of flow-
related information in the gathered data hindered our attempts
for further meticulous data analysis.

B. VIKRANT

Vikrant is installed on the Azure Cloud instance(region:
Central India) and managed to run Debian 11 (Bullseye-Gen1
Image, VM Instance-type E2ds v4) having two virtualized
CPUs(No.s 2), 16 GB of memory, and 128 GB hard drive.
The system’s installed containers run in host-network mode,
which shares the host system’s network virtualization stack
and prevents the assignment of a separate IP address. The
instance was made public and active from 6th February to

12th February, 2023. The overall architecture for VIKRANT
is shown in Figure.8.

The framework is designed to deceive the invaders that they
have obtained accessibility into the actual system so as to
encourage themselves to remain. The docker encapsulation of
the honeypot daemon allows for effective sandbox segregation
and straightforward upgrading processes. The folder /data con-
tains all permanent information files from the honeypot col-
lection(Adbhoney, CiscoASA, Cowrie, DDospot, Elasticpot,
Log4Jpot, Mailoney, Medpot, Redishoneypot). Elasticsearch
is used in conjunction with the other components of the
ELK Stack, Logstash, and Kibana, and has been incorporated
into our honeypot for functions such as data indexing and
archiving. The visualization of data is possible by utilizing
a single query and modified as needed through interaction
with Kibana. A significant constraint, however, is that each
visualization ought to be used with a specific indexing se-
quence. If one index contains data that is entirely different
from another, separate visualizations over each list have to be
constructed. TCPdump (network packet snooping utility) with
predefined conditions had been employed to capture, filter,
and examine traffic from the network, which includes TCP/IP
frames traveling through the system and storing the captured
information in a pcap file. Since they can capture packets
from a wide range of protocols, such as TCP, UDP, ICMP,
and ARP, and can be used on a variety of operating systems,
such as Linux, Unix, macOS, and Windows, we can overlook
the fact that it requires specialized hardware for processing
network packets with incorrect checksums. To facilitate further
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Figure 8: Overall Architecture of VIKRANT Honeypot

analysis, CICFlowMeter has been utilized to convert pcap files
to csv format.

Additionally, threat intelligence is incorporated into the
framework using Suricata (a comprehensive signature-based
system for matching identified threats, infractions of the
policy, and fraudulent activity). It has the ability to detect
dubious patterns as well as discrepancies and additionally
observe DNS, HTTP, and FTP traffic )

Container Threat Mitigation Techniques Adopted in Our
Work: We have avoided untested or untrusted images for
building containers so as to prevent the introduction of vulner-
abilities and malicious code in the docker image. In order to
construct containerized applications consistently, we employed
multi-stage builds. Utilized custom bridge networks to limit
which containers are permitted to communicate with one an-
other and to enable automatic DNS resolution from container
name to IP address. Enabled the user namespace function to
offer distinct user accounts for isolated containers and limit
mobility across containers. The user namespace functionality
has been enabled to give unique user accounts for isolated
containers and to limit movement across containers. To avoid
privilege escalation, containers perpetually operate as non-root
users.

VIII. RESULTS AND DISCUSSIONS

Figure. 9 shows the total hits recorded by our experimental
setup. For instance, to know about the highest value of bytes
sent, the aggregations function at the bottom right under the
Bytes Sent column can be used and pick max. Figure. 10
and Figure. 11 depict the sample flow information and the

total hits gathered by VIKRANT respectively. The increased
number of hits in ddospot honeypot (Figure. 11) illustrates that
various automated tools and services supplied by third-party
suppliers for distributed denial of service attacks as a service
make it simple to launch DDoS attacks. Even inexperienced
attackers can easily launch complex DDoS attacks by using
crucial characteristics of cloud technology.

We further studied the traffic, given that the ddospot count
was large, and concluded that attackers could potentially have
leveraged specific attack vectors, such as SYN/ACK floods,
UDP amplification, and HTTP floods. The honeypot is able
to collect information on how much traffic was produced
during an incident, particularly bandwidth utilization, connec-
tion rates, and metrics like packets per second. The Cowrie
honeypot keeps track of all login attempts, whether they are
successful or not, giving information on the usernames and
passwords that attackers try to use. It is estimated that attackers
would have attempted to brute force their way into the hon-
eypot using a standard password dictionary file. It records the
actions/commands executed by attackers after gaining access,
illuminating the precise exploits exploited. The majority of
users who connected to the honeypot used the command
’uname -a’ before exiting. This retrieves detailed system in-
formation, including the kernel version, machine architecture,
and operating system type and version. Vulnerabilities that
were commonly targeted were discovered by examining the
commands used by attackers. The geographical origin of the
attacking IP has also been revealed. The log4shell payloads
sent as HTTP headers, query parameters, or POST data are
captured and downloaded by Log4pot. The incredibly flexible
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Figure 9: GUI Displaying Assault Statistics and List of Top 5 Contributing Countries

Figure 10: Sample Flow Data Information Gathered by VIKRANT

Figure 11: Total Hits Received by Each Honeypot

Log4j vulnerability enables the execution of arbitrary code
from both local and remote LDAP servers, among other capa-
bilities. This vulnerability (CVE-2021-44228) has a severity
rating of 10.0 [117] according to the Common Vulnerability
Scoring System (CVSS 3.0).

A Cisco ASA device is simulated by the Ciscoasa honeypot.
On the emulated Cisco ASA device, it can be seen that the
attacker does an in-depth examination of a number of ports
in an effort to find open services and potential vulnerabilities.
Additionally, it monitors attempts of command injection, ma-
licious file uploads, theft, etc. Adbhoney Honeypot is specially
made to imitate Android Debug Bridge (ADB) interfaces,
which are frequently targeted by attackers looking to gain

unauthorized access to or control over Android devices. It
gathers data on the simulated Android smartphone, which
could be a foretaste to later, more focused attacks. Indication
of efforts to steal confidential information from the simulated
Android smartphone demonstrates possible data security vul-
nerabilities. A vulnerable Elasticsearch server exposed to the
Internet is simulated by elasticpot. It monitors efforts to insert
malicious scripts that could create client-side vulnerabilities
into the Elasticsearch data that has been indexed. It could
spot excessive indexing or search requests that are meant
to burden the Elasticsearch server’s resources and obstruct
normal operation. The purpose of Mailoney is to imitate email
services and protocols. It monitors phishing attempts, in which
scam emails pretending to be from reliable sources (such as
banks or reputable organizations) are sent to deceive recipients
into disclosing personal information or clicking on links. Redis
databases, a popular in-memory data structure store, have
been shielded from potential threats using Redispot honeypot.
Attempts to connect to the simulated Redis server using
default or insecure credentials are picked up by Redispot as an
effort by an intruder to get access. We make the presumption
that since there is less number of hits headed to remaining
honeypots, they most likely didn’t receive any further activity
or interactions.

Figure. 12 depicts the heat map of total forwarded packets
from each Ip address. A substantial amount of forwarding
packets generated by a single address could be a sign indicat-
ing that the IP address is being used in DDoS assault. It may



xxi

be possible to tell whether the traffic coming from a specific IP
address is coming from a trustworthy user or a hostile attacker
by analyzing that IP address’s traffic. As malware frequently
uses an immense amount of forward packets for communica-
tion to Command and Control (C&C) servers, it may also be
employed for recognizing suspected infection by malware. The
source of the flow data, applications, IP addresses, processes,
protocols, and end users consuming the largest amount of
bandwidth provides managers with essential perspectives into
the behavior and performance of their networks. Table VI
includes the parameters retrieved by the honeypot that can be
utilized for further security analysis. Below is a description of
some of them.

Figure 12: Statistics of Forwarded packets during the experi-
mentation period

• ACK Flag count: Number of packets with ACK. ACK
packet in TCP denotes that a request for communication
is accepted.

• Bwd IAT Min: The minimum interval between two pack-
ets delivered in the opposite direction. It is a significant
measure for determining network throughput and latency
issues.

• Idle Min: Minimum time a flow was idle before becoming
active.

• PSH Flag Count: Number of packets with PUSH. PUSH
specifies that networking stacks’ buffering should be
overridden. Incoming data is transferred instantly when
the network stack is instructed to forego buffering.

• URG Flag Count: Number of packets with URG. It might
be a sign of malware activity if there are an unusually
large number of TCP segments with the URG flag set.

• ECE Flag Count & CWR Flag Count: Number of Packets
with ECE & CWR respectively. In TCP/IP networks,
the ECN (Explicit Congestion Notification) technique is
used to provide endpoints with notifications when the
connection is congested. Congestion circumstances are
signaled by the TCP header values ECN-Echo (ECE) and
Congestion Window Reduced (CWR). To have a fuller
insight into the network behavior, the evaluation of the
ECE flag needs to be paired with additional metrics such
as round-trip duration, dropped packets, or congestion
window width. The sender acknowledges receipt of the
ECE signal and minimizes the congestion size of the

window by enabling the CWR flag.
• Subflow Bwd Packets: Subflow’s average number of pack-

ets in the reverse direction. Multi Path TCP (MPTCP)
enables the creation and concurrent use of distinct sub-
flows for data transmission. Each subflow may use a
distinct path and possesses distinctive origin, destination,
as well as port address. It is possible to utilize it to
keep track of a network connection’s dependability and
stability. A significant decrease in the number of subflow
packets, for instance, could potentially be a sign of
network trouble or connection loss.

• Fwd Act Data Pkts: Number of packets in the forward
direction with at least one byte of TCP data payload.

• Fwd Init Win Bytes: The number of bytes transferred in
the direction of forward progress in the first window.

IX. INFERENCES

1) Prepare your security and approach: One should have a
failsafe plan in place before installing a containerized honeypot
in one’s network since any mistakes could jeopardize the
integrity of the core network. When establishing a honeypot,
issues like timeline for using the honeypot, measurable goals,
resources to rely on (internal or external, such as a third-
party vendor), and how to use the data collected are all
important considerations. The level of information provided
by a honeypot is higher than that of other network mon-
itoring technologies like intrusion detection systems (IDS).
For instance, an IDS scans networks for unusual activity,
notifies users, and quickly thwarts intruders. While gathering
and analyzing data on attackers is a function of an IDS, it is
not its primary objective.

2) Utilize the appropriate software for the task (Honeypot
Software): Setting up a honeypot on your own could be
challenging (and deadly if you do it imprecisely). Build
honeypots using only trustworthy public container images.
Otherwise, the malformed image could compromise the system
and carry out lateral operations. Numerous tools like Argos
[118] can come in handy and make your task easier. Before
you can set up a honeypot, you must have a very thorough
understanding of what it is, how it works, and how to utilize
it effectively.

3) Establish a Honeypot that appears like a real system:
The data generated by the honeypot can be used by security
professionals, vendors, enterprises, and other organizations to
identify trends in the behavior of cyberattacks and subse-
quently modify their solutions and defensive tactics effectively.
The invaders might strike back if they learn that they were
duped with a honeypot. They might manage to break into your
private network and destroy it, or they might even make violent
threats. For instance, an attacker who recognizes a system as
a honeypot may carry out actions on the phony machine to
divert the administrator’s focus from the actual targeted act
that is taking place on the production line. Adopt measures
to avoid issues, such as choosing the right position for the
honeypot, choosing the proper interaction level, and using data
that seems credible.
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Table VI: Parameters Retrieved from VIKRANT

Parameters
ACK Flag Count Bwd IAT Min Idle Max
Active Max Bwd IAT Std Idle Mean
Active Mean Bwd IAT Total Idle Min
Active Min Bwd Init Win Bytes Idle Std
Active Std Bwd PSH Flags Packet Length Max
Average Packet Size Bwd Packet Length Max Packet Length Mean
Bwd Bulk Rate Avg Bwd Packet Length Mean Packet Length Min
Bwd Bytes/Bulk Avg Bwd Packet Length Min Packet Length Std
Bwd Header Length Bwd Packet Length Std Packet Length Variance
Bwd IAT Max Bwd Packet/Bulk Avg Protocol
Bwd IAT Mean Flow IAT Max PSH Flag Count
Bwd Packets/s Flow IAT Mean RST Flag Count
Bwd Segment Size Avg Flow IAT Min SYN Flag Count
Bwd URG Flags Flow IAT Std Src IP
CWR Flag Count Flow ID Src Port
Down/Up Ratio Flow Packets/s Subflow Bwd Bytes
Dst IP Fwd Act Data Pkts Subflow Bwd Packets
Dst Port Fwd Bulk Rate Avg Subflow Fwd Bytes
ECE Flag Count Fwd Bytes/Bulk Avg Subflow Fwd Packets
FIN Flag Count Fwd Header Length Timestamp
FWD Init Win Bytes Fwd IAT Max Total Bwd packets
Flow Bytes/s Fwd IAT Mean Total Fwd Packet
Flow Duration Fwd URG Flags Total Length of Bwd Packet
Fwd IAT Min Fwd Packet Length Max Total Length of Fwd Packet
Fwd IAT Std Fwd Packet Length Mean URG Flag Count
Fwd IAT Total Fwd Packet Length Min Label
Fwd PSH Flags Fwd Packet Length Std Fwd Seg Size Min
Fwd Packet/Bulk Avg Fwd Packets/s Fwd Segment Size Avg

4) Do not jeopardize privacy in order to use a honeypot:
Underestimating the capabilities of intruders could lead you
to unwittingly give them access to your protected network,
putting your data or that of your customers in danger. Several
container-related concerns should be taken into consideration
when deploying honeypots, including the need to exercise
caution over resource accessibility after containers have been
established. It is better to use virtual computers to set up
the container honeypots as they provide a secure environment
and can easily be restarted after being hacked. Additionally,
separate the honeypot from the primary network and Utilize
false or alluring information to entice the targets.

5) Recognize the Legal Consequences: Setting up a hon-
eypot entails making a secure target for scammers looking
to enter systems without authorization. Consequently, when

assailants commit crimes, the laws of the land are not taken
into account, however we must. Legal problems that you could
experience include:

• Privacy Issues: Administrators may face a lawsuit for
breach of trust if the intruders are successful in gaining
access to private information. The data owners can even
take the business to court for putting their data in danger.
Additionally, since various nations have their own regu-
lations on this, there is the issue of what information can
lawfully be obtained from those entangled in honeypots.

• Liability Issues: If fraudsters are able to get into the
secured region of your network because of honeypots,
it could be a huge concern. Afterward, they could infect
any of your devices and add them to a botnet under their
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control, turn the system into a transfer point for their
illegal content, or inject malware or harmful programs
into it. If so, the dissemination of such activities could
be blamed upon honeypot administration.

• Entrapment Issues: Entrapment happens when a member
of the government or another organization seduces or
dupes a victim into performing an offense [119]. It’s
critical to take appropriate precautions to prevent the
situation where it appears as though you are "inviting"
intruders onto your network since that could result in
these types of charges being filed.

X. PROVISION OF HONEYPOTS IN MULTITUDE OF
APPLICATIONS

A. Industrial Cyber-Physical Systems (CPS)

A crucial scientific link connecting the physical and digital
worlds in industry, industrial cyber-physical systems (CPS) are
a key part of the industrial information infrastructure [120].
Recent incidents like Colonial Pipeline, US [121] demonstrate
how industrial CPSs have ultimately been targeted. If the
attack succeeds, it will immediately impact the production
chain and result in a significant loss. APTs like Stuxnet
[122] (strike one specific Iranian nuclear processing facility
in Natanz, Iran) and BlackEnergy [123] (during the cyberwar
between Russia and Georgia, infected machines’ hard drives
were wiped and DDoS attacks, bank robberies, and spam
distribution were launched) are still prevalent. Industrial CPS
honeypots have recently become more popular because of the
need for industrial security. Pure high-interaction honeypots
remain inherently inadequate for CPS since they depend on
either deploying yet another hardware clone of the relevant
resource or some other form of virtualization. The same safety
hazards are involved with deploying a clone CPS for being
compromised as are with deploying the original system, as
well as significant expenditures associated.

The implementation of a hybrid-interaction honeypot, where
realistic CPS devices and interfaces communicate with work-
flow and hardware simulations that can precisely mimic
the behavior of the CPS process, becomes an alternative.
A straightforward heating system built by Litchfield et.al.,
modelled the process and equipment involved using an early
version of HoneyPhy [124], [125], and set up a real-time
simulation using existing honeypot technology as the system
interface.

HoneyBot using HoneyPhy was devised [126], a quantum
theory honeypot framework, to look into remote attacks on
networked robotic systems. Error handling is often neglected
in current research on industrial CPS honeypots because the
focus is typically on how to more accurately mimic the
operation and interaction processes of real industrial CPS
devices. Sun et.al. [18] addressed this issue by suggesting a
secure fuzzy testing strategy for identifying honeypots and
to differentiate between actual devices and honeypots. The
usage of mutation rules, along with efficient and secure
probing packet generation security principles, is advised while
employing multi object fuzzy testing. These probing packets
are subsequently scanned and identified.

Honeypots only gather data when a breach occurs. If there
have been no attempts to access the honeypot, there is nothing
to examine. Only when an attack is directed towards the
honeypot network does malicious traffic get logged; otherwise,
attackers will refrain from the network. Experienced hackers
can typically apprehend a production system from a honeypot
using fingerprinting strategies as honeypots may frequently be
discriminated from legitimate workflows. Despite being cut off
from the main network, some sort of connection is eventually
made to them so that administrators can access the data they
hold. The prevailing deliberation is that a high-interaction
honeypot poses a greater risk than a low-interaction one since
it seeks to lure hackers towards obtaining root privileges.

B. Honeypot in IoT

Since IoT devices are being used more often, numerous
security threats including remote login are viable in IoT
networks (like SSH-Secure Shell and Telnet) [127]. Allowing
attackers to believe they are real systems used by people
and organizations is a crucial requirement for a honeypot to
produce insightful data. Due to the wide range of device types
and their physical connectivity, IoT devices present hurdles in
this regard.The most frequent threat to these IoT devices was
discovered to be the Mirai malware. It crawls the Web for
IoT devices featuring ARC processors [128]. IoT honeypots
share several traits with regular application honeypots, such
as the capacity to respond to incidents as they eventuate.
Plug-and-play container services as in [129] RIoTPot provides
considerable portability, and its hybrid interaction capabilities
let users move between low- and high-engagement modes.
Making sure that the honeypots display on search engines
while avoiding being identifiable as a decoy system is one
of the most crucial aspects of honeypot design. Because of
this, owners of honeypots must keep an eye on IoT search
engines like Shodan, which can identify and locate devices and
honeypots online [130]. Luo et. al. IoTCandyJar honeypots
[131] asserted to reproduce IoT device behaviors without
posing the danger of being infiltrated. The rate of attempts
on a honeypot dramatically rises during the initial weeks once
it is posted on Shodan, according to Guarnizo et al. [132].

C. Honeypot in Smart Grid

Sustainable and intelligent energy management is facilitated
by smart grids, which also provide the dynamic, targeted flow
of information amongst grid firms and their clients [133].
Despite all the benefits, there are security risks [134] that have
been carried over from the IT industry to the electrical grid,
and security breaches owing to the characteristics of smart
grids are evolving. AMI(Advanced Metering Infrastructure) in
smartgrids is susceptible to multiple assaults since utilities and
consumers (smart meters) must communicate and exchange
data. A honeypot game is put forth to combat DDoS attacks
in an AMI network and evaluate groups of strategies to find
the best balance between assailants and genuine users [135].

Under the SCADA (Supervisory Control And Data Ac-
quisition) HoneyNet Project [136], the Critical Infrastructure
Assurance Group of Cisco Systems has modified Honeyd, one
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of the first attempts to create an open-source low-interaction
honeypot that can replicate a number of TCP/IP services, to
support SCADA protocols.

D. Honeypot in Network Forensics

Network Forensics deals specifically with the inspection of
the network and its I/O traffic passing the connectivity that
is suspected to be engaged in security breaches, as well as
its exploration. The original data, involving texts, file sharing,
emails, and browser-based records, can be recovered with the
use of network forensics and reconfigured to disclose the
actual transaction. There are numerous options for keeping
an eye on suspect Internet traffic. Frequently involve keeping
track of a substantial portion of unused IP addresses or
class A. With two important exceptions: all communication
to and from the honeypot itself is noteworthy, and complete
capture of traffic to and from the honeypot is available locally,
forensic investigation of honeypot data isn’t different from a
similar examination of the compromised node. The several
honeypots provided numerous log files for forensic analysis.
The .pcap file, which most honeypots generate, is the most
prevalent type of file. Every packet that the attacker and its
victim communicated is recorded in this file. The forensic
could observe what interaction occurred by accessing this with
Wireshark.

Reverse engineering [137], [138] is another component of
forensic investigation. A fraudster would certainly transfer one
or more infections upon successfully infiltrating a system. Re-
verse engineering entails taking a deeper look at this infection
by disassembling it in an effort to comprehend its functions
and goals. However time-consuming it is, this method can help
the forensic examiner uncover possible dangers. To gain more
significant evidence and insights, collected data by honeypots
can be analyzed quantitatively using conventional network
analyzers. For instance, Network flows were devised keeping
invoicing and budgeting in view and reported by network
devices. However, since they are a cheap and effective manner
of documenting network activity, security analysts can also
benefit from them for a plethora of purposes, such as denial-
of-service diagnosis and tunneling surveillance [139].

E. Honeypot in Cloud

Flexibility makes the cloud system more dynamic and
sophisticated, which exacerbates the erratic security issues. In
this scenario, the attack surface in the dynamic cloud system
can rarely be protected in real-time by the defense systems
that use perpetual implementation. To evaluate the variance
in framework and automatically maximize the honeynet im-
plementation, an automated honeynet distribution technique is
employed for active protection in the container based cloud.
In order to evaluate and optimize the honeynet deployment
process, an attack graph for the container-based cloud system
is established combining the degree centrality concept to
design a framework to automatically generate, deliver, and
customize the honeynet deployments.

XI. CONCLUSION AND FUTURE ENHANCEMENT

A responsive, ever-changing threat landscape for the en-
closed network is pertinent for cyber defense in order to main-
tain a robust security posture. The Honeypot technology gives
a wonderful tool for analysing and investigating cyber attacks
to both experts and researchers. They can be set up in a variety
of ways to track, mislead, or hinder the actions of attackers.
It is in a unique position to gather information on emerging
attacks and vulnerabilities which can empower enterprises to
develop better and more sophisticated ways to safeguard their
networks. Additionally, these systems lessen the number of
false positive notifications, one of the major flaws of anomaly-
based intrusion detection techniques. Furthermore, they can
adapt to safeguard against zero-day data breaches.

This descriptive analysis was carried out to look into newly
emerging trends in honeypot research. As a network security
measure, honeypots were studied using a variety of sources
from the literature. Despite their adaptability, honeypots should
be used in addition to conventional security devices and not
as a substitute for firewalls, defense-in-depth strategies, or
IDS/IPS. Leveraging known systematic review and reporting
techniques in honeypot research, this work advances research
efforts through container technology in honeypots. Literature
shows excellent strides in the advancement of honeypot design
to prolongate attacker sessions and capture intrusion data for
analysis, scanty definitive research has been found concern-
ing how to improve the design of honeypots to spark the
enthusiasm of assailants. Most researchers’ strategies involve
the advantage of readily accessible honeypot datasets. Re-
searchers should think carefully when selecting a honeypot
dataset. Hence, further exploration is required to demonstrate
how the honeypot dataset would improve the accuracy of
models with multiple parameters. It is envisaged that the
work will provide a strong foundation for intrusion detection
in current and next-generation communication technologies.
In our subsequent revision, we envision the deployment of
honeypots on edge systems and networks so that they can be
effectively utilized for exchanging information about threats
to other honeypots in the network. Through this association,
the honeypots’ efficiency could be increased, and an expanded
view of the threat environment could be obtained.
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