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Abstract: Groundwater over usage in different domains will eventually lead to global freshwater scarcity. 1

To meet the anticipated demands, many governments worldwide are employing innovative and traditional 2

techniques for forecasting groundwater availability by conducting research and studies. One challenging step 3

for this type of study is collecting groundwater data from different sites and securely sending it to the nearby 4

edges without getting exposed to hacking and data tampering. In the current paper, we send raw data formats 5

from the Internet of Things to the Distributed Data Storage (DDS), and Blockchain (BC) edges. We use a 6

distributed and decentralized architecture to store the statistics, perform double hashing, and implement access 7

control through smart contracts. This work demonstrates a modern and innovative approach combining DDS 8

and BC technologies to overcome traditional data sharing, centralized storage, while addressing blockchain 9

limitations. We have shown performance improvements with increased data quality and integrity. 10

Keywords: Smart Agriculture; Internet of Agricultural Things (IoAT); Blockchain (BC); Distributed Data 11

Storage (DDS); Edge System; Groundwater quality data management. 12

1. Introduction 13

Water acts as an essential supporting element of life. 96% of the water resides in oceans, 14

and the remaining 3% of freshwater comes from sources such as rain, streams, rivers, lakes, and 15

groundwater. About 1.69% of the freshwater comes from the ground [1] and is used mainly for 16

agriculture and industry, which has put more pressure on global water resources. As the population 17

is predicted to grow in the coming decades, so is the increased demand for food and crop yields. 18

Groundwater utilization has expanded rapidly through water withdrawals and central pivots for 19

irrigation and domestic purposes. Our higher dependency on water will result in the reduction of 20

groundwater and its availability for the dependent life systems. The soil absorbs rainwater to store 21

water in the ground [1] but, due to global warming, rainfall patterns have been changing, affecting 22

the sinking amount of water and gradually decreasing the earth’s freshwater supply. Similarly, using 23

fertilizers excessively may increase nitrate contamination due to leaching, and possible reduction in 24

groundwater availability [2,3]. 25

Data acts as a primary driving force for science. The data for groundwater availability is 26

being collected from different sources, such as an aquifer, climate science, law, public policy, and 27

hydro-geology, with the help of sensors. The sensors for collecting agricultural data on the fields are 28

referred to as part of the Internet of Agricultural Things (IoAT). IoAT devices collect the statistics 29

with suitable sensors in their raw format to recognize the problems. The devices collect unlimited 30

data 24/7, which is helpful for later analysis. However, the IoAT is useful for collecting data, 31

but it comes with its constraints that are discussed more elaborately in Section 2. Research and 32

study on multiple data contexts received from these IoAT devices is complicated; combining and 33

integrating all of these into a single platform is a more difficult challenge. Food production can 34

increase with unlimited water resources; hence, data collection on agricultural farms is crucial. 35
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The entities involved in sharing the knowledge and technology from the groundwater sectors are 36

minimal, which raises new issues from a political point of view. The data collected helps researchers 37

perform different visualization, simulation, and study models to analyze groundwater reserves and 38

calculate water levels for the next generation. Although data gathering helps in a significant way, 39

incorrect information can lead to wrong analysis. Researchers and experts are more worried about 40

the authenticity of the data because it may have been tampered with and modified in the data path 41

[4]. Using the blockchain is one possible solution for researchers to avoid data integrity and quality 42

problems. 43

Storage systems with a central design face issues such as Internet dependency risks in data 44

confidentiality, single-point failures, latency problems, and security, and are more prone to data 45

attacks. Information gathered from different sources comes in various formats that need to be brought 46

under one mode for sharing and storing. Some of the challenges included in managing groundwater 47

data are listed in Fig. 1. Advanced technologies such as the blockchain and distributed data storage 48

methods can provide several benefits to overcome the issues encountered. 49
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Figure 1. Groundwater data management challenges.

The blockchain delivers a decentralized architecture that uses cryptographic hashes for security 50

to create immutable blocks comprising data transactions ordered in chain blocks. These chains 51

of blocks are equal in size and have timestamps embedded. To validate the data transactions and 52

secure them from malicious attacks, the blockchain uses complex mining protocols [5]. Smart 53

contracts execute logic and act as small services for application program interfaces to implement 54

access control. Although the blockchain is famous for its immutable data transfer, it could be perfect. 55

High fees, massive energy requirements, and slow data validation during increased traffic are a few 56

of its challenges. Therefore we practice distributed data storage with the help of an Interplanetary 57

File System (IPFS). Progress in employing these technologies is taking place in different fields like 58

smart agriculture [6] and intelligent medical things [7] to deliver more security for sensitive data. 59

This paper highlights the blockchain’s and DDS’s plausible role in supporting groundwater data 60

management. 61

The current paper follows the next order. By combining and extracting meaningful information 62

from different fields of the groundwater discipline, we establish the present work. In Section 2, 63

the problems with the current groundwater data management systems are discussed along with 64

solutions. Prior related work and sources for groundwater data are discussed in Section 3 and 65

Section 4, respectively. A novel architecture for the proposed G-DaM and algorithms are presented 66

in Section 5, and Section 6 correspondingly. The implementation of the system is detailed in Section 67

7 followed by the validation of the system in Section 8. Finally, Section 9 presents the conclusions 68

for the current paper, also discussing future research. 69

70

71

72
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2. Novel Contributions 73

74

2.1. Problem Definition. 75

In conventional data storage systems, latency issues, IoT limitations, higher mining times, 76

time-bound storage, and higher transaction costs are some of the main problems that can arise. 77

We introduce an intermediate edge embedded with DDS and blockchain technologies to take in 78

more extensive data, avoid central issues and maintain privacy and immutability when sharing 79

the groundwater records. We use an interplanetary file system for DDS and the ethereum public 80

blockchain in the current application to overcome all the above challenges. Next, we discuss some 81

of the problems and itemized novel solutions. 82

83

2.2. Current IoAT Challenges. 84

Agro-things work extensively non-stop 24/7 for collecting groundwater data, consuming high 85

energy. The data collected is vast, and if it is not sent for storage in databases, more statistics can 86

be lost due to its time-bound storage limitations, which could have been helpful for research. Most 87

of the current agro-things are practicing central and cloud systems for storage. If the data in a 88

centralized model gets incorrect statistics, there is a possibility that every other device connected 89

can be corrupted. During data transmission, these things can lose data integrity, trust, and quality 90

as they can be hacked and tampered with easily. Fig. 2 shows the challenges that occur in IoAT, 91

cloud, and central systems used in Smart Agriculture for groundwater data collection. The IoAT 92

machines cannot process data securely and can increase latency issues using traditional methods 93

for storage. However, IoAT devices, cloud, and central storage systems are getting enhanced and 94

improved towards distributed storage systems and studies implementing energy-efficient strategies 95

have been performed [8–10]. Our current work tries to implement distributed methods to overcome 96

these issues. 97
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Figure 2. Current IoAT, cloud and central system challenges.

98

2.3. Importance of Data Quality in groundwater data transmission. 99

Data with accuracy and quality play an essential role in forecasting the threats and dangers that 100

can help in avoiding future disasters for humanity. Contamination of groundwater is a severe threat, 101

and a global issue which can be can be caused by chemicals, road salt, bacteria, viruses, medica- 102

tions, fertilizers, and fuel. Wrong data predictions of groundwater quality can lead to dangerous 103
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health hazards, degrade the quality of the environment and impact socioeconomic development. A 104

discussion of real-time disasters that have occurred due to groundwater contamination to show the 105

importance of quality data transmissions is given in [11]. People staying near the river Woburn in 106

Massachusetts in 1969-1979 were affected due to river pollution with industrial solvents. There have 107

been traces of high water contamination which causes various diseases, including leukemia, liver, 108

kidney, prostate, and urinary cancer. To overcome water crisis in the city of Flint, the pipeline has 109

been shifted to the river of Flint from the Detroit River and Lake Huron. Due to the high content of 110

lead and other contaminants in the drinking water many health problems, such as skin lesions, hair 111

loss, high lead levels in the blood, vision loss, memory loss, depression, and anxiety, were observed 112

in the people. In New Delhi, most water pipelines are connected to the Yamuna river. It is a very 113

contaminated river, and the reasons for it include pesticides, copper, zinc, and nickel, due to which 114

people are facing health issues like death, disease, cancer, and organ damage. 115

116

2.4. Why Blockchain in Data Transmission? 117

With the blockchain, data transmissions can be done with increased trust and quality. The 118

communication between the entities or the stakeholders between the data collecting fields to the end 119

systems can be done more securely and authentically using the blockchain because it acts as a ledger 120

system. Once we write data on the blockchain, it cannot be reverted or tampered with as it uses 121

encryption techniques to calculate a hash of the data transmitted. Using this property as an advantage 122

in securing the statistics, we use blockchain for sharing the data. Data storage in blockchain uses 123

a decentralized architecture to hinder centralized storage issues. Although it has many benefits 124

in securing the information gathered, it is more costly to store on the blockchain because of the 125

gas (mining) fees it consumes for each transaction. The advantage of decentralized architecture 126

is that it will not have a severe effect if a single node fails because other nodes will continue to 127

function. Through this, it maintains adequate redundancy within the network. The data gathered is 128

distributed among nodes and encrypted so only the owner can view the data. The blockchain takes 129

care of data in two techniques: sharding and swarming. Sharding allows the file to be divided into 130

smaller chunks for a quicker transfer. Some percentage of the node is given for sharding in each 131

transaction. The participants do not get the entire file; instead, they get a part of the file. Only the 132

owner knows the locations of the shards through a private key which is also beneficial in discovering 133

shards. Swarming is a technique that keeps all the shards together and helps in decreasing latency 134

while retrieving the files from the nearest nodes [5]. 135

136

2.5. Past incidents of Insecure Data in Water Plants 137

In Feb 2021, the water treatment plant in Oldsmar, Florida, was attacked by a group of hackers 138

who were able to gain access to the operations technology system. The attack was mainly to increase 139

the sodium hydroxide content in the water from 100 parts per million to 11,100 parts per million. 140

That attempt was prevented by an operator who stopped the attack by reversing the toxic levels in 141

the water [12]. A hacker attempted to poison a water plant in San Francisco Bay Area in Jan 2021. 142

The hacker had all the details of a former employee’s TeamViewer account by which he could delete 143

all the programs required for water plant treatment [12]. 144

2.6. Problem Addressed in the Current Paper 145

• Groundwater data management challenges can be classified into storage, pre-processing, and 146

secure sharing. Attributes such as integrity, availability, security, access, ingestion, metadata, 147

transformation, and warehousing can be sub-categorical. Fig. 1 illustrates different kinds of 148

data management issues. 149

• Central storage vulnerabilities. 150

• Disadvantages of the blockchain for slow speed, energy-draining, scaling, and price. 151

2.7. Solutions Proposed in the Current Paper 152

• DDS through IPFS for off-chain storage to evade blockchain limitations. 153
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• A blockchain-based data storage solution to overcome IoAT challenges. 154

• Access control approaches through blockchain smart contracts. 155

• Achieving privacy by combining both DDS and blockchain technologies. 156

2.8. State-of-the-art Solutions 157

• For improving the quality, overcoming IoAT constraints, and decreasing the uncertainty of the 158

data, unique blockchain technology is used for groundwater data sharing and storing. 159

• For bulk data to be stored and shared, DDS is used, allowing added security to the derived 160

statistics. 161

• A state-of-the-art architecture is presented for the current G-DaM with dual hashing security 162

included. 163

• A result log is shown for comparing transaction times, fees, and costs between traditional 164

blockchain and blockchain with distributed storage systems. 165

3. Prior Related Works 166

Water quality data are collected using different platforms. The information gathered in these 167

applications plays an essential role for water managers and researchers in making correct decisions 168

and further analysis. The system in [13] is designed with different modules to gather water quality 169

and query data with statistical charts using a client-server architecture. It sends collected reports 170

through traditional central systems. The paper [14] employs GIS (geographic information systems) 171

for the management of water quality information. The data is interpreted and collected in the form 172

of geographic data and stored in traditional database tables and spatial records. In recognizing the 173

quality and quantity of the water in aqua agriculture, the approach in [15] is implemented using 174

a big data platform built on the SpringBoot and JPA frameworks and a traditional database for 175

storing and sharing the data among farmers. Others [16] use Autonomous Surface Vessels (ASVs) 176

for capturing data in shorter times with lowered costs. The data is stored either utilizing the ASV 177

onboard software, which is not efficient for real-time visualization, or towards traditional central 178

servers. The PH level is measured for getting water quality in the domestic supply [17]. The sensor 179

gives information regarding the water’s quality and the tank’s water level near residential areas. The 180

data collected is sent to cloud systems and to mobile users for alerting purposes. The application in 181

[18] mainly concentrates on the security of the data gathered through the Internet of Things using 182

blockchain at every level, i.e., from the device layer to the communication level. Real-time water 183

quality data is congregated in [19] to detect any violation records using blockchain and bring privacy 184

and integrity to the data flow. 185

With the help of an information system and centralized techniques, a client-server architecture 186

with a single database sector is developed in [20]. As the groundwater data is stored in differ- 187

ent geographical divisions, the paper introduces a single system for a more straightforward and 188

accessible analysis. Other visualizations and analysis techniques are practiced in [21] to com- 189

pare two-dimensional and three-dimensional images with the help of fuzzy queries and relational 190

databases. The database is used for storing important WebGIS water information that is collected 191

from diverse sources. The storage for different groundwater data formats in [22] is completed using 192

a distributed framework. The structure makes use of ArcIMS Services for spatial metadata handling. 193

All the metadata management is done through central systems with the help of the RDF/XML 194

platform and the J2EE environment. By using the web-based central system in [23], the groundwater 195

data is composed and managed. It proposes a unified framework for collecting, storing, and sharing 196

over a vast network of data workers and end-system users. 197

While these methods for monitoring and managing water quality data increased information 198

quality and brought a united structure, limitations still need to be addressed in the power usage, 199

cost, computation, and access control areas. Some are solely designed using a single blockchain, 200

increasing the cost and energy consumed, while others practice web services and are dependent 201

on centralized servers for storage. Ref. [24] discusses the limitations of traditional data sharing, 202

centralized storage, and blockchain more elaborately, along with a study on how the blockchain 203

is helpful in mitigating these problems. Relying on the cloud for data processing is risky because 204

the system can have a single point of failure and unknown accesses. As there is an increase in 205
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groundwater utilization, it is necessary to check its availability for future generations. Correct 206

studies need to be done based on facts collected, so we utilize distributed storage strategies with 207

blockchain for access control and integrity. As groundwater data comes under the most critical data, 208

it requires authenticity and access permissions for sharing among stakeholders. The blockchain is an 209

efficient way to share data when dealing with sensitive information. Its functionality is similar to an 210

immutable ledger that keeps a log of every transaction in sequential order. The consensus mechanism 211

in the blockchain further provides immutability, permanency, and anonymity to the groundwater 212

records. It mitigates different threats such as tampering, repudiation, disclosure of the information, 213

and denial of service, which need to be fulfilled for a higher quality of the groundwater data. DDS 214

supports storage in a decentralized way using peer-to-peer network models that share the file across 215

different nodes or computers. The file is broken into smaller parts and distributed among a network 216

of end systems to track the file by hashes. Table 1 presents different domains and data management 217

strategies developed for information administration using diverse platforms and technologies. To the 218

best of our knowledge, the current design combining DDS and Blockchain security is the first such 219

attempt at groundwater data management. 220

Table 1. Data management and storage approaches for water Quality.

Application Data storage Security level Cost Computation

Urban Rural Water
Quality Data [13]

Centralized
Low-High Risks

on Data
High High

Water Quality
Data with GIS

[14]
Centralized

Low-High Risks
on Data

High High

Water Quality
information in Big

data [15]
Centralized

Low-High Risks
on Data

High High

Water Quality data
with ASV [16]

Centralized
Low-High Risks

on Data
High High

Water Quality
Data from IoT

[17]
Centralized

Low-High Risks
on Data

High High

Water Quality
Data from IoT

[18]
Decentralizedd

High-Single
Hashing

High High

Water Quality
Data from IoT

[19]
Decentralized

High-Single
Hashing

High High

Groundwater
quality Data [20]

Centralized
Low-High Risks

on Data
High High

Groundwater
quality Data [21]

Centralized
Low-High Risks

on Data
High High

Groundwater
quality Data [22]

Centralized
Low-High Risks

on Data
High High

Groundwater
quality Data [23]

Centralized
Low-High Risks

on Data
High High

G-DaM
[Current-Paper]

Decentralized-
OffChain storage

High-
DoubleHashing Low Low

4. Sources for Groundwater Data 221

The data can be collected using different techniques and platforms, such as remote sensing, 222

multimedia, spatial, and other sources. The information gathered for nitrogen content in crops [25] is 223

in the form of geospatial format, which differs from data in text or numerical formats. For securing 224

and storing each of these types, experts use different methods. Fig. 3 shows the available sites set 225

up by the United States Geological Survey (USGS) for collecting water quality data in the state 226

of Texas. These data-collecting centers record water quality and send it to nearby institutes for 227

making decisions and further research. For the data scientists to suggest solutions, they must fully 228

comprehend the water quality statistics and data origin. The U.S. Geological survey conducted in 229
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2015 shows the water usage in Fig. 4 [26]. The information gathered can be broadly categorized 230

into structured and unstructured. The data in the structured format is in table form, also called a 231

relational database. In contrast, unstructured data include video, audio, text, and images that require 232

complicated structural design for sharing and storing. 233

Figure 3. Water Quality Data Collection Sites of USGS -Texas.
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Figure 4. Groundwater and Water Quality Data Users.

4.1. Activities on Field 234

One of the primary sources of data is observations collected during field operations. The 235

activities include drilling, pumping, and monitoring operations. The facts contained with these 236

techniques are robust in terms of accuracy. Drilling and pumping operations tend to be occasional, 237

while monitoring is done quarterly or even less frequently [27]. This type of data collection is 238

structured and typically done locally within an aquifer, but the recent addition of sensors allows for 239

off-site data collection. 240

4.2. Historical 241

Historical data is an unstructured format that contains legacy reports, physical maps, and text 242

documents. Digitizing and transforming these sources of information into machine-readable data 243

can create a new stream of more critical data [28]. 244

4.3. Remote Sensing 245

This type of source has the data formed using primarily satellite, airborne, or ground-based 246

instruments for observations [29]. They contain both structured and unstructured formats that are 247

multi-dimensional, heterogeneous, and have increasingly voluminous datasets. 248
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4.4. Computer Simulation 249

Hydrological data is generated through computer models that use numeric methods and sim- 250

ulation techniques. Atmospheric models and land surface models apply complex mathematical 251

equations to predict weather forecasts and integrate hydrological data with biological and radiation- 252

based processes on land [30]. The source contains both structured and unstructured formats with 253

multi-dimensional, heterogeneous, extensive data. 254

4.5. Web and Social Media 255

With the emergence of the Internet, a new way of communication and transfer of information 256

is practiced. Web and media can include text, images, videos, or audio, forming an unstructured data 257

format [31]. Mostly, this source type is found on web pages and social media posts. 258

4.6. Internet of Things(IoT) 259

Connected devices are intelligent equipment that can join each other and digital systems over 260

the Internet. These “things” continually stream environmental statistics. IoT systems can generate 261

and collect large amounts of data faster than conventional or manual data collection. With increasing 262

demands to make applications smart, intelligent things are also growing. IoT fields include city, 263

home, agriculture, medical, and industrial. Smart agriculture is a field that comprises of different 264

IoT Sensors to collect data on humidity, water range, light, etc. [32]. They gather information and 265

connect to the farmer using mobile devices to provide farming field conditions remotely. Some of 266

the smart developments are briefly discussed here to show their relevance. [33] presents a unique 267

device for crop disease predictions, irrigation, and crop selection in an automatic method with a solar 268

sensor node. It can also capture crop images with continuous sensing. Another innovative agriculture 269

application [34] is a clever greenhouse for increasing yield and adapting to farming changes with 270

changing environments. With the help of smart IoT devices, medical statistics are also collected, 271

where control sharing and access management are essential. With added blockchain immutability in 272

[35], a smart pillow-Internet of Medical Things (IoMT) application is built for stress control and 273

supervision. 274

4.7. Groundwater and Groundwater Quality Data User Domains 275

Here we discuss the receivers of the groundwater and who benefits from the quality data of 276

the groundwater [36]. Private and public distributors give the water supply to the public through 277

withdrawals and connect them to parks, swimming pools, fire departments, and wastewater treatments. 278

These water supplies also include water distribution for residential and domestic needs for drinking, 279

sprinkling, and washing. The agricultural division for growing fruits and vegetables to supply food 280

for the world population is the most crucial recipient of groundwater and its quality data. The 281

groundwater used in irrigation should be free from chemicals to obtain healthy produce. Livestock is 282

another area that has a lot of use for groundwater and quality data. The animals on the field require 283

water for drinking, sanitation, and other hygienic facilities. Thermoelectric power is generated by 284

sending water toward turbines that circulate between heat exchangers to produce electricity. A huge 285

percentage of water is also sent to industrial use for manufacturing daily usage products and is also 286

essential for controlling the dust during the mining process. All these sectors utilize water as their 287

primary source. Fig. 5 shows the groundwater withdrawals across the United States. 288
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Source: USGS

Figure 5. Groundwater withdrawals in United States.

5. A DDS and Blockchain Platform Water-Quality Data Management System Architecture 289

Measuring water quality is required as more groundwater is getting contaminated through its 290

overuse, storage tanks, pollution, septic tanks, uncontrolled harmful waste, and medical waste in 291

drinking water supplies. Sensors are used to collect data and send it to end systems for sharing and 292

storing. Different sources discussed in Section 4 are helpful in gathering and storing the information 293

from their respective end stations. These end systems can also be referred to as edge system nodes 294

that need to provide data integrity, privacy, storage, and security while transmitting the data. Each of 295

these nodes participates by combining DDS storage and blockchain functionalities to bring a unified 296

and orchestrated method to groundwater data. 297

5.1. Interplanetory File System (IPFS) - DDS 298

In Section 1 we have discussed some of the limitations blockchain has for validating and 299

storing large amounts of data; with this constraint, off-chain storage for information is a feasible 300

solution. Deciding which information stays on-chain and which goes off-chain is essential. Storj1, 301

FileCoin2, Sia3, and IPFS are some off-chain storage examples. Security to the data can be provided 302

using off-chain methods to distribute the files among various nodes using encryption and shredding 303

techniques. 304

The IPFS decentralized file-sharing platform recognizes the documents and folders through 305

content. It mainly depends on the distributed Hash table (DHT) to recover the locations of the file and 306

the information regarding node connectivity. When a file gets uploaded to IPFS from the end station, 307

it is divided into 256 KiloByte maximum length segments. IPFS blocks are referred to as segments 308

to differentiate blockchain blocks from IPFS blocks [37]. Every segment is recognized using a 309

cryptographic hash calculated through its content, called a content identifier (CI). A Merkle-directed 310

acyclic graph (Merkle DAG) depicts a complete file through its root hash and can be used to rebuild 311

a file from its segments inside the IPFS. 312

A DHT works on the principle of distributed key-value store. It uses distance metrics along 313

with node identifiers to store and reclaim the information quickly. When reading for the value, the 314

end systems try to find other nodes close to the key and get the value/content. To write a value, the 315

nodes establish already defined end stations most relative to the key and inform these nodes of the 316

key attribute value, using buckets inside the network for tracking nodes [38]. 317

IPFS makes use of S/Kademlia [39] for DHT. This secured Kademlia algorithm provides two 318

distinct forms of information. Firstly, when a file is uploaded from the end station, this node registers 319

itself as a file segment provider. Secondly, DHT gives information regarding how to connect to the 320

node with the help of an identifier. In this way, the IPFS node appeals to the providers from DHT 321

and links to retrieve a file. 322
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5.2. BC-Ethereum Smart Contract 323

Ethereum is one of the popular blockchain application development tools. The transactions in 324

the ethereum blockchain are done using a cryptocurrency called ether, and smart contracts are used 325

for writing the main application logic. The solidity programming language is used to design the 326

contract, and when it compiles, a bytecode is generated that is understandable only by the Ethereum 327

Virtual Machine (EVM). The smart contracts are mainly Turing complete and can be utilized for 328

various purposes. Ethereum primarily works in a decentralized way that ensures that the control 329

for executing is not in the hands of nodes and embeds trust using a consensus mechanism. With 330

this trusted method, data in the transactions cannot be changed or modified. The access control 331

procedures such as variables, mappings, and structures can be used in the solidity programming 332

language and called using conditional statements. If these statements meet the norms, the state is not 333

modified; if they don’t, the state returns to its original value. 334

Inside the smart code, a state variable can be coined to assign a value to store on the blockchain. 335

An owner state variable can be called inside the contract migrations and assigned to msg.sender(). 336

The variable’s value is given inside the constructor function and called whenever the smart contract 337

is created for the first time or deployed to the blockchain. As solidity is a statically typed language, 338

we can declare a variable to string datatype and public to access the value outside of the contract [40]. 339

For writing and reading the values inside the state variable, the programming language provides 340

functions such as set() and get() along with multiple access control functions such as amIOwner(), 341

amIOwnerMultiple(), checkAccess(), checkAccessMultiple(). To make Ethereum’s states persistent, 342

we can declare them constant. 343

5.3. Architecture 344

A setup of DDS-IPFS platform is developed between the data source and the blockchain to 345

communicate with the smart contract inside the blockchain. It acts as a mediator for moving the 346

transactions to the methods of smart contracts for taking control of the storage and communicating 347

with the network gateways and DHTs. The currently proposed system G-DaM architecture is given 348

in Fig. 6. Here the data traveling from the IPFS to the blockchain are represented as transactions. 349
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5.3.1. Adding File 350

When the end system submits a groundwater data file, the IPFS creates segments of the file 351

with corresponding Merkle DAG and content identifiers and gives the hash string as the output. The 352

secured Kademlia protocol consists of subprotocols to identify and verify the node through Content 353

Identifiers. Some nodes can be unreachable due to network address translators and firewalls; IPFS 354

overcomes these nodes through filtering. Each object in IPFS storage includes two fields, one for 355

the data and the other for links. The data field contains binary data, which is of a specific size. The 356

links field is further divided into the link name, a hash of the linked object, and the linked object size. 357

Every node or peer having IPFS as the distributed storage maintains a routing table with links for 358

other peers. A routing table decides where the data moving should go inside the network. 359

5.3.2. Linking IPFS data to Ethereum Smart Contracts 360

There are two types of accounts in Ethereum: externally owned accounts and contract accounts. 361

With the help of private keys, Ethereum addresses, and digital signatures, the externally owned 362

accounts can hold the ether cryptocurrency for performing transactions. The same follows with 363

contract accounts, but the difference is that they are controlled through programming code. Private 364

keys are at the core of the Ethereum accounts, and they determine the Ethereum address, referred to as 365

the account. Access control and monitoring of the data are attained through digital signatures created 366

using private keys. To be included, the transaction inside the blockchain Ethereum transactions 367

requires a valid digital signature. Any peer getting hold of the private key can become the transaction 368

owner; therefore, keys are stored in particular files and Ethereum wallet software like metamask. 369

Ethereum makes use of public-key cryptography. 370

Registering the hash string file coming from IPFS inside the smart contract is done using 371

addBlock functions, and the transactions are verified based on the CI’s. Calling set() function inside 372

the contract writes the hash string file as a transaction to the block. Elliptic Curve Cryptography 373

(ECC) multiplication is applied to the transaction data. ECC is a one-way function where the 374

multiplication is done in a single direction but is impractical to reverse. The private key owner can 375

create public keys and share them with different nodes, realizing that no node calculates the function 376

to get the private key. This arithmetic way gives secure digital signatures to make the transaction 377

data tamper-resistant with total ownership and control of the contracts. The transactions are listed as 378

a Merkle binary hash tree for adding the new blocks to the previous chain. The protocol produces 379

hashes in a bottom-up direction and avoids fake groundwater files from the beginning through a 380

proof of work (PoW) consensus mechanism. The root hash on the tree acts as the digital footprint 381

to make the transaction block valid. The PoW algorithm confirms transactions or the data in the 382

blocks and adds them to the chain. This algorithm mainly uses mathematical puzzles to be solved. 383

Those who solve them are miners, and the process is mining. Once the hash string from IPFS is valid 384

and added to the blockchain, it generates a transaction hash on the blockchain explorer etherscan to 385

retrieve the file. 386

5.3.3. Retrieving the File 387

Inside the smart contract, the get() function is defined and called to read the file whenever 388

requested by the owner or nodes having permissions. Once the required authorizations are given, a 389

groundwater user sector node can request and obtain the corresponding files. To do this, the user 390

node checks for the transaction hash content identifier with the source checksum content identifier to 391

retrieve and reassemble the file. If there are no authorizations provided in the contract, there is no 392

reply to the request. 393

6. Algorithms for DDS and Blockchain based Framework 394

From the edge systems (EdS), the data goes towards the IPFS, and from there to the blockchain 395

as given in Algorithm 1. Public-key cryptography and SHA-256 are used in the distributed data 396

storage for hashing the files uploaded. Both private and public keys are generated, respectively, for 397

each edge system to control access, for giving unique messages called digital signatures and signing 398

the groundwater quality data file. The file uploaded to the edge system is given as FL. The react JS 399

used for the front-end design handles the file uploaded. Once the water quality data file is submitted, 400
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Algorithm 1 Data from Groundwater endsystems to IPFS and blockchain.

1: EdS, BC generate their respective Public and Private Keys (PuEdS, PrEdS) and (PuBC, PrBC)
2: EdS(FL)−→Buf−→Buf265 KB.
3: SC[set()] −→Buf265 KB−→DDS.
4: The file gets hashed through cryptography method using SHA 256 to give distinct fingerprints

represented as CI(Content Identifiers).
5: PuEdS= h(PrEdS * C), where C acts as a constant ,* is a mathematical operation that is calculated

in single direction and H is the secured hash function.
6: if FL==h(PrEdS* C)==h(Buf265 KB) then
7: Publishing h( Buf265 KB) −→DDS, using IPFS client.
8: SC[get()] and SC[Publish()] functions to publish " h(Buf265 KB) " from DDS.
9: Signing "h(Buf265 KB) " with esdsa, Signature = Fun signature (Fun keccaK256(e),pkk).

10: Attaching the ecdsa signature to the transaction.
11: if "h(Buf265 KB)" is signed with ecdsa algorithm then
12: The hash maps in Sc are used for accessing the IPFS hash string towards ethereum accounts

.
13: Hash map has device owners, address and device id as key along with with hash string

encrypted that is written on Blockchain.
14: The write access policy checks for the validity of the data and functions in Sc help is

publishing the encrypted data.
15: if Device owner and address are related device id. then
16: Runs the Write operation.
17: else
18: Deletes Write operation.
19: else
20: Process End.
21: else
22: Process End.
23: end if
24: end if
25: end if
26: Repeat the steps from 1 through 26 every time edge system collects groundwater quality data.

it gets converted into the buffer (EdS), Buf file of each 256 kB Buf265 KB. The buffer file gets attached 401

with the private key and gets signed. The IPFS digitally signs the hash string/hash message "h(Buf)" 402

produced; h denotes the hash function. The signed hash string is then called by the set() function in 403

the smart contract. With the help of the elliptic curve digital signature algorithm (ecdsa), a signature 404

output of the "h (Buf)" is generated. For ordering the ethereum objects, an encoding technique called 405

recursive length prefix (rlp) is used. pk represents the signing private-key of the blockchain, e is the 406

RLP encoded data. Funkeccak256, Fun signature represent the functions for keccak-256 hash and signing 407

algorithm respectively. Once the data is hashed/signed twice, the smart contracts help in reading and 408

writing the transaction toward the blockchain using access rules. 409

The steps for recovering the data from the blockchain to the user domains ( Ud) is given 410

in Algorithm 2. The user domains should have the signature values and ordered transactions for 411

retrieving the file. In the water quality data signed, private and public keys for creating the signatures 412

are also present. The user domain gets the water quality data signed to authorize the signature and 413

check if the hash functions have been compromised. Only the user domains having appropriate 414

values can contact and receive the file. A complexity of O(1) [39] is required for validating and 415

solving the cryptographic puzzles. 416

7. G-DaM Implementation 417

Some dependencies are significant for the DDS application design, which are discussed here 418

briefly. Ganache is a personal blockchain platform that is mainly used for deploying smart contracts, 419

application development, and running tests locally that mirror actual public blockchain. Fig. 7 shows 420

ten free accounts provided by the mirror blockchain ganache for developing distributed applications. 421
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Algorithm 2 Data from Blockchain to User Domains.

1: BC and Ud generate their respective Public and Private Keys (PuBC, PrBC) and (PuUd, PrUd).
2: The requester sends for data access request.
3: The access request gets signed by Requester’s private key (PrAr) and the signature gets attached

along with data request.
4: The request for data access is concatenated with the signature an is then encrypted by public key

of Edge system (PuEdS) for publishing from the client side Smart contract.
5: The request gets decrypted by the Edge System and uses signature for verifying the data integrity.

6: if Signature matches then
7: The permission for reading the data is given to the requester.
8: The owner, address and the id details of the device are provided by the requester.
9: The owner, address, and id of the device are maintained in the smart contract hash map along

with the registered user domains.
10: if owner, address and id of requester matches hash map of smart contract then
11: data can be accessed to read by the requester.
12: else
13: Declined the data access.
14: else
15: Process End.
16: end if
17: end if
18: Repeat the steps from 2 through 18 every time there is a new user sector access request.

Ganache gets started setting up a platform for writing smart contracts with the help of nodes package 422

manager (Npm) and truffle framework (Tf). The local nodes are initiated with Npm, and Tf provides 423

different tools for developing the present application. The tools in Tf help with smart contract 424

management, testing in an automated way, contract migrating and deploying, network management, 425

running scripts for JS client code, and developing client-side code [41]. For the front-end design of 426

the application, the react-java script (reactJS) framework is used, as shown in Fig. 8. 427

Figure 7. Ganache local blockchain.
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Figure 8. G-DaM User Interface.

The Infura IPFS gateway has an ipfs-http-client package that can be installed using a local 428

node. The package can be called from the front-end reactJS for attaining distributed storage for the 429

current G-DaM application. Another essential package that is used for communicating ethereum and 430

local nodes is web3.js. The front end of the G-Dam system is connected to the backend blockchain 431

by configuring the Tf to the ganache host address 127.0.0.1:7545. A regular browser cannot be 432

used for communicating with the blockchain; instead, a metamask extension browser is helpful. 433

The metamask also handles personal accounts, funds, and fees for data transactions. The logic 434

code inside the smart contract helps in interacting with the string data generated from IPFS to be 435

forwarded to the blockchain. 436

Testing is one of the crucial stages of application development. Blockchain testing has a 437

vital role since contract code execution on an actual blockchain will have higher risks due to its 438

no-reverting property. The G-Dam application here is tested using Tf in local ganache to see its 439

efficiency and deployed in the Ropsten test network for the live setting performance testing without 440

the use of real ether and mainnet tokens. 441

8. G-DaM Results 442

We submit the water quality data file to the front-end to read the input in the form of a buffer, 443

and the resulting IPFS hash string is delivered as shown in Fig. 9. 444

Figure 9. File to buffer to hash

The metamask ethereum wallet acts as a connection medium between the user interface and 445

ganache. The hash string is generated from the front-end form linked to DDS-ipfs. Once the hash 446

is received, the metamask asks to confirm the transaction to store the ipfs hash on the blockchain, 447

which in turn gives a cryptographic transaction hash. Both ipfs hash string output and the ganache 448

input are checked to be the same, as underlined in Fig. 10a, and then deployed to ropsten testnet, 449

which mirrors the functionality of the actual mainnet. Once deployed to the testnet, the transaction 450
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hash is given along with status, timestamp, block number, ether used, and the gas used as shown in 451

Fig. 10b and Fig. 10c. The complete flow of data for the current G-DaM application is given in Fig. 452

10. 453

(a) Hash verification & deploying to ropsten

(b) Transaction/Blockchain Hash.

(c) Transaction Validating Time.
Figure 10. Dataflow from User Interface to Back-End Blockchain.

8.1. Datasets 454

The datasets we used for testing the current application are given in Table 2. These datasets 455

comprise the water quality data for each state in the United States and are collected from the US 456

Geological survey [42]. The datasets are initially compressed into a .zip format. We have tested each 457

data sample for its integrity, privacy, quality, and security through double hashing, one executed with 458

ipfs and the other with the blockchain, as given in Table 3. 459

The information regarding one ether(eth) price is $1098.84, and mining time is 13.96 Seconds 460

for 1 MB of data [43] as of June 30, 2022. For 1 Kb of data to be shared and stored on the blockchain, 461

it would require 0.032 ether fees [43]. Based on these facts, we have calculated the transaction costs 462

for all our water quality datasets and compared the prices between blockchain and blockchain with 463

DDS, as shown in Fig. 11. 464
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Table 2. Datasets for G-DaM.

Data Name Dataset Size Compressed.zip size Link

California Water
Quality

1.64 MB 186 KB
https://waterdata.usgs.

gov/ca/nwis/qw

Florida Water Quality 328 KB 36 KB
https://waterdata.usgs.

gov/fl/nwis/qw

Nebraska Water Quality 709 KB 84 KB
https://waterdata.usgs.

gov/ne/nwis/qw

New Jersey Water
Quality

1.76 MB 206 KB
https://waterdata.usgs.

gov/nj/nwis/qw

New York Water
Quality

883 KB 102 KB
https://waterdata.usgs.

gov/ny/nwis/qw

Oklahoma Water
Quality

669 KB 77 KB
https://waterdata.usgs.

gov/ok/nwis/qw

Pennsylvania Water
Quality

385 KB 40 KB
https://waterdata.usgs.

gov/pa/nwis/qw

Tennessee Water
Quality

20 KB 4 KB
https://waterdata.usgs.

gov/tn/nwis/qw

Texas Water Quality 1.12 MB 128 KB
https://waterdata.usgs.

gov/tx/nwis/qw

Virginia Water Quality 191 KB 25 KB
https://waterdata.usgs.

gov/va/nwis/qw

Washington Water
Quality

288 KB 34 KB
https://waterdata.usgs.

gov/wa/nwis/qw

Wisconsin Water
Quality

262 KB 31 KB
https://waterdata.usgs.

gov/wi/nwis/qw

0.00460792

0.00445678

0.00564327

0.00456432

0.00554342

0.00345213
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0.00453265
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Figure 11. Comparing Tx-Cost for water quality data flow between blockchain-only and blockchain with DDS.
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https://waterdata.usgs.gov/ny/nwis/qw
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https://waterdata.usgs.gov/ok/nwis/qw
https://waterdata.usgs.gov/pa/nwis/qw
https://waterdata.usgs.gov/pa/nwis/qw
https://waterdata.usgs.gov/tn/nwis/qw
https://waterdata.usgs.gov/tn/nwis/qw
https://waterdata.usgs.gov/tx/nwis/qw
https://waterdata.usgs.gov/tx/nwis/qw
https://waterdata.usgs.gov/va/nwis/qw
https://waterdata.usgs.gov/va/nwis/qw
https://waterdata.usgs.gov/wa/nwis/qw
https://waterdata.usgs.gov/wa/nwis/qw
https://waterdata.usgs.gov/wi/nwis/qw
https://waterdata.usgs.gov/wi/nwis/qw
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Table 3. Water quality Data sharing with double hash refuge.

File File-Size IPFS-Hash Tx Hash/BC Hash Tx Deploying Time (Sec)

California Water Quality
data

186 KB
QmcMnYyywy5No

5eP25gcRirPymv4YAFL
s3AyamC66X6dpv

0x9c9ff748384e2
3a50ddfcc6f2fbca49
ce55638e1b6136e

51d50bed19fb60b37c

8

Florida Water Quality
data

36 KB
QmTTSJLxoAYSgQFpA
q5z2MmSMuq1NfMY6

MGogKoSVbMhgw

0x833374419e5ac21
9f7f3591df7335ad508d0

bd6865897da3a935
212662fd051d

8

Nebraska Water Quality
data

84 KB
QmY3y84FBmnzc2

EukKS3wyT6J5teGnT
3Y5aMXKhfGAW65C

0x3e65d503b14aed
2bbc1e4c393da861

857f1b137c9f185322
dec77c6cb41dea84

32

New Jersey Water Quality
data

206 KB
QmSkQ2FsCywsfkv

EiFmQwWY97evqWk
CBqBgEBUNpLZd1tE

0x82e3011ea9c91
0d76a2faf759310920
3378a6950c3c2e8d8
2dbd2ebc29bed5fc

20

New York Water Quality
data

102 KB
QmYmKPhKWvGs7

R1guBnPpwk8usNXqn
7j4ikX1ByvKtUagh

0x71285afe6a050cde
bdd4c2e650cca2d3759

8ab459e3a0a77c5
19b1b87bbecc54

36

Oklahoma Water Quality
data

77 KB
QmeDzZvmzkkCgf

mC8UN8NbVT18oavX
7ZEtTVmpsirj4ndu

0x7ab98459b29b5
71fb654dbf90f884167dc4

4c8386115c381d8c9e
3c831611853

8

Pennsylvania Water
Quality data

40 KB
QmPDXu4qMJHQR

MTJC2T3rCB9CfFzQhRD
thW6HsbRLUogo2

0xfdd3de4eb8b3
3d82120df40187fb51

b1fe6d4bcd1074df0519
80e6c5e5233210

20

Tennessee Water Quality
data

4 KB
QmU4BmcNbTb

uTe9LQxkTSHPiWmN9xj3F
9uQu624sieQVGs

0x8e9fc70d2ee4a
1869c8da2d448c89

3ee0a2c710a99ae156
5a5ac14878eb54edc

32

Texas Water Quality data 128 KB
QmVoN2iNU3T

zDPy1QrG8Ck2nHMrqt
PcAZN72E4i1MtPKsf

0xc9360e9e1d5b7d6
be2c8d9811ca427407
82aaf10c6a72866813b

d4484c26c20d

20

Virginia Water Quality
data

25 KB
QmRZDbew3iU9U

gH3S9WZhPgi2n4gAq
nUR7uvd9v67cncfD

0x9d547180ce0b
f1f437f3f3934c1f759

bbfdbab8fc47c22c
73903e8f46392cb6f

8

Washington Water
Quality data

34 KB
QmT5GrgoPH92nu

a5WTbCUcDpiCs2RWC
kxVkqJnRY7CY3Jq

0xf86cd670ff4e6
74f522d64badf7b

2674ac9a3846bbd91
b863f8ed012f944317

8

Wisconsin Water Quality
data

31 KB

QmYTPr445A72L
uscbaavgqppZK-

mMKrAY
9HV3U7dmbBB5dF

0xc544ef6ded8dc
865ada99b79b74faeae
f897a55bc4c827c21
1fa9da95f758b68

20
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9. Conclusion and Future Direction for Research 465

This paper provides a state-of-the-art design combining DDS and the blockchain for the 466

management of groundwater quality data. It solves various issues of central system challenges, 467

blockchain latency, data integrity problems, privacy, and data quality issues. The blockchain uses 468

ECC cryptographic puzzles on the data hashes received from the DDS, which acts as extra protection 469

of the groundwater quality data. The DDS s/kademlia protocol avoids churn, eclipse, and Sybil 470

attacks by inducing strong cryptographic signatures and hashing procedures. This paper also proposes 471

a novel architecture and platform for the stakeholders in groundwater quality data management and 472

helps initialize digital agreements. For the control of access and data, the current paper makes use of 473

public blockchain smart contracts. With the help of a private blockchain, the present application can 474

be made more confidential and have higher control over the quality of data flow. 475
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