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Abstract—5G and subsequent cellular network
generations aim to extend ubiquitous connectivity
of billions of Internet-of-Things (IoT) for their con-
sumers. Security is a prime concern in this context as
adversaries have evolved to become smart and often
employ new attack strategies. Network defenses can
be enhanced against attacks by employing behavior
models for devices to detect misbehavior. One ex-
ample is Abusive Modeling (AM) that is inspired by
financial technologies to defend adversaries operating
with unlimited resources who have no intention
of self-profit apart from harming the system. This
article investigates behavior modeling against abusive
adversaries in the context of 5G and beyond security
functions for IoT. Security threats and countermea-
sures are discussed to understand AM. A complexity-
security trade-off enables a better understanding of
the limitations of state-based behavior modeling and
paves the way as a future direction for developing
more robust solutions against AM.

I. INTRODUCTION

Future communication networks are anticipated
to significantly expand for connecting many tens of
billions of devices and supporting a wide range of
consumer applications in healthcare, navigation and
disaster management under the umbrella of the In-
ternet of Things (IoT) paradigm [1]. The expansion
is supported by 5G and technologies beyond that
offer network slicing, reconfigurable connectivity,
traffic steering and flexible deployment options
to improve the overall efficiency of applications
and minimize interference [2]. For pragmatically
connecting IoT devices simultaneously over a spec-
trum, the response time should be ten milliseconds
or lower.

Security plays an essential role in communica-
tion networks for seamlessly connecting billions
of IoT devices and ensuring operational efficiency

while effectively utilizing resources [3] [4]. The
3rd Generation Partnership Project (3GPP) has pro-
posed dedicated 5G security functions that operate
between IoT devices and the core. The discovery
and placement of these functions, for example, the
authentication server function, the security anchor
function or session management function [5], is
challenging and dependent on the types of appli-
cations and devices.

Behavior modeling is usually the initial step
taken to evaluate whether devices work as specified,
to correctly log memory and location data, and
to enhance consumer trust towards the networks.
Numerous strategies that use behavior models have
been investigated to represent threats and adver-
saries in a network [6]. Abusive modeling (AM)
is one strategy inspired by the domain of proto-
col abuse in blockchain [7] to model adversaries
that simply hamper systems without wanting to
obtain a profit in doing so. AM is therefore a
potential candidate strategy for evaluating 5G and
beyond IoT networks, given that an adversary may
use unlimited resources to attack host or network-
side devices. Figure 1 conceptually illustrates an
architecture for the attack behaviour modeling for
adversaries in 5G and beyond IoT networks. The
architecture considers public and private clouds that
support IoT device operations by making use of the
edge. An adversary focuses on overpowering the
network security functions, such as Authentication
Server Function (AUSF), Authentication Credential
Repository and Processing Function (ARPF), Uni-
fied Data Management (UDM), Session Manage-
ment Function (SMF), Security Anchor Function
(SEAF), Access and Mobility Management Func-
tion (AMF) and Policy Control Function (PCF)
to adversely impact the 5G network. Manipulat-
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Fig. 1. An exemplary illustration of attack behavior modeling with adversaries in 5G and Beyond IoT networks.

ing these security functions require an unlimited
amount of resources, which is the underlying ide-
ology of abusive adversaries. An adversary may
build strategies to attack the host or the network
depending on the type of access it is able to
attain in the network and the timeliness of the
attack. In the case of network security functions,
PCF plays a crucial role as it will decide on the
interaction of IoT devices with the core. Thus,
regulating the security components of the network.
It is often difficult to identify whether a system
is under adversarial attacks that operate with AM
when it by-large controls the portion of the network
or impersonates as a security function, as shown
in Figure 1. However, the impact of adversaries
may be limited by accurate profiling, analysing the
behavior of IoT devices, and evaluating the function
of protocols.

This article addresses the importance of behavior
modeling of IoT devices in the context of 5G and
beyond security functions. The article highlights the
essentials of AM for 5G and beyond IoT systems
followed by strategies of state-based attack and
those factors that affect the detection of misbe-
havior if a system was under threat of abusive
adversaries. A numerical case study is provided to
understand the impact and relevance of studying
AM for securing future networks and how it can
pose a threat to the system if the adversaries have

sufficient capabilities to control the end-devices
or even the security functions that operate at the
core. Furthermore, the article discusses potential
solutions for mitigating the impact of abusive ad-
versaries.

II. BEHAVIOR ANALYSES AND MODELS

Existing literature presents security at multiple
levels, including device to device, protocol, net-
work, or application. Besides, working according
to the behavior-rules of a connected device needs
to be considered [8]. Behavior modeling is usually
centralized, where a central entity holds matching
rules of evaluation. Approaches adopted to mitigate
the security issues in centralization include the
creation of a Trusted Execution Environment (TEE)
that provides a secure enclave for evaluating the be-
havior of the entities involved. However, decentral-
ized verification offers the ability to independently
evaluate devices by injecting self-checking logic
into the devices [9]. Behavior modeling is complex
since the types of devices vary at each deployment-
level of the network [10]. Moreover, evaluating ev-
ery device on pre-determined parameters (available
from the product description) prohibits scalability
and effective deployment of behavior models [11].
In practice, behavior models should be defined by
the Original Equipment Manufacturer (OEM) of
devices and third parties can help assure operations
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and governance of the involved devices. The fol-
lowing types of analysis can be performed using
behavior modeling on IoT devices that operate in
the network periphery:
• Individual analysis: refers to the individual as-
sessment of every device by considering operations
relevant to the processing of information. This
analysis is useful for monitoring a single device,
which may be crucial in the network. For example,
consider the use of behavior-models for analyzing
access points. The volume of end devices connected
to an access point may vary thus making it difficult
for assessing end devices individually.
• Group analysis: is employed when devices oper-
ate collectively, and may or may not be connected
to a common access point. The devices may have
a similar profiling pattern irrespective of the make.
An example is the use of network slices for man-
aging a group of devices, and slice gateways are
anchors for behavior profiling.
• Hybrid analysis: refers to a combination of
individual and group behavior modeling. Consider a
scenario in which a network slice manages multiple
devices, but each device has a different make and
even varying operational requirements. In this case,
not only must the behavior of traffic coming off
the gateways be determined, but also from the
connected devices.

The above analyses can operate as
• Sequential models: understand devices syn-
chronously in the order of their activity. However,
these models due to cohesion are tedious to use as
profiling of one device impacts other devices across
the network. Therefore, sequential models cannot
provide an independent assessment of the system.
• Hierarchical models: profile devices in a hier-
archy either from a higher-end device (core) to the
lower (end-user), or vice versa. The precedence and
the direction of the flow of information are essential
to this model. Hierarchical models support multi-
ple layers comprising devices that are differently
coordinated in the network [9]. These models lend
themselves to scenarios where there is server-client
activity.
• Parallel models: are best suited for fine-grained
evaluation and formal checking of devices in the
network. Having multiple inputs and outputs is
an advantage of using parallel models [9].In this

model, the system is divided into customized sub-
units to carry out parallel-profiling. This division
improves the convergence and allows efficient be-
havior modeling even for the device to device
observations.

III. BEHAVIOR PROCEDURES FOR 5G-IOT

Based on the existing research [9], [12], [13],
the behavior modeling workflow involves, state-
machines, behavior-verification, and misbehavior
detection as explained below:

A. Behavior State-Machines

It is general practice to identify states in behavior
models to easily identify the processing of the
information and the current device activity. By
considering states, the system can express rule-
based governing conditions and thereby easily iden-
tify conflicting patterns that deviate from normal
working patterns. Figure 2 expresses an exemplary
scenario of the state machine and its utilization in
behaviour modeling. It includes a four-part state
machine with a limiting number of states. The
state machine can select a device, profile it, build
behaviour rules based on host or network-based
operations and verify the rules. 5G-PCF can handle
the flow and the management of rules between
the OEM and the actual IoT device. Host-based
verification relies on self-checking logic whereas
network-based verification relies on a separate logic
checking system to be deployed within the network.
However, if the number of the states are high,
then the complexity of the system increases; the
model will need to evaluate at least NM states,
where N is the number of outputs and M is the
number of patterns associated with the behavior of
the devices [12]. Nonetheless, state-based systems
can be advantageous in facilitating self-checking
logic on the device that is crucial for decentralizing
the modeling process. Self-checking logic is an
intelligent solution that can be regulated by the use
of machine-learning algorithms. Machine-learning
solutions play a pivotal role in establishing efficient
rule-based behavior modeling with a self-checking
logic.
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Fig. 2. State machines and behavior model verification.

B. Behavior-rules verification

In conjunction with behavior modeling, the rules
defining the behavior must be verified. In other
words, how can the behavior-rules defining the
correct working of a device be guaranteed? Existing
research presented in the literature has discussed
the accuracy of the identifying rules [6], [9], [10],
[12]. However, the limiting factor is usually the
procedures used for checking accuracy accompa-
nied by a static evaluation of the behavior-rules.
The procedures are underpinned by state machines
which leads to high complexity and slow con-
vergence. Additionally, there is a lack of real-
time formal methods to evaluate the behavior-
rules. To date, behavior-rules verification employs
theorem-based solutions, such as ACL2 (A Com-
putational Logic for Applicative Common Lisp),
logical forms, conjunctive or disjunctive, or offline
context-matching [9].

When verifying behavior rules, high false pos-
itives need to be avoided. From our earlier dis-
cussions, whether the system will require a cen-
tral entity for verification or a self-checking logic
is another avenue that needs to be explored.
With a large number of operating devices, self-
checking is a good solution that would lend itself to
decentralized-verification. However, self-checking
requires a significant amount of memory and com-
putational power, thereby limiting deployment at

scale [12]. Behavior-rule verification is a neces-
sary step in misbehavior detection since adversaries
may play the system, thus, altering the rules that
determine the correct working of devices. Under-
standing the factors of security and relating them
to the behavior-rules that define a device are the
steps to be carefully considered while profiling a
network with a large number of connections. Once
accurate profiling is attained, and behavior-rules are
verified, the system can be utilized to check for any
misbehavior.

C. Misbehavior-Detection

Misbehavior-detection involves the identification
of outliers, threats, and vulnerabilities of a sys-
tem [14]. Several methods are employed in the
literature, such as signature-based, rule-based, role-
based, specification-based and outlier-based ap-
proaches [13]. These are further divided into sta-
tistical and non-statistical methods depending on
the type of data generated by the device [6]. The
methods may be combined with AI techniques to
improve the accuracy of detecting misbehavior at
lower false positives and negatives. AI techniques,
such as ensembles of machine learning models
have been recently used to increase detection rates
subject to the properties of the available data.

Another factor downplayed in the case of mis-
behavior detection is the mode of identification-
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offline or online detection. Whether the system is
deployable in real-time or requires offline process-
ing of the available data affects the deployment of
the system. In the case of IoT, online detection is
important, whereas offline evaluation can only help
with the future prevention of similar issues but does
not provide a strong ability to have a firewall for
real-time misbehavior detection.

With the utilization of 5G and beyond security
functions, the detection is doable as a part of
the authentication, authorization, and access control
supported by the network base stations, hubs or
switches. In the case of 5G-IoT networks, the
positioning of the security functions plays a pivotal
role in deciding the risk associated with misbehav-
ior detection. Moreover, which security functions
are to be responsible and configured as a part of
behavior verification are to be decided as a part
of network planning. In addition, the mobility and
positioning of devices in the networks need to be
considered as it impacts detection of adversaries.
Once a device moves across a network, its profile
may change due to a change in its role. In different
settings, anchor functions may not identify the de-
vice, and this impacts the detection. A device may
turn rogue by helping another device camouflage
within the network despite having a strong detection
strategy. Thus, misbehavior detection needs further
exploration considering recent drafts on several

application-specific protocols for devices enabled
with 5G and beyond technologies.

IV. ABUSIVE MODELING (AM)

AM refers to when adversaries go beyond soft
limits (limited resources for attacking) set for at-
tacking and will invest in a significantly large
amount of resources to cause maximum harm. In
AM, the threat model may consider network entities
that go rogue randomly, allowing minimum chances
of recovery. More specifically, a set of IoT devices
may be impacted by a common access point that
behaves like an abusive adversary. Under such
circumstances, the network will have a single point
of failure. An adversary may have the capability
to control base stations that may affect the entire
front haul and mobility of devices leading to several
attacks, such as host-impersonation, replay attacks,
Denial of Service (DoS), Distributed Denial of
Service (DDoS), hidden-terminal, in the network, as
shown in Figure 3. Figure 4 helps to understand the
security properties, threats and mechanism of attack
in AM. The figure presents the security properties,
which are the potential targets for an adversary in
AM categorized concerning the host or network-
based deployment. This illustration lists several
attacks on the state-machines with a direction of
research on misbehaviour detection.
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State-of-the-art has identified strategies that may
create abusive adversaries with maximum impact
on the performance of the network. These strate-
gies include the use of decision processes, like
Markov modeling, recognition-primed modeling,
agent-based modeling, and social modeling. These
approaches define adversaries with AM to evaluate
highly complex systems, such as 5G and beyond
IoT networks. Network replication, cloning, device-
injections, prejudice selection of routes, and route-
forgery are strategies that are opted by an adversary
operating in AM. One example is having a rogue
new access point or base station when a device
is moving between a previous and a new access
point. If an IoT device is unaware of the rogue
new station, it may provide the details of the entire
network, such as exposing the previous keys, de-
registration process, the timing of the sessions, and
locations used for credential management. More
severely, it can expose historical data that leads to
multiple issues related to privacy and data integrity.

A. Factors Affecting AM-Misbehavior Detection

Adversaries following AM principles may over-
ride behavior rules and generate high false negatives
resulting in vulnerabilities that if left undetected
may lead to zero-day attacks. Furthermore, AM

can delay the release of security-patches to the af-
fected parties lowering the Window of Vulnerability
(WoV). Hence, misbehavior detection techniques
cannot be accounted for in real-time. Such a tech-
nique, in return, increases the cost of evaluations
and overheads as most analyses of the devices will
need to be repeated in an offline mode; this is
inherently centralized. Thus, a decentralized setup
is converted to a flat architecture resulting in issues
related to mobility management, protocol violation,
loss of accessibility and authorization, and authen-
tication and access control. The following is a list
of factors that may affect misbehavior detection
against AM:

• Associative-density: refers to the inter- and intra-
dependencies of devices. Since a large number of
devices operate in the periphery of each other,
abusive adversaries may have multiple entry points
to the system and can manipulate rules or inject
their own rules to change the governing conditions
that identify misbehavior. The degree of control by
the abusive adversary directly impacts detection and
control over the network. With a high number of
compromised devices, the detection is affected, and
the probability of identification decreases.

• Architecture: Whether a network is operational
in a centralized or a decentralized model can de-
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termine the possibility of detecting misbehavior
against AM. In a flat architecture, there are multiple
single points of failure for a subset of devices.
Under such conditions, abusive adversaries will
camouflage that result in high false negatives when
detecting anomalies. The positioning of security
functions also affects detection against abusive ad-
versaries since the devices acting as a potential
candidate for 5G and beyond security functions
may not be secure enough or are under a direct
attack.
• Mobility policies: Devices moving across termi-
nals need to have a secure method of registering and
de-registering devices with old and new terminals,
respectively. If a terminal is controlled by an adver-
sary with AM, then it may expose the entire history
of the session, thus affecting the data integrity and
privacy of the network.
• State-machine complexity: AM may fail if the
number of rules defining a system is large since an
adversary will need to identify many states before
generating a strategy for attacking the system. With
a fewer number of states, easy to execute rules,
or simple threshold-based variations, AM can have
much impact and control over the network and its
components.

B. Impact of AM on 5G-enabled IoT

This section presents the impact of AM on 5G-
enabled IoT devices by considering the states that
are determined by behavior-rules.

Complexity-security trade-off: For a complex
system in behavior modeling, a large number of
states will need to be processed to evaluate the
system. This impacts system performance. Hence,
the aim of further research should be to derive
solutions for rule-verification and adversary iden-
tification that can operate with sufficiently low
overheads by only using a limited number of states.
In other words, the complexity of the system needs
to be controlled. If an abusive adversary operates
in a network, then it will have to execute a large
number of states for replicating the network setup
before considering strategies to launch an effective
attack. This can prove to be cumbersome for an
adversary to launch a timely attack. However, if
costs were not a concern for an adversary, then it
can launch a state-wise attack. Thus, there exists

a complexity-security trade-off – it is necessary to
have a low complexity system for rapidly verifying
a system with only a few states, but at the same time
complex state-based verification does not naturally
lend itself to adversarial attacks.
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The article presents a case study of an adversary
having the capacity to perform fast computations
under no monetary cost constraints. For the sake
of simplicity, the system used is assumed to be
operational on binary output with each behavior
rule resulting in two states. The types of behavior-
rules are not considered at present and evaluations
are limited to their number rather than the type of
behavior-rules and will be considered in the future.
The graph illustrates that by having multiple states
representing multiple behavior rules will increase
the verification complexity of the system. The total
number of operational-states increases in the order
of 2B , where B is the number of behavior rules. If
an adversary has the capacity to operate a billion
computations per second, then a brute force attack
can be launched by using a trivial multiplicative
inverse to replicate the exact states of the system
(shown in Figure 5). The numerical results suggest
that the time to replicate the states by an adversary
increases with an increasing number of behavior-
rules. However, with this increase in the number of
rules, the verification-rate decreases, i.e., the rate at
which the system can verify all states/rules of the
system decreases thereby making the system less
effective in detecting abusive attacks. It decreases
the efficiency of the entire system in detecting AM
attacks.

Induced failures by AM: Abusive adversaries
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can use unlimited resources to either compromise
the host IoT device or 5G security functions. Its
impact depends on network depth and network
density. If the number of secondary devices (al-
ternative routes with additional devices) is large,
then the network may be able to regulate traffic
for preventing a state-based attack. However, if
the adversary controls the security function in the
network, then the failures of entities increase. Such
types of failures and increase in load on entities
are traceable by calculating signaling overheads
using formulation in [15]. An adversary, controlling
the network functions that are required for secure
working of the communication protocols, will in-
duce overheads either on the host-side or directly
on the network-side. In our impact evaluation, the
network considers unit message size to understand
failures that are expressed to understand the general
impact on the system as signaling overheads, as
shown in Figure 6. The network utilizes security
functions operating with 10 to 30 nodes and the
number of hops that fails ranges between 1 and
11. The security functions are placed at the wide-
end of the system. The failing hops are considered
for both the host-side as well as on the side of
the security functions. With decreasing neighboring
nodes (between 3 and 5), the signaling overheads
increase rapidly resulting in several failures. It is
now evident that an abusive adversary severely
impacts the system. Thus, it is necessary to explore
strategies that can address the implications of AM
where location-privacy needs considerable attention
to prevent state-replication under AM.

V. PROSPECTIVE SOLUTIONS

Potential solutions (as shown in Figure 7) against
AM with their limitations are discussed below:
• The generation of operational profile of devices
that cannot be easily carried out manually can be
automated using ML to extract behavior-policies.
With advanced grade-sensitive tools, even devices
that merely have input/output roles can be asso-
ciated with a set of criteria to fix their behavior
patterns. Automated patterns with ML can help in
efficient mining, detection, filtering of outliers, and
anomaly detection.
• The state-replication by abusive adversaries can
be overcome by increasing the secret sharing of
data. Stronger encryption can provide security
against AM, although it will increase the over-
heads for the devices to process the incoming data.
This leads to another security-efficiency tradeoff
that can be explored further specifically targeting
state-replication. Group Authentication can be an
effective solution, and in the case of 5G-IoT, slic-
ing and authenticating the group of devices is an
efficient mechanism given the advantages of pre-
build security functions.
• Approaches like Markov Modeling, Optimal
Stopping theory, and Transfer Learning can be
used to develop a new set of strategies to evaluate
the convergence, responsiveness, and sensitivity of
formal verification of behavior rules against AM.
These can overcome the complexities associated
with the verification as the actions can be set to
decrease the number of verifiable states. However,
the performance overheads of these approaches is
a disadvantage to be resolved.
• Filtering techniques, such as Kalman filters,
α − β − γ filters, and optimization solutions, like
nature-inspired algorithms that have low turnaround
time can be used atop of formal verification to
support the misbehavior identification at lower false
positives.

VI. RESEARCH DIRECTIONS

The following avenues of research are recom-
mended for further exploration to understand the
impact of AM for behavior evaluations of IoT:
• It is required to understand the decision-making
on the location of state-machines and approach for
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sharing verifiability of the behavior-rules. Position-
ing is a dominant factor as it directly affects the
devices as well as the security functions of the
network.
• It is required to understand formal methods as
well as derive new solutions that can help generate
true-states of the network. Precisely, energy con-
straints of the IoT devices need to be taken care of
when developing such methods.
• AM does not bound to a few strategic approaches.
It is still a wide-open problem, and there are no
direct models that can help decide the properties
of abusive adversaries focusing on network entities
only. Although Markov Models can drive AM in
blockchain analysis, from the network’s point of
view, the number of states also affects the perfor-
mance and verification. Thus, it is interesting to
follow and understand how futuristic approaches
tackle these issues.
• Incorporating security functions with additional
properties to have a pre-embedded mechanism of
behavior verification, along with authentication, is
another direction to explore. Moreover, a new se-

curity function can follow to dedicatedly verify the
behavior and run in parallel to overcome perfor-
mance issues.
• Rigorous mathematical models can help to form a
common threat model that takes into consideration
the process or strategies of AM when evaluating
security solutions for 5G and beyond IoT networks.

VII. CONCLUSION

Behavior modeling is pivotal for understanding
new types of attacks in 5G and beyond IoT since
adversaries are becoming intelligent. This paper
presented abusive modeling (AM) as a worthy area
of exploration to mitigate attacks when an adversary
has an unlimited amount of resources to launch
an attack. The benefits of exploring AM for IoT
networks are obvious but relatively new compared
to its use for protocol abuse in financial tech-
nologies, such as blockchain. The article presents
the limitations of existing behavior modeling tech-
niques, state machines, and how they impact the
performance of the network, and misbehavior de-
tection within the context of a complexity-security
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trade-off discussed using a numerical case study.
Given the severity and negative consequences of
abusive adversaries, further research is required on
efficient behavior rule verification, prevention of
state replication, and secondary network for load-
balancing in the case of attacks to develop robust
and counter solutions.
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