IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 22, DECEMBER 1, 2021

A Mobility-aware Human-centric Cyber-physical
System for Efficient and Secure Smart Healthcare

Abdul Razaque, *Fathi Amsaad

, Musbah Abdulgader, Bandar Alotaibi, and Fawaz Alsolami, Member, IEEE;

Duisen Gulsezimhas, Student Member, IEEE; Saraju Mohanty and Salim Hariri, Senior Member, IEEE

Abstract—Cyber-physical systems (CPS) have developed
rapidly in recent years, contributing to an efficient integration be-
tween the cyber and physical worlds in intelligent and connected
city environments. However, efficient mobility in a CPS is not well
solved. Here, we present a prototype for a privacy-aware secure
human-centric mobility-aware (SHM) model proposed and tested
to analyze physical and human domains in IoT-based wireless
sensor networks (WSNs). The proposed SHM model involves five
modules: sensor advertisements, mobile sensor recruitment, load
balancing, transmission guarantee, and privacy with data-sharing
phases. The proposed model is also validated using an accurate
testing method that involves software and hardware tools and
mathematical modeling to confirm secure communication. The
model provides a trade-off between energy efficiency and quality-
of-service (QoS) requirements and compares the performance
with other known models/protocols. Our testing process contin-
ued for four days, demonstrating that the SHM model provides
compelling features of a secure cyber-physical system based on
actual testing results. In practice, our model can be used in
hospitals, as evident from validation in a real-life environment
following the protocols.

Index Terms—Mobility-aware human-centric cyber-physical
system, secure IoT-bsed human-centric mode, secure smart
healthcare mobility, wireless brain sensor network.

I. INTRODUCTION

YBER-PHYSICAL system devices, i.e., sensors, actu-
ators, microprocessors, etc., are gaining importance in
IoT applications [1]. CPS systems combine efficient and real-
time applications while focusing on security, energy, mobility,
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health, and industry [2]. Although CPS is useful in heath and
real-time system applications, its adoption has been delayed
because of the mismatch between the abstraction and proper-
ties of physical processes [3].

Using massive networks of sensors and actuators, large en-
vironmental areas of CPS can be accessed and revolutionized
in real time [3]. Mobility is introduced in many systems,
including the Industrial Internet of Things (IIoT), automotive
human mobility systems, and robotic and distributed systems
that perform automated tasks [4, 5]. As an application of
CPS, the interconnection between power control systems and
edge/fog IoT-based systems can be efficiently analyzed [6].

Fig. 1 shows an overview of the cyber-physical system
domain. CPS mobile nodes can detect information over a
large wireless area and send it back to the base station for
analysis. Additionally, CPS nodes can solve the resource
limitation problem in the static model and improve its ef-
ficiency. CPS wireless communication development includes
interconnected robots, autonomous vehicles, vehicular ad-
hoc networks (VANETS), smart grids, etc., and creates ideal
mobile nodes in the CPS environment [7, 8, 9]. Furthermore,
embedded CPS computing systems have gradually become the
core development direction for many applications, including
IoT and mobility, due to their excellent market demand and
promising prospects [10].

The paper is organized as follows. Section III presents
the paper’s related work. Section II specifies the research
problem addressed and the main contentions of the current
paper. Section V introduces the problem formulation. Sec-
tion IV specifies the proposed model. Section VI explains
the development phases of the proposed model. Section VII
discusses the experimental results and shows an analytical
comparison between the proposed model and the competing
models. Section VIII concludes the paper and outlines future
work.

II. RESEARCH PROBLEM AND CONTRIBUTIONS

Despite the aforementioned benefits of the cyber-physical
systems, many challenges still arise in CPSs. For example,
current mobility systems require CPS sensors during their
communications to efficiently communicate sensitive informa-
tion related to humans, machines, sensors, etc. [11]. For a
balanced throughout and efficient human-centric transmission
process, the quality-of-service (QoS) and performance issues,
including reliability, ensuring the minimum loss rate, enhanced
link quality, advertising each sensor’s lifetime, etc., require
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Fig. 1: Overview of the cyber-physical system domain.

well-resolved approaches. Also, many of the existing CPS
models lack information about the implementation of CPS
mobility models on real hardware devices, the integration
process between CPS hardware devices, particularly handling
static sensors and mobile robot sensors, and the software tools
used, which is needed for an efficient mobility-aware system
model. Further, CPS mobile nodes are increasingly deployed
in a nonsecure physical environment; thus, they are vulnerable
to new cyberattacks that need to be addressed before they are
widely deployed [12]. If a CPS mobile node fails to function
due to a CPS attack, the whole system becomes comprised
and untrusted [13]. The challenge here lies in integrating new
techniques, as part of the system prototype, to ensure secure
and private data sharing and transmission, i.e., the sensor’s
core buffer and data-forwarding path.
The main contributions of this work are as follows.
> An efficient and privacy-aware secure human-centric
mobility-aware CPS model is proposed that covers both
stationary and mobile sensors. Static sensors are fixed
to monitor sleeping patients, whereas mobile sensors
monitor moving patients to gather data and store it on
cloud servers.
> A mobile sensor recruitment phase is employed to en-
hance the throughput and reduce latency by incorporating
a mobility-aware component. As a result, the load of the
entire network is balanced throughout the data transmis-
sion process.
> A sensor-based advertisement process that focuses on the
loss rate and link quality before advertising the lifetime of
each sensor for improved QoS requirements is proposed.
> A human-centric mobility-aware model makes full use
of the core buffer and data-forwarding path and ensures
private and secure data-sharing transmission.

III. RELATED WORK

Table I summarizes the contemporary related work for han-
dling the security in CPS. As seen in the table, Robust control
for mobility based on cyber-physical systems is introduced in
[14]. This concept is used to implement a system architecture
that provides end-to-end connectivity for a team of robots that
performs tasks assigned by human operators. In this research,
the authors adopted a stochastic model to address the wireless
routing problem. However, this model is used for either local
control or global planning, but it fails for continuous com-
munication. A design space exploration (DSE) architecture is
proposed to handle detailed CPS parameters such as bus width,
voltage levels and cache size [15]. The proposed architecture is
applied with the inverted-pendulum application. The proposed
architecture was capable of detecting and managing these

trade-offs. However, the proposed architecture failed to reduce
energy consumption. Optimal tracking control is proposed to
support the CPS when the cyber domain is attacked by a
denial-of-service attack (DoS) [16].

The Riccati equation is used for an amplified system.
The probability of determining a successful DoS attack is
analyzed. Finally, the effectiveness of the proposed method is
detected using an F-16 aircraft and DC motor. However, the
proposed method experiences the problem of potential attacks
encountered by the CPS. Blockchain-enabled technology is
introduced for the SDN cyber-physical system to reduce the
system latency [17]. The proposed SDN-CPS consists of
the resource management process for providing cooperation
flexibility. Joint computation, communication, and consensus
problems are formulated to balance resource allocation and
ensure data security. To introduce stability and safety features
in cyber-physical systems, [18] adopted a unified invariants
approach in which cyber and physical component requirements
were addressed. However, this approach is limited to some
extent when a system is unresponsive and when there are
analytic requirements and a failure to define errors. A method
to detect a potential attack in a cyber-physical system was
introduced in [19]. Based on existing CPSs and attack sce-
narios, it illustrated a unified modeling framework for cyber-
physical systems. However, it did not explain how to address
attacks that are identified as “undetectable.” The IIoT with a
self-adaptive collaborative control (SCC) model that leverages
leveraging of cyber-physical systems mobility is proposed to
enhance the resilience and flexibility of manufacturing discrete
systems [20].

Cyber-physical system mobility puts the human-in-the-loop
presence in the CPS given in [21], in which the system
processes the signals from the mind and body and then
converts those signals into robot signals. These signals interact
with the physical environment. However, the authors failed to
define and implement this idea properly. Healthcare systems
based on cyber-physical systems were also introduced in [22].
The author proposed a novel false alarm detection method for
healthcare applications. Despite the threshold alarm method,
it is combined with multiple classifiers. Additionally, different
sensors are considered in CPS to ensure that heterogeneous
sensors’ coexistence is reliable. This model improved the
accuracy and efficiency of the false alarm detection system.
However, a complete CPS architecture is not addressed.

IV. COMPONENTS OF THE PROPOSED MODEL FOR CPS

Mobile wireless sensor networks (MWSNs) are effective
mechanisms in the growing CPS. The increasing pervasiveness
and generality of MWSNSs in several IoT application domains
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TABLE I: Contemporary works for handling the security in CPS.

Works

Security protocols for CPS

Features

Vulnerabilities/Shortcomings

Fink et al. 2012 [14]

The mobility-based
protocol for the CPS

Provides end-to-end connectivity
for the robots that perform the
task assigned by human operators.
In addition, adopted a stochastic
model to address the wireless
routing problems.

Failed to provide
continuous communication
and has no secure communication.

Maral and Givargis 2020 [15]

Design space exploration
architecture for the CPS
parameters.

Uses DSE to enhance the
performance of the CPS parameters
for improvement in the CPU speeds,
cache configuration, and sampling.

Failed to automate the
search for large scale
CPS configurations.

Paul et al. 2014 [18]

Common semantics
for CPS.

Provides unified invariants
that guarantee the correctness
of the individual subsystem
in CPS.

Reduces the accuracy
due to the use of the
logical truth. It also lacks
security of the CPS.

Pasqualetti et al. 2018 [19]

Mathematical framework
for CPS.

Designed distributed and
centralized model to monitor
and detect the attacks in CPS.

Neither testing nor
validation is provided for
the proposed model.

Guo et al. 2021 [20]

Self-adaptive collaborative
control (SACC) for

a smart protection

login system.

Enables the manufacturers

to deploy the IoT in CPS to make
intelligent, resilient, and flexible
production logistics systems.

Suffers due to security
threats and additional latency.

Schirner et al. 2013 [21]

Platform for
human-in-the-loop
application

Designed prototype to
support the wide-ranging
class of systems that extend
human communication

with the CPS.

Produced abstract idea
without any validation
and testing.

Li et al. 2018 [22]

Medical fuzzy alarm
filter for healthcare
environments.

Attempts to reduce the
false alarms for maintaining
the system effectiveness
generated by the sensors.

Specified for the healthcare
environment, but failed to
provide an acceptable
accuracy rate.

Wu et al. 2021 [16]

Optimal tracking
control for CPS.

Attempts to design an
optimal tracking control
method for preventing the
control signal transmission
caused by DoS attacks.

Limited to only DoS attacks
and vulnerable to other potential
attacks on CPS.

Wang et al. 2021 [17]

Blockchain technology
for SD-CPS.

Minimization in system
latency and provision
of flexibility of cooperation.

Blockchain-enabled features
are not properly employed to
handle security threats.

This work

Privacy-aware SHM model
for CPS.

Provides hardware

testing of mobility-aware

ToT devices and maintains
security and privacy in the CPS.

No known potential security
and privacy threats

make actuators, mobile sensors, and embedded devices signif-
icant CPS design components. An MWSN can be a network
with hundreds of mobile sensors interrelating to resolve/handle
complex tasks or events. They are predominantly arrayed
as interfaces through which data are assembled from/about
the physical environment and then transported to the cyber
domain. There is an urgent need for a system model to migrate
multifaceted processing tasks outside an MWSN network
while integrating missing intelligence, autonomy, and context-
awareness features. Such an MWSN system model is needed
to address several challenges, including the amalgamation of
appliances with sensor node mobility, different communication
protocols, and sensor data distribution to the CPS on time.

As part of the system model, a distributed CPS mobility
system is needed to detect information about static and moving
objects (humans), allowing the system to use a sensor-based
process that focuses on the loss rate and link quality to ad-
vertise each sensor’s lifetime for improved QoS requirements.
This system should also include a mobile sensor recruitment
phase to enhance the throughput and reduce latency by incor-
porating a mobility-aware component. As a result, the load of
the entire network is balanced throughout the data transmission

process. This paper proposes a novel human-centric mobility-
aware system model that can be used for several applications,
such as diagnosing patients and storing the information of the
patient in a distributed environment, a grid monitoring system
(static and mobile robot sensors), vehicle monitoring processes
(to avoid accidents and reduce crime rates), and airport surveil-
lance systems (monitoring passengers and their activities). The
model involves data acquisition, data management, and IoT
features. Vindicating the limitations of MWSNs, the system
model comprises four parts: a brain sensor network (BSN),
data processor, secure service-oriented architecture (SSOA),
and data management domain, as shown in Fig. 2. These
four parts work collectively through message exchange and
information retrieval, as delivered through solid and dotted
lines in the proposed architecture (see Fig. 2).

Our IoT-based CPS mobility model is human-centric and
covers two types of sensors: mobile and stationary sensors.
The proposed sensor mobility system makes full use of the
core buffer and data-forwarding paths and ensures private and
secure data-sharing transmission. The stationary sensors are
fixed to monitor sleeping patients, whereas mobile sensors
monitor moving patients to gather data and store it on cloud
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Fig. 2: Framework of the proposed human-centric mobility-aware (SHM) cyber physical system model.

servers. The model uses BSN, a Brain Sensor Network (BSN),
to collect data from the brain with the help of the sensor, the
actuator, and the controller. The BSN consists of embedded
system devices of a physical domain. The brain signals are sent
to a mobile robot by the BSN, where the human-to-machine in-
teraction is realized. These signals are monitored and analyzed
by secure service-oriented architecture (SSOA). The SSOA
results are reported to the base station for the determination of
proper action. Eventually, data are transmitted to a knowledge-
based repository, which stores data and provides information
access so that responsible entities (such as doctors) can check
them from remote places.

As seen in Fig. 2, the brain sensors are attached to the head
of the patient. BSN is a wireless sensor network that obtains
physical and physiological constraints from brain sensors. A
BSN can also be beneficial for transferring information on
several diseases, including diabetes (e.g., measuring insulin
levels in the blood), glaucoma, heart disease, and hypertension.
The benefit of attaching the brain sensor is to monitor the
neurological variations and help to recover cognitive func-
tionalities. The physical domain of the system also includes
actuators, sensors, and controllers. These sensors also report
data to the chosen base station (BS) to play the head node’s
role. The BS transports it to the actuator or controller. Finally,
the robot decides which action should be performed. The
brain signal is converted into a robot signal through this
process, which can be easily stored and analyzed later. After
the human signal has been converted, the data processor works
to evaluate these data. This process is further divided into
three parts: data collection, decision, and action initiation.
In the data collection, data processing, data analysis, data
extraction, data visualization, and temporal processing with
unique information are conducted. Based on the obtained
results, a decision is made to store the information on cloud
servers using semantic information extraction. Additionally,
the initial action is performed by the SSOA model through
the IoT, as shown in Fig. 2.

The SSOA model has four layers: the application layer, the
service layer, the infrastructure layer, and the media layer.

There are two types of servers in the application layer: a
secure authentication server and the role-based management
server. A secure authentication server is a unique authen-
tication process that can protect the user’s authentication.
For instance, if the whole system has only one authenti-
cation server, others will easily access the data. A secure
authentication server can divide users’ data into different
servers, strengthening the entire system’s security. A role-
based management server also helps to keep the system safe
and stable. It can produce a public key to reduce malicious
damage. Role assignment and management can help distribute
secret keys to users. These two servers complement each other
to ensure the security of the SOA.

In the service layer, six types of servers are included, as
shown in the bottom part of Fig. 2. The names of these servers
are: MTC-AAA (machine type communication-authentication,
authorization, and accounting) server, SIS (subscriber infor-
mation server), LLS (location locator server), FIS (feature
integrating server), ERFS (efficient route-finding server), and
MPS (mobile profile server) that holds the registered profiles.
The international mobile subscriber identity (IMSI) with the
external identifier of equipment identifiers (UE) is mapped
by the MTC-AAA server, which also helps with subscriber
information retrieval (SIR) and sends it to the SIS. After
receiving the request from the MTC-AAA, the SIS checks
the valid subscription for legitimate mobile cloud users. If the
user’s identity is confirmed (already stored in SIS), the SIS
sends an affirmative response to the MTC-AAA and the LLS;
otherwise, the SIS refuses the request and sends a negative
message to the MTC-AAA. In the former circumstance, the
LLS is responsible for determining the location of the mobile
cloud user. The ERFS receives an updated location from
the LLS to perform proper routing. Additionally, the MPS
owns the profile of the registered users, which provides the
authentication process at the service layer and stores the QoS
information on specific services and subscribers.

The infrastructure layer consists of a call session control
function (CSCF), which works to generate the boundary be-
tween a mobile cloud user’s IP address and its public identity.
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A CSCF is made up of three components: a proxy-CSCF (PC-
SCF), serving-CSCF (S-CSCF), and an interrogating CSCF
(I-CSCF). This layer supports various services, such as web,
video conference, email, and telephone services. The media
layer includes a media resource broker (MRB) and a media
resource function controller (MRFC), which combine to bring
the best multimedia experience. Additionally, it can make the
whole process smoother. A fast, seamless handoff mobile IPv6
(FSHIPvO) is proposed to solve the handoff packet loss and
latency. The MRB and MRFC are both connected to IPv6 to
ensure that the handoff process is successful. Additionally, the
MRF and DHCP are connected to the MRB. The data man-
agement domain consists of semantic information extraction,
a knowledge-based repository, and cloud servers.

The semantic information extraction system (SIES) is
used to search, analyze, and conclude automatically. In the
proposed CPS system model, after the robot makes decisions,
based on the sensors’ information, these decisions are trans-
mitted to the semantic information extraction system. The
SIES then analyzes the decisions to determine these decisions
and whether they need to be stored in the knowledge-based
repository. For instance, the robot makes decisions according
to the patient’s activity. Then, semantic information extraction
analyzes the concluded decision so that the doctor can quickly
provide his/her feedback. The proposed model offers a visual
method for users to obtain vital information efficiently and
rapidly. The decision information (extracted by the semantic
information extraction process) and initial action (from SSOA)
are stored in the knowledge-based repository, whose structure
makes the system more intelligent. Data in the knowledge-
based repository are hierarchical. Data at the lowest level are
“facts”, in the middle grade are rules, processes” (action),
and at the highest level are “strategies” (decisions).

Cloud-based servers are adopted as part of our proposed
system model due to their ability to provide fast and uninter-
rupted communication in addition to their cost-effectiveness
since enterprises only need to pay for what they use, avoiding
extra expenses to hold and manage IT infrastructure. A cloud
server is used on a physical or virtual infrastructure that
ensures legitimate remote access control of system model
information. They basically guarantee that only the authorized
user, such as doctors, will gain remote access to sensitive
data, i.e., patient data, and can audit them by means of the
Internet or cloud services. The system’s original data are
either structured or unstructured, which are modular by the
knowledge-based repository. All data in different layers are
marked with credibility, which means uncertain data do not
exist. As part of this process, the knowledge-based repository
uploads the credibility data to the cloud servers.

V. PROBLEM FORMULATION

We assume that the SHM model for the CSP is denoted by
the interrelated components and composition rules AR that
are picked from the library (collection) V. Each component
involves the set of attributes that capture both functional,
extrafunctional and nonfunctional properties, for example,
energy efficiency, load balancing, QoS, reliability and end-
to-end delay. Each component consists of a set of terminals

specified with terminal variables 7),. The components can per-
form different functions and play different roles. We focus on
embedded systems, WSNs and service-oriented architectures
that exchange quantities via different flows. Input and output
terminals are used to receive and send the signals. On the other
hand, the composition rules specify the connections that will
be permitted and how terminal variables should be assigned.
To achieve the objectives, each component is characterized
with a specific type 7 and terminal variables including its
functionality (tasks or roles). Thus, the overall performance
of the SHM model for the CSP S¢ can be computed as

Cy
Se=Yy=> {(C):T,}+ (AR)* (1)

where (AR)T is the total number of applied rules from
obtaining the data from the sources to data storage at the cloud
servers, and C; is the total number of the components of the
system.

Definition V.1 A CPS involves a finite set of components
and their interrelated connections and can be specified as a
directed Graph G = (C,I), where each component ¢, € C
and each interrelated connection i,y € I from c, to cy{a:, Yy €
(1,--,1C), |C|} are of cardinality C.

A. Energy constraints

Each component and interrelated connection is associated
with energy. Therefore, the energy function can be expressed
as the sum of all instantiated components and connections of
the CSP given by

IC] IC] |C]

D (CUE+ DD Eryiny @

r=1 r=1 y:l

where E, is the energy of the component (C);, andE7; is the
consumed energy of the connection for forwarding the signals
(or data).

B. Flow constraints

Let us assume that flow originates from the source (hu-
man) and is transferred to cloud servers through intermediate
components and connections. If a component has a specific
role C;" in the functional flow that is neither a source nor
destination component, then, input flow rate F;,, at CY" can
be expressed as

IC]

Fin = 2 10 3

The output flow rate F,u for all of the connections iC;"Ve
for all of the components can be computed as
IC| te]
Fou =Y (F,C7)(i:C57) = > (F.C5™9e) (iC5™Ve)  (4)

x=1 r=1

where F). is the flow rate through the connection.
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C. Workload constraints

Each component in C' is labeled with a 0. If this component
denotes the medical equipment, then the incoming workload
can be bound to avoid overloading. Thus, the workload for the
component ¢; can be determined as:

IC

C; = Z(FTCy) < ay (5)

r=1

D. Timing Constraints

It refers to the time needed to collect the signal from the
source (human) and send it to cloud servers. Let us assume
that each component is characterized by propagation delay
dpr and consider the CSP model, where the delay for the
overflowed components is equal to the amount of delay of
each component. Let Ac be the set of routes from the source
¢’ to cloud servers Cj,; then, the time t. for each route T in
Ace should not exceed the entire time of the CPS system 7™
given by:

IC|
te= dopgr <T*VT € Ac (6)

=1

where d.. is the delay of the component, and B is a binary
variable that assumes a value of 1 if ¢, € T; otherwise, it is
0. Thus, the binary variable can be computed as

I
By = 1iff Y (PL) Vv (Py,) )
y=1

where R;Ty is the all possible connections from the source to

the destination, and P;Tm is the all possible connections from
cloud servers to the source (human).

E. Privacy-preservation constraints

A typical privacy constraint describes the violation of cloud
servers, i.e., the information flow from the source (human)
to cloud servers could be tempered. Thus, we must compute
the privacy violation of the CPS. Let the privacy violation of
the cloud servers be a P,, in which the signal/data temptation
occurs; then, the acquired information at the cloud servers
is not fully confidential. We assume that if any component
is exposed, then it cannot be reliable to maintain privacy,
and adjacent components cannot be trusted. Furthermore, the
privacy violation in different components is self-governing.
Let T; be threat that affects the component c, that leads
to compromised information. Then, privacy preservation no
longer remains for the component. Thus, the privacy violation
in the cloud servers can recursively be determined as

P’v:zr:,I%U m va (8)

1<y <]c|,eyz#0

where ey is the y*" row and z*"* column element of the adja-
cency matrix e of the CPS model. In other words, component
¢, is attacked when either an attack is generated by an outsider
adversary or induced through a malicious insider.

F. QoS Constraints

According to the data storage process in SHM-CPS, the
medical sensing data go through three stages:

> Obtaining signals/data from the source (human) though
BAN and WSNs.

> The initial action is performed by SSOA to process data
through four layers.

> SIES searches, analyzes and concludes data automatically
for making decisions.

Let us consider end-to-end delay that is mostly calculated by
the attainable data rate (DR),,, for a given CPS. The data rate
obtained through MWSN W,,, from P, patient is associated
with the number of allotted components involved in the data
process given by

(DR)yy = Y (Co§)F Vo€ X,y €Y ©)

xy
c; €Ct

where Cog) is associated connection between two compo-
nents.

We observe that the more components are assigned to the
source, the higher the data rate that can be attained. Thus, the
delay for the W, (d) can be calculated as

D
Wen(d) DR,
We assume that the data received through the BAN from the
source (human) are distributed with the associated WSN with
fixed probability. Therefore, the data influx rate in WSN is
flowing successfully.

(10)

VI. DEVELOPMENT PHASES OF THE PROPOSED MODEL

The proposed cyber-physical system mobility model is
developed to serve human demands. The model is tested
to analyze the physical domain and the human domain. In
this model, the data are stored and shared to be accessed
by relevant persons in the data management domain. The
distributed system and mobility component are installed. The
SHM model covers two types of sensors: mobile and stationary
sensors. The stationary sensors are fixed to monitor and control
the static objects, whereas mobile sensors monitor moving
objects to determine their activities and report them to the
base station. The model scales the heterogeneous network in
the physical domain and involves the star topology and the
flat topology. This model consists of the following phases:

> Sensor Advertisements Phase

> Mobile Sensor Recruitment and Selection Phase
> Load-balancing Phase

> Transmission Guaranteed Phase

> Privacy and Data-sharing Phase

A. Sensor Advertisement Phase

This module works differently than an IP network because
an IP network is used to create an agent discovery phase
for a foreign agent and the home agent. Mobile sensors
use advertisements to confirm whether they are coupled to
their respective home networks or foreign networks. This
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advertisement process helps sensors advertise their lifetime
within the network. The lifetime of the sensors in WSNs is
associated with time constraints, so it is more important to
determine the remaining lifetime of the sensors (RLS). Let
us assume that the sensors are homogeneous and possess the
same physical capability as communication and sensing power.

The location of the sensor is stationary or mobile. The
stationary location of sensors and actuators is only used for
monitoring static objects (patients). Mobile sensors and mobile
actuators are installed for monitoring the movable objects
(moving patients) whose performance is reported to the base
station. The mobility of mobile sensors is controllable. The
sensors can communicate within the communication range
using a multihop process. The remaining energy of the sensors
(RES) defines the RLS. Moreover, each sensor’s remaining
lifetime is advertised when competing for particular cycles to
receive and send messages. The packets are retransmitted if the
WSN is unstable. Thus, it focuses on the loss rate and link
quality before advertising each sensor’s lifetime. Therefore,
the proposed model can define the RLSs after determining the
consumed energy for message transmission. Thus, the RLS
ratio of the remaining energy to each set of initial sensor
powers can be calculated as follows:

STC i(Ep) X N(Ep) X B(Ep) X Eas X xR an
where R; is the remaining lifetime of the %k sensor, F; is
the initial energy of the sensor, T¢ is the transmission cycle
for monitoring the events, F, is the amount of consumed
energy of each sensor device once it receives each packet,
N(E,) is the number of packets each sensor device receives
during communication, 5(E,) is the number of retransmitted
packets, Fas is the amount of energy consumed by each
sensor device for a single received packet, w is the number
of reply messages sent to each sensor device, and R is the
number of retransmissions experienced by each sensor device.

R =1-

B. Mobile Sensor Recruitment and Selection Phase

The goal of recruiting the sensor device and selecting the
proper actuator is to improve throughput and reduce latency.
The recruitment process is applied once the actuator (cluster
head sensor) does not find enough sensors in its cluster
domain. As a result, the actuator initiates the recruitment
request from another actuator. First, the actuator checks its
zone areas by sending the recruitment request. If the actuator
does not find the required sensors in its neighborhood, it broad-
casts the multicasting message for recruitment inquiry. When
the actuator reaches the sensor devices from its nonadjacent
cluster, the pipelining-based (it allows different practical units
of a system to work synchronously) approach reduces the
latency that a long distance could cause.

Furthermore, the recruiting actuator first recruits the sensors
from its neighbor and then recruits them from nonadjacent
domains. The model determines the recruitment processes as
follows. Let us assume that the actuator recruits sensor z from
other cluster domains. The actuator is a static sensor that is
part of the monitoring building where data about the person
are gathered; thus, every monitoring point M, (an area close to

the persons being monitored) requires sensors via recruitment.
The probability P, of a sensing requirement by the recruited
sensor is given by

n

/ fz(z X Nyee, Coaj)ON (12)

N,
where NN, is the recruited sensor, N,.. is the number of
recruited sensors, and C,q; is the adjacent cluster domain or
nonadjacent cluster domain. The probability of a monitoring
point that can be determined when an action is performed at
another monitoring point M, is Op1,,. Thus, the probability
of having to monitor point p so that the data can be sensed
using the recruited sensor N, is determined as

p=0o0 n
Nr(d) =1- Z p(l - (Bpl,p/ fL(N
» . N (13)
XNrec : Cadj)az(l - Zf(l - 81)0-271))))
t=0

where 0p, , is the distance of the recruited sensor from
its domain to the recruiting sensor’s domain and J,, p, is
the distance of the recruited sensor from the recruitment
sensor’s domain to its domain. Once the recruited sensor
starts to sense the data, if the amount of data is more than
the sensing capability of the deployed and recruited sensors,
then the recruiting actuator A,... initiates the additional sensor
recruitment process from the adjacent and nonadjacent cluster
domains given by
p=0oC

Ape=1- J[ Nx1- Zp(l—(apm/mfm .

N,.€R 4
(N X Nyec, Cadj)aN(l - Z:L:O t(l - 8;007111))))

Following the additional sensor recruitment process, we ob-
tain a new vector P/ that demonstrates the probability that
monitoring point M, requires being covered by recruiting the
additional sensor devices.

SR i A <P as)
b= 0, otherwise.

where A,.. is the recruiting actuator.

The placement of the actuators is important and could affect
the performance and coverage. Thus, the actors should cover
all the deployed sensors. As a result, a midpoint algorithm
is applied to balance the proper placement of the sensors.
Therefore, the optimal number of actuators A,,; is given by

Ao\ B2 5\ 22}

where K, is the number of sensors; F'S. is the amplifier
energy of free space; M P, is the multipath energy; A, is the
network area; and D,,, is the mean distance from the actor
to the base station. Algorithm 1 separates the optimal number
of actuators concerning the clusters. An actuator heads each
cluster. The actuator broadcasts the packet to the sensors to
form the cluster. The packet comprises the actuator’s location
and identity. On receipt of the packet, the sensor device
acknowledges its identity and residual energy. When a sensor

(16)
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Algorithm 1 Determine the optimal actuator average midpoint

Input: 7 in
Output: r;;, out
1. Imitialization: ~,: Origin; ~.: Each point; r: Distance;
Tiin: Initial centroid distance; r,: Sorting distance
Determine r between v, & 7.
Repeat step 2 for all .
Set r into 7,
if s = Tiin then
Set r in
else if s # r;;, then
Go to step 4
end if

device receives a cluster formation message from more than
one actuator, the sensor node must join the nearest actuator.
However, this cluster formation association can increase the
path length because it could be possible that the actuator is
located far from the base station (BS). Thus, to avoid back
transmissions, an average midpoint of the actuator should be
determined. Thus, algorithm 1 is employed to determine the
actuator that should be closer to the base station (BS) to avoid
data loss.

Moreover, the sensor device collects information from an
event that should not be lost and needs to be forwarded to the
correct actuator (optimized actuator). In step 1, the variables
are initialized. The input and output are described at the
beginning of the algorithm. In step 2, the distance is measured
from the original point to each point. Step 3 continues the
process until the distance is measured to all of the points. Steps
4-6 explain the sorting distance in ascending order and check
if a sorting distance is equal to the initial centroid distance.
Then, the initial centroid distance is set as a final distance
that is near the closest actuator. Steps 7-8 demonstrate that
if a sorting distance is not the initial centroid distance, then
the distance sorting process is reperformed, as given in step
4. Algorithm 1 leverages the linear features so that the time
complexity of the algorithm in the best case is O(1) and worst
case is O(logn).

In existing approaches, a sensor device receives a cluster
formation message from more than one actor. Only the nearest
actuator is chosen to join based on the location inserted in the
packet. However, this cluster formation association increases
the path length because the actuator might be located far from
the base station. Thus, to avoid back transmissions, an average
midpoint of the optimal actuator algorithm is useful. Suppose
the sensors obtain a higher received signal strength indicator
(RSSI) from the base station rather than from the actuator.
In that case, the sensor device should send data to the base
station rather than the actuator.

Similarly, the sensor can calculate the distance between
itself and the base station, and determine its midpoint. Based
on the midpoint, the sensor decides to send the data either
to the actuator or the base station, as represented in Fig. 3.
The figure shows that the sensor relates to Actuator-1 due to
receiving a higher signal strength, but Actuator-1 is far from
the base station compared to Actuator-2. As a result, additional
energy is consumed, and the delay is extended. Thus, the

Mid-Point

Actuator-1 Actuator-2

i~ |-

Base Station

Fig. 3: Average midpoint of the optimal actuator.

r[Connective LayerJi[SPl\/ls J i[SensorsJ |
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\ X : J

Fig. 4: Three layers of the SPM model.

proposed algorithm is applied to determine the midpoint to
reduce the delay and improve energy efficiency. The SPM
(sensor pervasive mobility) model adding a layer of mobile
sensors (patients) between the accessing points and the sensor
layers is shown in Fig. 4.

> Sensor Layer: offers communication and can transmit
data within a short range. Among the three layers, the
sensor layer has the most limited resources. Thus, the
work of the sensors is minimized.

> SPM Layers: mobile entities (such as patients) can com-
municate with sensors and access points and transfer
data between them. SPMs do not communicate with each
other.

> Connective Layer: servers with access to the Internet with
strengthened power, storage, and processing capabilities.

This framework can be placed on one device depending on
the scenarios, which can improve its applicability. The layers
work as receivers for the data collected by the SPM and stored
in cloud servers.

For instance, a sensor can be attached to a patient where
the sensor and SPM layers are mapped to the same device.
Similarly, if SPMs can be connected to the Internet, they can
also function as access points with the combination between
the SPM and the access point layers. Then, we introduce the
mobility of the base station. First, we place the base station at
a location with the maximum energy efficiency, and then we
can prove that the lifetime of the network is minimal when a
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Fig. 5: The network lifetime load distribution of the BS position. (a) Optimal BS position proof. (b) Calculation of the load distribution while k > r. (c)
Calculation of the load distribution while £ < 7. (d) Closed expression model &£ < 7.

BS is at this location.

Claim 1 In terms of energy savings for data collection, the
center of the circle Cog; is the best base station.

Proof 1 Place the base station at D (xp,yp), and then select
a minimum area A at the center of (x,y) when measuring
dx x dy, as shown in Fig. 5(a).

The Euclidean distance E; is given by

Ea=\/(x —20)* + (s — yo)* (17

Because of the assumption of the short-path routing protocol
given in [11], the length from A to D is approximately equal
to Eg4. Thus, the energy consumption E, by transmitting data
from A to D can be calculated as

E.=zd¢ X tw x Ey (18)

where tw is the amount of data produced at time ¢, and zd¢
is the energy used by sensor z to forward the data from A to
D per unit. The total energy consumption F; that transmits A
to D is given by

E, = // ((quS X tw) X Ed>dx dy

19)

Hence, the minimized total consumed energy FE, can be
calculated as

+R  p+(R—y)
BEf = / / ((qua X tw) X Ed)da: dy
—r J(r-y)

where —R and +R are the minimum to maximum region,
respectively. By substituting the value of E; we will have

i ff((lf__j’)) 2d¢ X tw X \/(fv —ap)* + (y — yp)* x dz dy

By simplification and derivation, we obtain

E; =

B = [(zdgb x tw) x %m# (21% oy o+ R2>] (20)

when xp = yp = 0; thus, we can determine the minimum
value at which the BS stays at the center of circle Co.;. We
demonstrate that even at this best location, the attribution
between the load sensors is still lacking. Given a sensor
z at a distance k from the base station D (also Co.;), as
shown in Fig. 5(b), this sensor’s average geographical load is
proportional to (AIA—J:A”.

All branches from Al and A2 must pass the sensors in
A2, forming pressure on these sensors. Therefore, the geo-

graphical average power of the sensor data flow in A2 can
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be transformed to the intensity of pressure Iz of the sensor.
where wug is the amount of data. The average load is inversely
proportional to the distance between the sensors to the selected
BS, which means that when the distance becomes shorter, the
load increases dramatically. In other words, the sensors around
the BS consume more energy than other sensors because they
must send a large amount of data flow to maintain balance,
even when the number is limited. Therefore, the lifetime of the
network depends on the lifetime of the sensors. Additionally,
the BS cannot continue collecting data when these sensors
run out of power, although most sensors are still alive. Last,
according to Fig. 5(c), the load remains the same while the
location of the BS changes. In conclusion, the center of the
circle is the best location in terms of energy efficacy.

Intuitively, a mobile BS can assign the role of "hot spots”
(the sensors around the base station) over time so that the
load is averaged. We prove that this hypothesis is correct in
this section. As the data collection process continues anywhere
in the BS, (1) the worst-case latency increases whenever the
BS leaves the center (compared to a central static BS, its top
doubles), and (2) the moving speed is not necessary for the
movement strategy.

Assuming that the BS’s movement always maintains the
same frequency, if we continue using the model above, it
results in an extremely complicated integral that can only be
calculated numerically and cannot provide adequate system
performance. To achieve a closed expression, we simplify the
model. Let us consider the power consumption of any sensor z,
which is at a distance k from the center, and the BS’s position
is D. The forwarding load from a small sector As is in charge
of sensor z (geographical average) when the BS is at D on the
segment of 2@, as Fig. 5(d) shows. The line zD intersects the
circle at P and (), and Ajz is centered around line nA with an
angle of . To facilitate calculation, we consider that D stays
in another sector A4, centered around line z() with an angle
of Ao. When Ao — 0, D is on the line zQ).

Since D can be everywhere within the circle, we divide D
into a disjoint sector (Ag) that should be written as U, A] =
D. Then, the average load of the sensor L, is given by

2w
L.=) L:l{ pipag) * Jr{DinAT}
a=0

AO’
L.=) L.ASt 4
27 2
1 2 2|ZQ‘ Ao
R E 2|zP| ot —

where Ao takes a discrete value of n. Thus, n € Z+. Jr(Ag)
that calculates the occupying frequency depends on the as-
sumption that the BS is moving at the same frequency. Because
AzPI and AzJQ are similar, [2P x [2Q|*= (R? — k?)2. Let
Ao — 0, and the formula becomes an integral over [0, 27]:
L, =

g

/2” (R? — K?)?0tw
=0 4w R?

The result shows that in the case of a mobile BS, the maximum
average load is much lower, which prolongs the network
lifetime.

C. Load-Balancing Phase

Once the actuator completes the sensors’ borrowing process,
then the base station initiates its execution process. The base
station sends the query to the exciting area using the shortest
path described in [23]. The sensor first receives the query
request that sets its priority = ¢ and then forwards the query
process inside the region to let other sensors know that the base
station is ready to communicate. The query-forwarding sensor
becomes a sensing sensor, and the query-receiving sensors
forward the data to it. This process helps to share the actuator’s
load; otherwise, the actuator can reduce its energy after some
specific time. Initially, a small tree is constructed between
the query-forwarding sensor and the other queried region
sensors. Thus, the data sensed by the three sensor members
are forwarded to the query-forwarding sensor device. Finally,
the query-forwarding sensor device delivers the collected data
to the actuator or BS depending on the distance. Let us assume
that inside the region, a total number of K sensors exist that
can be explained as follows.

K:(klak27k37"'>k’n,) (21)

The set of K sensors has the coordinates (a;, b;), where 1 <
7 < K. We assume that the query-forwarding sensor sends
the query along the y-axis. Assume that the forwarded query
is broadcast in the order of ¢1,q2, g3, - - - ¢., Where we have
1y; <y; + 1. Thus, the forwarded query can be explained as

1
\/(aj—aj+1)2+(bj—bj+1)2

where (a;,b;) are the coordinates of each sensor device inside
the region, ¢ is the sensor that sets the priority because it
receives a query from the actuator, K = ki, ks, k3, -+, k, 1sa
set of sensors that receives a query message. We also assume
that the queries start at gs(as,bs) and end at g.(ac,b.) as
q1,92,43, -, Gn 1s the set of queries, where ¢, is the end of
the query and ¢, is the start of the query.

D. Transmission Guaranteed Phase

This phase is more critical because it includes two types
of sensors: static and mobile sensors. The goal of this phase
is to ensure contention-free transmission. The heterogeneous
infrastructure used for static objects (humans who are not
moving) is reliable and supports the improved throughput even
during the mobility of sensors. Our model implements error-
free communication by handling the problem of RSSI. The
RSSI faces abnormal fluctuation and introduces large errors in
a multifaceted and variable indoor environment. As a result,
it causes a large error in the adaptation that leads to weak
communication.

To handle this problem, a nonmetric multidimensional scal-
ing (NMS) function is employed. The NMS helps to map the
accurate relative locations of the objects. The dissimilarity
matrix has also been created, and associated coordinates of
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the IoT devices in the low-dimensional spaces are acquired.
Thus, the distribution of RSSI at diverse transmission levels
can efficiently be handled and can be adapted according to
environmental changes. Furthermore, multidimensional scal-
ing possesses strong fault tolerance, so the technology can
easily be incorporated into indoor RSSI positioning, which
not only provides error-free communication but also increases
the anti-jamming capability of the positioning and obtains a
better positioning impact. Furthermore, an optimized midpoint
is used that provides a closer receiving point to the trans-
mission point, which leads to stronger signals that have a
positive impact on the communication. This phase involves
the RSSI and samples the pairs of transmission power levels
using a curve-fitting approach [24]. To obtain these samples,
each sensor device transmits a group of beacon messages at
different power intensities. Furthermore, the neighbor of each
sensor listens to the RSSI vectors and returns that value. Let
us assume that matrix Z involves a set of RSSI vectors Z7.
Each neighbor hears the RSSI vectors that can be explained
as follows:

{217227Z3a"'7Z’n}n (23)

It can be simplified as:

Zj={z},23,23,---, 2"} (24

30 %50 %5 J

Equation 25 shows the RSSI vector for the neighbor sensors
7, in which Z]’?' is the RSSI value that is measured at sensor j
conforming to the beacon transmitted by power level (Apy).
We apply a linear function to describe the correlation between
RSSI and the transmission power on a pairwise basis. The
reason for using linear function is to deploy the constant
connection between components of the CPS and limit data
transmission only to permitted connections. The linear func-
tions help to reduce approximation error and computational
complexity. Furthermore, linear functions provide constancy
between RSSI and transmission power because the proposed
CPS does not require rapid inconsistent change.
zj(Apk) = z; X Apy +y; (25)

We further apply the least square approximation formulation,
which requires little computational overhead that can easily
be adjusted in the sensor device. Based on the sample vectors,
the coefficients z; and y; can be determined to minimize P?.

o0

P =3 %(8p) = (Z))°

J

(26)

The features of the ranking model have been used for
determining the coefficients x; and y;, which detect the errors
in RSSI. The value of the RSSI determines whether the nature
of the signal is poor or strong. Thus, the ranking model
retrieves strong signals from the RSSI and drops the weak
signals. Therefore, strong signals are used to send the data
successfully. In contrast, the poor signals of the RSSI that
cause the error can be avoided in this way. The ranking model

sets the threshold values for the coefficients x; and y; to select
the signal with a higher strength.

1

EﬁJ N Yoo (Ape)® = iy (Apx)?

N N N N
x[ ZEN T (Ap)* =D (Ap) DY (Apr)
k=0 =0 =3

k=0

N
~ZINY (Apy) 2 Z (Apx) Z 2]
k=0 k=0

k=0

27

where j is the neighbor sensor, P2 is the vector sample, Apy,
is the power level, Zj" is the RSSI value measured at sensor
j and Z; is the RSSI vector heard by the neighbor sensors.
Equation 28 creates an initial model that is used to handle
the RSSI. Furthermore, continuous updating is required when
changing the environment.

E. Privacy and Data-sharing Phase

This phase provides a secure method for sharing the data
and delivery process among the sensors. Let us assume the
sensor shares Ap out of the forwarded data, such that Ad are
required blocks to regenerate the data. Thus, each sensor is
loaded with the same Ap x Ad matrix V' = [z;, g], where V/
should be selected in such a way that each combination of Ad
columns should make an invertible Ao x Ad matrix. Note that
our scheme does not depend on Vs privacy. Hence, the sensors
may insert it, regardless of exposing compromises. When a
sensing event is triggered, sensor k collects its readings in
a core buffer of length Ad. Thus, the block reading can be
expressed as follows:

B, = [bi,1,bk,2, 0,3, - bi,Ad) (28)

When the sensor’s buffer is full, then the sensor computes Ap
diverse shares of unitary length that are forwarded along the
paths. These shares consist of different elements that can be
expressed as follows:

S = [bi,1,bk,2, 06,3, -, bi,ad] X x4, q] (29)

When the actuator receives Ap shares, it is in the posi-
tion of regenerating the data. Let us assume it receives
Sk = [Sk.q1, Sk.q2> Sk,q3: " * * » Sk.gad] Thus, the reading can be
obtained by resolving Equation 30.

br, Lz, 1 + by, 222, g2 + by, 323, q3 + -+
+bg, Adxag, ql = Sk,ql

bk, 1x1,qo + bg, 222, g2 + bk, 33,93+ - - -
‘I'bk: AdxAd,,(ﬂ = Sk,q2

bk, 121, q3 + by, 222, g2 + by, 3x3, 93 + -+

S, =
+by, Adzag, g3 = Sk g3

(30)

bk‘7 12y, qu + bk-, 213, qu + bk‘7 3, qu +e
+b, Adrag, gAd = sk gAd

If matrix V' is chosen, then no known method exists to
regenerate the parts of the original data from the ¢ —1 samples,
as this privacy-aware sharing also helps for data aggregation.
Given messages Amyi,q and Amys,q on path g, then the
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Fig. 6: A proposed prototype for the SHM cyber-physical system model.

aggregator sensor accumulates as Amyi,q + Amyo,q. The
given messages can be expressed in the following equations.
Ad
Ampr, g+ Amyo,q = Z (bkl,i ~+ bk, t + bis, 7,) z;,q (31)
i=0
Upon receipt of Ad messages, the actuator regenerates each
task as follows:

(32)
i=0

where ¢ is the decision variable, Ay, is the task regenerated

by the actuator, and T'A is the task processor.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

This section explains the experimental results regarding the
experimental setup, performance metrics, and discussion of the
results.

A. Experimental setup and model prototype

The proposed SHM consist of secure service-oriented archi-
tecture (SSOA), brain sensor network (BSN), cloud services,
and the data management domain. A real-time prototype is
developed and tested in the neurological surgery ward in
the RSCN in Nur-Sultan, Kazakhstan, where patients of the
ward have been monitored, and their important signs and
physical and physiological constraints are recorded. Many
NeuroSky headsets have been used, which provide multiple
channels of electroencephalogram (EEG) recordings from the
dry electrode positioned at the ear lobe. NeuroSky contains
ThinkGear technology that allows the headset to interface with
the wearers’ brainwaves, and its sensor touches the forehead
and reference points situated on an ear pad. Thus, the onboard
chip keeps all data, as recorded data are used to evaluate the
patients’ health conditions.

The primary purpose of this prototype is to monitor con-
tinuously moving and static patients as a prototype to mon-
itor the activities of doctors and other staff by embedding

additional microprocessors in the real hardware using Filed
programmable Gate Arrays (FPGAs). Figs 6 and 7, show a
proof of concept of the prototype of the proposed Secure
SHM cyber physical system model and the an implementation
instance of the prototype; respectively. As seen in the figures,
the prototype involves hardware and software features. The
hardware part is based on a 1-field-programmable gate-array
(FPGA)-based real-time clock (RTC) that provides flexible
parallelism; 2-microcontrollers are embedded in the FPGA
to obtain energy efficiency and reusability. The interface has
been developed for FPGA to maintain parallelism based on
EVI12DS460A and comprises the dual-channel, 14-bit, 9-
GSPS, and Arria V GZ from Intel. The static robot helps
convert the brain signals into a robot signal using multiple
linear regression to support a deep neural network model,
which can be later easily stored and analyzed. The naive Bayes
algorithm was used for stress classification, which takes less
computational time than multilayer perceptron and support
vector machine algorithms. On the other hand, the mobile
robot sensor helps determine the mobility of the proposed
SHM.

The mobility-based model is programmed in C++ language
to monitor moving neuro patients. The model is designed and
implemented to meet real-world requirements using the Java
platform. A greater focus is placed on SSOA to maintain
privacy and data-sharing processes. For better security and
privacy, the model the xfDNN library is used to obtain the
knowledge-based repository features for data storage. Also,
xDNN processing engine is used with a machine learning
suite to store the Amazon Elastic Compute Cloud (EC2) data
that come through a knowledge-based repository decision. The
distance between the neurological ward and the management
office (where systems are set up to observe the patients’
information) is approximately 100 meters. Thus, we physically
installed a maximum of 50 flexible sensor devices. The reason
behind this philosophy is to determine and justify a scientific
contribution of different parameters (e.g., average throughput,
hop-by-hop delay, energy consumption, and reliability). Fur-
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Fig. 7: Implementation steps of the proposed SHM cyber physical system prototype.

thermore, testing processes have also been conducted with
other methods over the next four days: IntruMine [25], a
cyber-physical security infrastructure (CPSI) [26], a healthcare
cyber-physical system (HCPS) [27], and a virtual heart model
(VHM) [11]. The received data are shared with the neurologi-
cal specialist of RSCN to confirm the validity of the obtained
data.

Due to patient privacy, the real-time testing environment,
including pictures of patients, staff, doctors, and attendants, is
not shared. However, the working prototype is given in Fig. 7.
In the proposed model, the data collection process continued
for 36 minutes. The collection data time is much longer during
mobility, and overhead is expected due to noise. Thus, features
of [28, 29, 30] algorithms are used to remove the noise from
the speech/data to avoid overhead. The normal movements and
reactions of the static and moving neurosurgical patients were
measured, who were experiencing treatment for epilepsy, and
they could listen to continuous communication. The patients
mainly carried out breathing and muscle movements to the
sense of touch and absorption. The activities were not painful
but sometimes seemed slightly unpleasant. The position of the
robot was set as mobile and static. The robot consists of a
microcontroller with an ARM Cortex-M4 processor and 12
identical smart ports. It also uses a Backlit LCD for performing
simple operations. The mobile sensor robots concurrently
communicate with the controller wirelessly. Each mobile robot
can talk to a maximum of 12 devices.

B. Performance Metrics

Performance metrics are defined as figures and data repre-
sentative of SHM model abilities and overall reliability. Based
on the obtained data, MATLAB is just used for graph genera-
tion to view the measurements of the following parameters as
a means of comparison:

> Average Throughput

> Hop-by-Hop Delay

> Sensors’ Lifetime

> Energy Consumption

> Reliability

1) Throughput performance: The throughput is used to
record the number of network data transmissions in a particular
period. A much higher throughput creates higher efficiency,
which means a smaller delay in the network data transmission,
faster transmission speed, and more sensitivity to external
influences. Thus, the performance of the whole network im-
proves. Figs. 8(a) and 8(b) indicate the trade-off between the
average throughput and the testing time, without malicious
sensors and 8(b) with 5% of malicious sensors activated,
respectively. As seen in Fig. 8(a), the average throughput
increases, and the system becomes more efficient and stable.
We monitored the patients using static sensors and with 20% of
mobile sensor robots activated. We conclude that the average
throughput increased in the SHM model. According to the
definition of throughput, the formula for throughput is defined
as follows.

Suppose that there are m sensors in this system, the density
of sensors is p, and the single-hop delay of each sensor in
many cases is (557“, as follows:

1)
T,=> L
1=0

where 7{ represents the amount of data sent from the sensor
device to the actuator. Additionally, the sum of data that one
sensor receives and generates equals all the data it sends. It
only records the data sent because the amount of data received
and sent is the same. The number of data transmissions per
second can be represented as the quotient of the amount of
the data and delay.

The throughput of the numbers of sensors in the WSN
and the number of data transmissions of the whole system

Y

(33)

iS]
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Fig. 8: (a) and (b) show the average throughput performance: (a) without malicious sensors, (b) with 5% malicious sensors; (c) and (d) show the positive

correlation between the number of hops and the hop-by-hop delay.

are equivalent in unit time. Due to the randomness of the
distribution in the sensor network, the throughput can be
approximately represented by the average throughput of a
single sensor device and the number of sensors participating
in the entire network. Let p,, be a positive real number that
denotes the minimum requirement of mobile/static sensor node
k. The long-term throughput TE of node k using random

2,11)

variable w7 (k) with employed policy (9£ can be determined

as

T) = lim
I.—c0

IV
1 & P
T D wik)- 58 X (DR)ay x e (34)
1

=1

I, is the interference constraint related to the channel, (DR).,,
is the transmitted data rate, and ¢; is the total time the node
transmits and receives data.

We created the malicious nodes in Fig. 8(b), which are only
proficient in launching wormhole and HELLO flood attacks.
The transmission is considered malicious if the conforming
message’s geographical location is made up or communicated
with different power ranges.

Thus, we set 5% of sensors as malicious based on dissimilar
power ranges.A sensor is considered malicious if a malicious
transmission is broadcast. As a result, upon receiving a mes-
sage, the sensor is classified as malicious in the system. The

ACC RMS sensor consists of a built-in RSSI function that
is activated. It produces an analog output signal at its pin
that is inversely proportional to the input signal range. An
analog/digital converter (A/DC) is used to measure the voltage
from the pin. Received signal strengths R for antenna - ¢’
on sensor node k for transmission 7'r can be determined as

Rss = g(e) + Tpow + Rum

9(0) = (< (kT7) w, + (H0)) A

35)

Substituting the value of g(6):
Ry = (< (5.T7) =y + (1)) A + Ty + R (36)

where ¢g(0) is the gain (dB) of the sensor’s antenna at the
angle 0, T}, is the transmission power, R,,, is the model of
the random variability to cope with recurring measurements at
different locations, and u,, is an unidentified placement of the
receiving node.

2) Hop-by-Hop Delay: In networking, the hop-by-hop de-
lay refers to the amount of time that the packet takes to
reach the node (hop) and the time taken by the packet to
leave the node. Figs. 8(c) and 8(d) represent the trade-off
between the number of hops and the hop-by-hop delay. As the
number of hops increases, the hop-by-hop delay increases. We
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Fig. 9: (a) and (b) show the lifetime of the network with sensors/actuators for the proposed SHM model and competing protocols. (c) and (d) show the
reliability of the SHM model and other contending protocols: (¢) without and (d) with 5% malicious sensors.

tested both static and mobility-aware situations for SHM and
other contending models. We used a similar situation for our
proposed and other contending models and observed that the
hop-by-hop delay is the lowest in SHM. The standard average
delay A4 for n hops can be obtained as follows:

Ay :itixtil
C &0y 2

where 14 is the small time slot reserved either for listening
or sleeping of the node, and Cy; is the length of the duty
cycle time for a sensor device. Each sensor device sends the
preamble pr before transmitting the data (frames). Thus, each
sensor device requires P,, preamble sensors that are forwarded
to hyoy total number of hops. Thus, the sensor device requires
a total number of slots S;.;.

(37)

ts tsi
Age = (n— Dpr(ty) x ?l + Py (tg) % 7’

(38)
where (n—1) is the time for the first slot, ¢ is the small time
slot reserved either for listening or sleeping of the node, and
Cy; is the length of the duty cycle time for a sensor device.
3) Sensors’ Lifetime: Figs. 9(a) and 9(b) indicate the trade-
off between the number of sensors/actuators and the sen-
sors/actuators’ lifetime. The lifetime of the sensors should

increase with an increase in the number of sensors for perfor-
mance improvement. These experiments were performed on
the IntruMine, CPSI, HCPS, VHM, and SHM models using a
similar number of sensors and setup (maximum 50 sensors).
We compared these results with the performance of the SHM
model in static and mobility-aware situations. The testing re-
sults with the static sensors depicted in Fig. 9(a) show a better
performance of the SHM model than the other four models.
Additionally, our proposed model is compatible with mobile
sensors. The results demonstrated that our proposed SHM
model outperforms the contending protocols. The probabilistic
average lifetime of the proposed SHM model is estimated
at 441 days. In comparison, other competing models show
a probabilistic average lifetime of 335-338 days with static
sensors, as shown in Fig. 9(a).

In Fig. 9(b), 10% of mobile sensor robots have been
used that affect the lifetime. The results demonstrated that
the proposed SHM model has a 439-day lifetime, whereas
other contending models show 431- to 435-day lifetimes.
This finding demonstrates that our proposed approach reduced
the lifetime by two days with 10% of mobile sensor robots
activated, whereas the competing models reduced the lifetime
by approximately three days. Therefore, the results confirm
our proposed model’s effectiveness and show its advantage
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Fig. 10: (a) and (b) show the energy consumption with 10% and 20% mobile robot sensors for the SHM model and other competing models. (c) shows the
average energy consumption of the SHM model and other contending models during different time periods with static sensors.

over other contending models in static and mobility-aware
situations.

4) Reliability: Reliability refers to the model’s capability to
continually perform its required function on demand without
deterioration or failure. Fig. 9(c) shows the SHM model’s reli-
ability and other competing models without malicious sensors
and with 5% of malicious sensors activated (an installed mali-
cious model that enforces the sensors to behave disorderly). As
shown in the figure, the SHM model is more reliable than other
contending models. The SHM model shows 99.99% reliability
compared to other contending models, which possess 99.69-
99.8% reliability. When 5% of malicious sensors are activated,
the proposed model’s reliability decreases slightly to 99.95%,
whereas other competing models have 99.3-99.44% reliability,
as shown in Fig. 9(d).

The results demonstrate that the overall performance of the
proposed SHM model is more reliable than other contending
models. We assume that the total number of successful data
Sq:+ (successful storage of the data from source to cloud
servers) is effectively stored. Thus, some data are not attacked
and are considered protected data Py, and some data become
victims by the attacker and are considered attack data Agy;.
Thus, the reliability ratio R, of the SHM model can be
obtained as:

{1

where Y is the sum, and Vj; is the variation in all the data.
The results demonstrate that the proposed model is highly
reliable when activating mobile sensors.

R (Sat)

o _ > Pat < Ags
ratio Sdt 1

Sat — 1

xVa} (9

C. Energy Consumption

Energy consumption refers to the energy that is consumed
by IoT devices to accomplish tasks and actions. Figs. 10(a) and
10(b) demonstrate the average energy consumption with 10%
and 20% of mobile robot sensors activated. The results indicate
that the competing models consumed more energy as the
interval increased than the SHM model. When 10% of mobile
robot sensors were activated to check the moving patients,

the SHM model consumed 0.75 joules, and other models con-
sumed approximately 0.81-0.91 joules, as shown in Fig. 10(a).
The results confirm that our proposed SHM model consumed
7.1-17.2% less energy. Similarly, when 20% of mobile robot
sensors were activated, the SHM model consumed 0.755
joules, while contending models consumed 0.91-0.98 joules,
as shown in Fig. 10(b). The energy consumption is of high
significance for any model to ensure that the model performs
effectively. The experimental results show the effectiveness of
static and mobile sensor robots. The testing process with static
sensors/actuators depicted in Fig. 10(c) explicitly indicates the
better performance of the SHM model, as our proposed SHM
model consumed 0.72 joules of energy throughout the testing
process. However, the contending protocols consumed 0.75-
0.83 joules during the same time. This result demonstrates that
our proposed SHM model consumed 3.2- 11.4% less energy
with static sensors/actuators.

D. Analytical comparison

This subsection provides an analytical comparison between
the performance and efficiency of the proposed model and
the competing state-of-the-art models and the EEE 802.15.4
wireless standard protocol. Table II and Table III summarize
the comparison results between the proposed SHM model and
other models. The two tables clearly show that our proposed
SHM model exhibits a better performance with an increased
number of static and mobile sensors than the competing model.

This confirms the effectiveness of the proposed SHM over
other contending models. Most of the existing CPS only use
the standard IEEE 802.15.4 [31], but the performance of the
existing CPS is affected due to use of the IEEE 802.15.4
standard protocol. The reason for the performance of the
existing CPS is that the sensor nodes in the IEEE 802.15.4
standard make a query process that takes additional overhead.

Thus, the data admission rate D,, can be calculated as
Dar = Darfs(Msr - Rsam) + Darfl(ﬂ'{lr - Rsam) (40)

where D, ¢ is the data admission rate factor in the case of the
short-term query miss ratio, Dg,f; is the data admission rate
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TABLE II: Performance Comparison of the proposed approach with competing approaches.

Approach Average Throughput Hop-by-hop delay sensors Lifetime Energy Consumption Reliability
without with Maximum | Maximum . 10% . 10% 20% . with 5%
Malicious Malicious 18 Hops 27 Hops Sl | obile statie mobile mobile K]:ﬂziu(:us malicious
IntruMine | 432.0Kb/Sec | 428.2Kb/Sec | 0.062ms 0.085ms 436 | 431 0.081Joules | 0.090Joules | 0.094Joules | 99.69% 99.43%
CPSI 436.2Kb/Sec | 432.1Kb/Sec | 0.067ms 0.093ms 435 | 432 0.075Joules | 0.087Joules | 0.091Joules | 99.80% 99.30%
HCPS 433.1Kb/Sec | 424.3Kb/Sec | 0.07ms 0.096ms 437 | 433 0.079Joules | 0.082Joules | 0.098Joules | 99.72% 99.37%
VHM 437.15Kb/Sec | 432.12Kb/Sec| 0.066ms 0.093ms 438 | 435 0.083Joules | 0.090Joules | 0.097Joules | 99.72% 99.44%
SHM 445.02Kb/Sec| 442.3Kb/Sec | 0.057ms 0.077ms 441 | 439 0.072Joules | 0.075Joules | 0.0755Joules 99.99% 99.95%
TABLE III: Performance Comparison of the proposed approach with competing approaches.
Average Reduction (%) | Average Increase | Average Life time (%) Addmonal. Energy Addluonal. Energy Reliability (%)
Approaches in Throughput due time (%) with decreased due consumption (%.) consumption (%.) decreased due to
to Malicious Nodes increase in Hops to mobility due to 10% Mobile| due to 20% Mobile Malicious Sensors
Robot Sensors Robot Sensors
IntruMine 0.94% 37.09% 1.14% 11.11% 17.28% 0.26%
CPSI 0.94% 38.80% 0.68% 16% 21.33% 0.50%
HCPS 2.03% 37.14% 0.92% 3.80% 24.05% 0.35%
VHM 1.15% 40.90% 0.68% 8.43% 16.87% 0.28%
SHM 0.61% 35.08% 0.45% 4.16% 4.88% 0.04%
TABLE IV: Analytical comparison of SHM and IEEE 802.15.4.
Metrics Mathematical Result for SHM Model Mathematical Result for IEEE 802.15.4

Sensor Lifetime Rj=

1 _ 0-00003XT000X9X0.00006XT009X1Z — 96077008

R,=1— 0'0000312X5000X145><(§)'UUUU()25X5014X19:0489480764

Sensor recruitment time
42(1-371( 2(1-5))))=53.865Seconds

5.0
Arce=1=Nr Ty, 5X1-55=> p(l—(so IR fz(5x5)

Arce=1=Nr [y, 5¥1-25= p(1_(30 IR fa(5x5)
42(1-37 ( 2(1—5))+76))=53.941Seconds

Data transmission rate

Ag=99.2(92.4—.05)+97.3(76.52—0.05)=166.01651K B/Sec

Ag=94.2(90.4—.05)+91.3(74.4—0.05)=152.99 K B/ Sec

Single-hop connection time | Ts=133x30+192+11x30+640=>5.152ms

Ts=133%x32+4192+11x32+640=5.43ms

factor in the case of the long-term query miss ratio, Mg, is the
short-term miss ratio, R, is the sampling and randomization
time, and M;,: long-term miss ratio.

Hence, the effective data capacity D, over the single-hop
transmission is of paramount significance because the positive
effective data capacity may lead to increased throughput and
efficiency. We assume that the collected data from a source
D.; (data obtained from a patient) require a stable connection
and that the entire connection consists of multiple hops. Thus,
the single-hop connection time is C'tgy,, and the effective data
capacity can be determined as

_ D cs
“ Ctan
where Cp; is the capacity at the physical interface.

As seen in Table IV, compared to the IEEE 802.15.4
standard, our proposed SHM model is slightly faster in the
sensor recruitment process time, as shown in Table IV. The
table results confirm that in the proposed SHM, the sensor
advertisement and load-balancing phases are more efficient.
SHM shows better performance than IEEE 802.15.4 regarding
the sensor’s remaining lifetime after the advertisement process,
the data admission rate during the query process, and the
single-hop connection time. For further analysis, the compet-
ing models, for example, the model proposed in [23], only
include static sensors. In contrast, our proposed model covers
static and mobile robot sensors. Two phases are included in our
SHM model to ensure the information reliability and security
of static and mobile robot sensors during communication:
transmission guarantee and privacy and data-sharing phases.
Handling static and mobile sensors, our transmission guaran-
teed phase uses an actual heterogeneous infrastructure. As a
result, contention-free transmission is realized. Moreover, our

D (41)

X CpL

privacy-aware sharing is helpful for data aggregation as well,
which reinforces transmission quality. As one future research
direction, we plan to design a specific range where sensors
can directly send data to the selected BS without redundant
calculation to improve the SHM model performance. Fur-
thermore, existing competing models were purely designed
for simulation and emulation purposes. On the other hand,
our proposed SHM model is purely designed for hardware
devices. One of the challenges of a CPS is how to manage data
collection accurately; this problem is also addressed using a
semantic information extraction module.

VIII. CONCLUSIONS AND FUTURE WORK

This section reiterates the goals and objectives and summa-
rizes the key evidence and findings for the reader. Additionally,
it provides directions for the extension of current work.

A. Conclusions

This paper introduced a secure human-centric mobility-
aware (SHM) model to analyze both human and physical
domains. The proposed model consists of four parts: BSN,
data processor, SSOA, and data management. The BSN de-
tects the patients’ physical and physiological constraints and
transmits the information to an actuator, controller, and mobile
robot sensor (physical domain). The data processor includes
three sections: data collection, decision, and initiate action.
An SSOA ensures both security and QoS while performing
actions. Semantic information extraction, knowledge-based
repositories, and cloud servers are included in the data man-
agement domain, where responsible people can access and
share data. The SHM model realizes human-to-machine in-
teraction and improves efficiency while ensuring data security
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to avoid privacy problems. It consists of five modules: a sensor
advertisement phase, mobile sensor recruitment and selection
phase, load-balancing phase, transmission guarantee phase,
and privacy and data-sharing phase. The sensor advertisement
phase helps stationary and mobile robot sensors advertise their
lifetime within the network and calculate the RLS to define the
initial energy level. The mobile sensor recruitment and selec-
tion phase helps find sensors from other clusters (first from a
neighbor, then from a nonadjacent domain) for the cluster that
does not have enough sensors and aims to improve throughput
and reduce the latency. The query-forwarding load acts as
a sensing device and receives data from the query-receiving
sensor in the load-balancing phase. This process helps reduce
the load of the actuator. The transmission guaranteed phase
ensures contention-free transmission at different transmission
power levels to adapt to the environment’s change. Because
security is a great concern in WSNs, the privacy and data-
sharing phase provides a secure way of sharing and delivering
data among sensors, which is also helpful for data aggregation.
Our proposed SHM model is tested in a realistic environment
compared with the IntruMine, CPSI, HCPS, and VHM models.
The results demonstrated that our SHM model outperforms the
other models in both static and mobile testing environments.
Our model maintains the trade-off between energy efficiency
and throughput. The results prove our claim that the SHM
model consumes less energy and produces increased average
throughput. The testing results showed that the SHM model
demonstrated a higher lifetime in static and mobile systems
compared to other competing models designed for cyber-
physical systems. Furthermore, the SHM model produces the
lowest hop-by-hop time compared with competing models.
Additionally, the reliability of the SHM model is better than
that of other competing models, as confirmed through both ma-
licious and nonmalicious situations. The reason for obtaining
better performance in our proposed SHM approach is mobility-
supported features. Second, the midpoint is determined such
that the sensor decides to send the data to the actuator or
the base station based on the midpoint. This choice helps
protect data loss and provides an opportunity to send faster
data. As a result, it leads to higher reliability and throughput
and less energy consumption. Third, contending approaches
experienced slight problems on the hardware platform because
they were primarily designed for simulation purposes. On the
other hand, the proposed system is particularly designed for
real devices and tools.

B. Future Work

Future research will focus on integrating the SHM model
with the recurrent neural network to improve the QoS and
focus on the extensive study of human behavior. We will plan
to design a specific range where the sensors should directly
send the data to the selected BS without redundant calculation
that will help to improve the SHM model performance. The
integration process of hardware devices and software tools
restricts mobility and slightly affects the energy when handling
static and mobile robot sensors. Thus, in the future, we
also aim to remove these shortcomings before designing the
product.
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