
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, JANUARY 2021 1

DOLPHIN: Dynamically Optimized and Load
Balanced PatH for INter-domain SDN

Communication
Zohaib Latif, Kashif Sharif, Senior Member, IEEE, Fan Li, Member, IEEE, Md Monjurul Karim,

Sujit Biswas, Member, IEEE, Madiha Shahzad, Member, IEEE, and Saraju P. Mohanty, Senior Member, IEEE

Abstract—Software-Defined Networking has become an inte-
gral technology for large scale networks that require dynamic
flow management. It separates the control function from data
plane devices and centralizes it in a domain controller. However,
only a limited number of switches can be managed by a single
and centralized controller which introduces challenges such as
scalability, reliability, and availability. Distributed controller ar-
chitecture resolves these issues but also introduces new challenges
of uneven load and traffic management across domains. As
real-world networks have redundant links, hence a significant
challenge is to distribute traffic flows on multiple paths, within a
domain, and across multiple independent domains. The selection
of ingress and egress switches becomes even more problematic
if the intermediate domain is non-cooperative. In this work, we
propose a Dynamically Optimized and Load-balanced Path for
Inter-domain (DOLPHIN) communication system, a customized
solution for different SDN controllers. It provides control beyond
the virtual switch elements in intra and inter-domain communica-
tion and extends the range of programmability to wireless devices,
such as the Internet of Things or vehicular networks. Extensive
simulation results show that the traffic load is distributed evenly
on multiple links connecting different domains. We model data
center communication and 5G vehicular network communication
to show that, by load balancing the flow completion times of the
different types of network traffic can be significantly improved.

Index Terms—Software Defined Networking, Inter-Domain
Communication, Vertical Programmability, Load Balancing

I. INTRODUCTION

Manuscript received December 30, 2019; revised Octover 28, 2020; ac-
cepted December 13, 2020. The work of F. Li is supported by the Na-
tional Natural Science Foundation of China No. 62072040, 61772077 and
the Beijing Natural Science Foundation No. 4192051. The associate editor
coordinating the review of this article and approving it for publication was J.
Doe. (Corresponsing authors: K. Sharif & F. Li.)

Zohaib Latif is with the School of Computer Science and Technology,
Beijing Institute of Technology, China, and Department of Computing, Riphah
International University, Faislabad, Pakistan (email: z.latif@bit.edu.cn).

Kashif Sharif and Fan Li are with the School of Computer Science and
Technology, Beijing Institute of Technology, China and Beijing Engineering
Research Center of High Volume Language Information Processing and
Cloud Computing Applications, Beijing, China (email: kashif@bit.edu.cn;
fli@bit.edu.cn).

Md M. Karim is with the School of Computer Science and Technology,
Beijing Institute of Technology, China (email: mkarim@bit.edu.cn).

Sujit Biswas is with Faridpur Engineering College, University of Dhaka,
Bangladesh (email: sujitedu@bit.edu.cn).

Madiha Shahzad is with School of Sciences, University of Central Lan-
cashire (UCLan), Cyprus (email: mshahzad1@uclan.ac.uk).

Saraju P. Mohanty is with Department of Computer Science & Engineering,
University of North Texas, USA (email: saraju.mohanty@unt.edu).

Digital Object Identifier 10.1109/TNSM.2021.XXXXXXX

IN traditional networks, every network layer element has
its own decision making power and control mechanisms.

With the rapid growth of the Internet and a large number
of autonomous systems, it has become complicated for net-
work administrators to configure each device separately [1].
Software-Defined Networking (SDN) [2], [3] is a networking
paradigm that decouples control logic from the data plane and
centralizes it as a software-based entity. Due to this separation,
data plane devices become simple forwarding nodes and
update the control plane by using well-defined Application
Programmable Interfaces (APIs) [4]. OpenFlow [5] is one of
the most widely used southbound API used for this purpose.
Based on the information provided by data plane devices, the
control plane generates a global view of the network and
pushes forwarding rules to the data plane. The high-level
management plane communicates with the control plane to
enforce various policies to control the network. Due to its
promising features and flexible network management, SDN
has been deployed in various network environments, such as
data centers [6] and wide-area networks [7].

Once the routing control is shifted to the centralized
controller (as compared to independent routers), hence the
traditional switches have to be replaced with SDN switches,
which use flow tables for forwarding. As soon as the switch
receives a new packet, it matches the packet header with
flow entries present in the flow table. In response to this
matching (if it finds any flow entry), the packet is forwarded
to the corresponding port. Otherwise, the packet is either
dropped or forwarded to the controller using the Packet IN
message. In response to this request, the controller generates
a Packet OUT message and installs flow entry on the switches
along the path. Eventually, the switch takes action against this
entry and forwards the packet to the port for data transfer. Once
a flow entry is installed, the switch takes action according to
this rule. In the case of multiple paths between source and
destination, the controller picks one path to install (or selects
an existing flow group), however, this path remains the same
for the duration of that flow. This may create an overload
on specific network links, while other possible paths remain
underutilized.

The architecture of SDN is centralized, and only a limited
number of switches can be managed by a single controller [8].
Moreover, whenever a new packet arrives at a data plane
element, it requires the involvement of a controller to process
this packet. An overloaded controller cannot process this

2 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, JANUARY 2021

packet immediately, which may cause additional delay [9].
The centralized architecture also introduces reliability issues
due to a risk of controller failure [10]. To address the above
issues, distributed controller architecture is used which can
be classified as distributed (flat) and hierarchal architectures
where every controller is responsible for its domain and
updates either neighboring controllers or a root controller [11],
[12]. Similar to the centralized domain, the issue of uneven
load also exists in multiple domains but the extent is far greater
as the different domains are controlled by their respective
controllers. Inter-controller coordination becomes a complex
task, as a path selected by one domain controller may not be
the optimal path for the other domain.

In real-world networks, there are always multiple paths
between source and destination pairs. These pairs may either
be in the same domain or different domains. Load balancing
is a method that is used to distribute the traffic load evenly on
different paths. Major goals of load balancing are to: maximize
throughput, minimize delay, traffic shaping, and improved flow
completion time. Load balancing can be divided into two
categories as static and dynamic. In static load balancing, the
route is calculated and allocated before the traffic transmission,
and cannot be changed during data transmission. Since the
behavior of the user cannot be predicted, so it has poor flow
scheduling and causes congestion if the source transmits a
large number of flows. Dynamic load balancing, on the other
hand, can schedule traffic according to traffic statistics which
is updated periodically and provides better results as compared
to static load balancing. However, this can create overhead in
flow installation and processing.

In some specialized applications such as the Internet of
Things (IoT) [13], the network is composed of heterogeneous
devices like, home appliances, sensors, and other electronic
devices that can transfer data freely through the Internet.
These devices are connected with data plane elements (i.e., the
SDN switches), however as they are not Openflow compatible,
hence their position in the layered SDN structure is not well
defined [14]. In this work, we consider these devices as part of
the perception plane, as shown in Figure 1. In the global view
of the controller, perception plane elements cannot be seen and
OpenFlow cannot install flow rules on these elements. Hence,
load balancing and global view for the elements of perception
plane is an added challenge in IoT domains.

To solve the problems of the uneven load over different
paths between source and destination residing in multiple
independent domains, and to provide flow control over per-
ception plane elements for optimized traffic flow, we propose
Dynamically Optimized and Load-balanced PatH for INter-
domain SDN Communication (DOLPHIN). The proposed
solution provides dynamic load balancing where paths can
be changed on the fly during data transfer. The solution is
implemented as a module on the SDN controller and provides
horizontal load balancing (inter-domain) and vertical extension
(into perception plane). In horizontal load balancing, it enables
dynamic traffic load optimization over multiple paths in a
single as well as in multiple domains. Moreover, it manages
traffic load among multiple domains even if they are not
directly connected and non-cooperative domain(s) are present

E/W	Interface

Ma
nag
em
ent

Pla
ne

Co
ntr
ol	

Pla
ne

Da
ta	P

lan
e

Per
cep
tio
n

Pla
ne

Northbound	Interface	(NBI)

Southbound	Interface	(SBI)

Application
Application

Application

Controller Controller

Domain	1
Vertical
ExtensionDomain	2

Figure 1: Architecture of SDN layers with perception plane as
the vertical extension of data plane.

between the source and destination. In the vertical extension,
it provides control over elements that are in the perception
plane and balances load accordingly. The main contributions
of this work are as follows.

• We propose a complete path computation and topology
extension (horizontal and vertical) system in a multi-
domain SDN environment.

• The proposed solution balances traffic load evenly on
multiple links, not only in single but across multiple
domains. It computes the weight value of each path based
on multiple metrics to find the optimal path at any given
time.

• In the case of a non-cooperative domain between source
and destination, it selects egress and ingress gateway
nodes that provide an optimal path across that domain,
while balancing the load in cooperative domains.

• The solution creates sub-controllers on access nodes to
extend the reach of SDN into the perception plane and is
capable of installing flows on mobile devices, with minor
application layer modifications.

• Extensive evaluations have been done to show the proof
of concept, and implementation has been done in a data
center and vehicular network environment to determine
the performance.

The rest of the paper is organized as; Section II describes
the background of various existing algorithms, while system
design and architecture is presented in Section III. Section
IV provides details of horizontal intra-domain load balancing
whereas, inter-domain load balancing and vertical extension
are discussed in Section V. Section VI presents the simulation
setup for experiments and performance evaluation. Conclusion
and future work are discussed in Section VII.

II. RELATED WORKS

Initially, SDN was based on a single controller design
with a global network view responsible for managing the
complete network. Controllers like NOX [15] and POX [16]
are primary examples of such implementation. However, due
to the scalability and performance limitations, several studies

LATIF et al.: DYNAMICALLY OPTIMIZED & LOAD-BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION 3

Table I: Comparative analysis of existing solutions.

Ref. Intra-Domain Inter-Domain Vertical
Extension

[18] Controller pool usage - No
[20] Flow load balancing No No
[21] Path optimization No No
[22] Multipath selection No
[23] Multipath assignment No No
[24] Flow load balancing No No
[25] Dynamic load balancing No No

[26]
Dynamic,

Threshold-based,
Congestion avoidance

No No

[27] - P2P SDN, Loop
avoidance No

[28] - Scalability using
coordinator controller No

[29] Controller and Link load
balancing No No

[30] - Switch migration No

[31] - Switch migration,
Controller hierarchy No

[32] Inter-Controller msgs.
reduction No

[33] ML for controller load
balancing - No

[34] Path optimization - For UE only

[35] MPLS for flow
optimization - No

[36] Flow path optimization No No
[37] Multipath Solution No No

This Work Dynamic flow
management

Dynamic flows (w/out
cooperative domain)

Yes (with
multipath)

suggest the use of distributed controllers, such as [10], [17]–
[19]. These solutions enabled SDN for large scale networks
but introduced some new challenges in terms of load balanc-
ing and dynamic optimal path selection. Load balancing on
different paths and load distribution of the controller are two
different challenges. In this work, we address the challenge of
dynamic load balancing on different paths among source and
destination, in traditional networks and perception plane.

A. Load Balancing for Traffic Management

The work in [20] aims at dynamic balancing of traffic load
in SDN for flows under a single domain. It selects a transitory
path for the fresh flows, and if the load on a link is unstable, it
diverts the flows onto a different path. The main issue with it is
that it sometimes changes the paths without need which creates
oscillation. In [21] authors discussed the shortest path, shortest
feasible path, and widest path by using modified Dijkstra’s
algorithm. However, this solution is also aimed at a single
domain SDN. In [22] authors described a multipath routing
scheme where the best optimal path is selected from multiple
paths under a single controller. The authors used the Ryu
controller to measure the network parameters for quality of
service such as latency, packet loss, and throughput. Authors
in [23] used the POX controller and enhanced network per-
formance by using a proactive approach where different paths
are assigned to multiple flows evenly based on the bandwidth
of these paths. Authors in [24] provided load balancing in the
Data Center Network environment using the POX controller
and assessed its performance through OpenFlow Statistics.

Their technique also implemented path restoration and traffic
classification. DLPO [25] is another solution for dynamic load
balancing under a single domain where flows of a congested
path are redirected to a lightly loaded path after updating
the flow tables of associated switches to reduce the risk of
packet loss. mED-SDN [26] describes an approach that uses
REST API and modified Dijkstra’s algorithm for SDN. It uses
a threshold value, which is set by the algorithm for congestion
prevention mechanism. It finds a new path when the bandwidth
exceeds the threshold value. Inter-domain multi-path routing
is addressed by using traffic engineering in a P2P SDN [27],
where the authors discussed information exchange among
multiple domains, path aggregation, and overhead. The authors
focused on routing loop formation and proposed a solution
using a routing table, topology table, and an advertisement
table. The work in [28] proposed a multi-domain architecture
and used a coordinator controller, which is connected with
domain controllers using a unified NBI. However, this work
does not address load balancing on multiple paths among
domains. Its primary focus is the scalability issue for multiple
domains handled by controllers from different vendors.

B. Balancing of Controller Load
Load balanced routing for links and controller (LBR-LC)

[29] exploits a routing based algorithm and analyzes its
approximation performance. It reduces the response time of the
controller (by load bounds) and achieves link load balancing
(using network area bounds). The work in [30] proposed a
method for balancing the uneven load in the control plane by
shifting load away from heavily loaded controllers. This is
achieved through switch migration. However, the migration
process requires some delay during the re-configuration of
devices, especially in large scale networks. Another solu-
tion [31] works as a controller module, and switches are
connected with multiple controllers but only one controller
is connected as the master. Each controller gathers infor-
mation about its domain and compares it to that of other
domains. If its load is greater as compared to the rest of
the controllers, then it selects and migrates switches to a less
loaded controller. However, this requires extensive information
about the load and synchronization of controllers which may
reduce overall performance. In [32] authors proposed a load
balancer application to reduce the inter controller control
messages. At the same time, the authors proposed a multi-
policy controller where multiple applications can control the
network. As the switch to controller mapping is static, hence
a controller may become overloaded if a large number of
flows arrive. Elasticon [18] presents an architecture where
the load of a controller is computed, and the controller pool
can be dynamically expanded and shrunk, which enhances
the network performance and throughput. In [33], the authors
proposed multi-agent reinforcement learning to balance the
controller load. It uses offline training and online decision
making to balance the workload of controllers.

C. Path Optimizations
In [34] authors propose full, partial, and heuristic path

computation optimized strategies specifically for 5G enabled

4 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, JANUARY 2021

SDN-based transport network (wireless and wired), empha-
sizing increased QoS experience. All the proposed schemes
use linear integer programming optimization modules to re-
compute all the available paths between the OVS switches,
SDN controller, servers, and UEs to determine the network’s
optimal configuration. There is no implementation of these
algorithms, although the paper mentions ONOS. Traditional
MPLS labeling has been applied in [35] to improve the
network resource utilization by reducing the number of flow
entries while reducing the controller-switch communication
overhead. Flow tagging has been introduced into modified
OpenFlow switches to achieve flow-based forwarding aggre-
gation and multipath communication simultaneously. A flow-
rule placement solution is proposed in [36] to incorporate the
maximum number of flows while locating an immediate end-
to-end path. Despite showing promising results, the solution
does not consider using a distributed controller while existed
flow-rules likely to reappear repeatedly in the controller. Path
selection for egress traffic in the stub network is presented
in [37]. The solution calculates the available path’s capacity
and disseminates the traffic towards multiple paths using
passive measurement techniques. A self-developed discrete-
event simulator is used to form a client-server scenario that
captures traffic in two identical data producer networks. The
performance has been evaluated against the number of flows,
their sizes, and their arrival time.

Contrary to the above-discussed studies, in this work, we
focus on communication in multi-domain environments, with
emphasis on path load balancing, selection of egress/ingress
switches, and vertical extension to the data plane. The prin-
ciple of path load balancing is weight-based and can be
applied in both intra-domain and inter-domain communication.
Consideration to non-cooperative domains is also given when
multiple domains are involved. A major function of this
work is to extend the data plane to the perception plane,
where delegated control functionality is placed on access
devices for multi-path multi-hop communication in a wireless
environment. Recently, in [38] the authors have listed all of
these objectives as major future directions of load-balanced
SDN systems.

III. SYSTEM ARCHITECTURE

This section presents the overall architecture for the pro-
posed approach. The architecture can be divided into two parts,
the architecture of SDN planes, and the system model. In the
architecture of SDN planes, we elaborate on the functionalities
of different planes, while in the system model we describe the
overall multi-domain design and different notations used in
this work. The system model is further classified into two
parts; horizontal load balancing and vertical extension. In
horizontal load balancing, the load is distributed evenly on
different links of data plane elements whereas, load balancing
between data plane elements and perception plane elements is
discussed in vertical extension.

A. Architecture of Planes
The architecture of Dolphin is aimed at large scale SDN

networks. Here, we first explain the architecture and key

components, as shown in Figure 1. It shows the high-level
architecture for both horizontal load balancing and the vertical
extension into the perception plane.

Perception Plane: At the base of the architecture lies the
perception plane, which has different end-devices and some
of these devices are connected with data plane elements by
means of different interfaces (e.g., WiFi). Traditionally, the
SDN architecture has SDN switches (capable of understanding
Openflow) in the data plane and disregards other end-hosts.
However, with the increase in diversity of end hosts and
a complete topological structure, the extension of the data
plane is referred to as the perception plane. The devices in
the perception plane include mobile phones, sensors, vehicles,
UAVs, or any other data generation/reception point, and may
be connected to each other via different interfaces (e.g., WiFi,
BlueTooth, NFC, ZigBee, and 5G). Nodes connected with
data plane elements (SDN Switches or vSwitches) can be
detected by the SDN controller (through SBI); however, end
devices that are connected with these nodes are beyond SDN
Switch elements and cannot be accessed by the controller. This
plane involves the vertical extension of Dolphin, however, in
horizontal load balancing, only data plane devices are used.
The proposed vertical extension in this work allows access and
flow installation at the perception level.

Data Plane: The data plane is above the perception plane,
which has multiple domains. Each domain has SDN enabled
(hardware or software) switches acting as forwarding nodes
and are managed by a controller (which is part of the control
plane). Connectivity among these switches enables multiple
paths among different source and destination pairs. Moreover,
border gateway switches of different domains are connected
to each other via multiple links. Network information, link
stats, and flow table updates are exchanged between controller
and switches via the southbound interface (i.e., OpenFlow
protocol).

Control Plane: The control plane in the proposed archi-
tecture contains several distributed SDN controllers (poten-
tially from different vendors), which may or may not be
connected in some hierarchy. Controllers manage flow tables
of SDN switches under their respective domains. The SDN
controller features represent the base network functions that
are executed by the physical and virtual network managers of
each controller. These functions extract topology updates, link
states, and statistics (e.g., latency, packet loss ratio, and link
utilization). After collecting this information, the controller
can forward it to management plane applications.

Management Plane: The proposed Dolphin core algo-
rithms can work as a management application in the man-
agement plane, as well as an integral part of the controller.
It is preferable to use it as a management application, as this
allows the control plane to have multi-vendor SDN solutions.
The objective is to balance the load horizontally and vertically
across the entire data and perception planes.

B. System Design and Communication Models

Horizontal load balancing is done entirely in the data plane
among different domains, while vertical balancing additionally

LATIF et al.: DYNAMICALLY OPTIMIZED & LOAD-BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION 5

SDN Controller (CA1)

Physical
Network
Manager

Virtual
Network
Manager

Controller
Feature A

Controller
Feature B

SDN Controller (CA2)

Physical
Network
Manager

Virtual
Network
Manager

Controller
Feature A

Controller
Feature B

SDN Controller (CAN)

Physical
Network
Manager

Virtual
Network
Manager

Controller
Feature A

Controller
Feature B

SDN Controller (CB1)

SDN Controller (CK1)

SDN Controller (CB2)

SDN Controller (CK2)

SDN Controller (CBN)

SDN Controller (CKN)

Domain 1 Domain 2 Domain N

Southbound
Interface

Topology
Information

and Link
Stats

Flow
Table

Updates

Northbound
Interface

Topology
Information

and Link
Stats

Forwarding
Rules

DOLPHIN Application DOLPHIN
Controller
Selection

FloodLight /
OpenDaylight

Input

Source and
Destination

Intra-Domain
Communication

Inter-Domain
Communication

Weight
Computation

Flow
Management

Forwarding
Rules

Network
Information

End-to-End
Weight Comp.

Deployment

Source
and

Destination
in Same
Domain

Domain
Information

YES NO

Horizontal Load Balancing

Domain
Selection

Controller Selection

Network
Information

End-to-End
Weight Comp.

Deployment

Controller
Selection

Domain
Information

Vertical Extension

Source and
Destination

Forwarding
Rules

Information
from

Secondary
Controller

Input

Figure 2: Overall system design and modules.

involves the perception plane. Figure 2 shows the overall
design and the working principle, along with different modules
for the horizontal and vertical extension. In this subsection, we
describe the connectivity structure of the proposed solution and
different notations used in this work.

1) Horizontal Model: Horizontal load balancing is classi-
fied into two parts: intra-domain and inter-domain. In intra-
domain balancing, the source and destination belong to the
same domain, whereas, if source and destination are in
different domains then inter-domain balancing is done. The
system model for horizontal load balancing in the proposed
system can be observed from the sample topology as shown
in Figure 3. The inter-domain network is shown at the top as
a collection of different domains connected through multiple
links. The magnified view of each domain shows the control
and data plane of each. We can observe that S1-S4 are
SDN switches, which connect different end machines labeled
as H1-H3. Also, this domain has SDN switches acting as
gateways to other domains (GW1-GW3). Assume that the
network has � = {�1, �2, �3...��} set of SDN domains, then
the topology graph can be represented as G=(�� ,E), where
��� = {���1 , �

��
2 , �

��
3 ...�

��
� } represents switches of domain �� ,

and E = {(�, �) : �, � ∈ �} is a set of edges to connect V

Router

GW1

GW2

S1

S2 S3

S4
H1

H2

H3

D1

D3

D2

D4

D5

D6

Domain	1
Network	Connectivity

GW1

GW2

GW3

S1

S2 S3

S4
H1

H2

Inter	Domain	Network

GW1

GW2

Router

S1

S2 S3

S4
H1

H2

Domain	3 Domain	N

Figure 3: Topological structure used for the system model.

switches. Any path between a source � and destination � switch
in a domain � is represented as �� = {��� , ��1 , �

�
2 ...�

�
� } and ��

∈ P where P represents a set of all shortest paths between
source and destination pairs. It should be noted that traffic
originator is a host, however, from a controller’s perspective,
it is switch from where the flow begins. Hence, we have used
switches to represent source and destination. Moreover, every
edge � has a weight � � , where � ∈ [1-M] is a series of M
non-negative weights and cost functions which includes; link
weight, latency, and packet loss ratio to ensure the Quality
of Service (QoS). Finally, the total weight of path �� can be
calculated as ��� =

∑�
�=0 �� , where �� is weight of each link

in path �� . Figure 3 also depicts that some domains may be
connected directly (connecting through GW switches), while
others have to send traffic across other domains to reach a
particular destination. Most of these domains are connected
via multiple paths. For example, D1 is connected with D2 and
D3 through multiple links.

Formally we can define the problem as: a source �
��
� in

domain �� intends to communicate with �
� �

� in domain � � ,
where �

��
� , �� �

� ∈ �� and path �� is said to be best optimal
path if: ��� ≤ �� �

where �� , � �∈P∧ �� ≠ � � .
Intra-Domain Handling: The main objective of intra-

domain load balancing is to balance the traffic evenly on
different paths when source and destination belong to the
same domain. For example, let �

� �

� and �
� �

� are source and
destination switches of domain � � and there are two possible
routes among this pair, which can be represented as �

� �

� →
�
� �

� → �
� �

� and �
� �

� → �
� �

�
→ �

� �

� . To find and redirect traffic
to a less loaded path, a dynamic and adequate solution is
required which is robust in determining the network state and
adjusting the flow path to optimize the load. Note that this
work’s objective is to change paths while flows are in progress.

Inter-Domain Handling: When the source and destination
switches are in different domains (and under different con-
trollers), two scenarios can be realized as directly connected
domains or indirectly connected domains.

6 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, JANUARY 2021

• Directly Connected: In this scenario, there are two or
more domains (with their independent controllers) that are
either adjacent to each other or are cooperative domains
(i.e., under the same administration). Continuing from
previous scenario, the destination switch is now present in
a different domain �� . Hence, the available paths between
source destination are �

� �

� → �
� �

� → �
��
� → �

��

� and �
� �

�

→ �
� �

�
→ �

��

�
→ �

��

� where �
� �

� , �
� �

�
are the gateway

switches for domain � � and �
��
� , �

��

�
are the gateway

switches for domain �� . It is possible that for switch �
� �

�

best optimal path is through �
� �

� whereas, for domain k
optimal path for desired destination is via switch �

��

�
.

This creates a challenging situation as one of the domain
will have to use a sub-optimal path for communication.
It is worth mentioning here that in SDN, a single switch
can be connected to multiple domain controllers. If it is,
then, one controller becomes master and the other is a
slave for that switch. Only the master controller can read
and write flow rules, whereas the slave controller can only
read the information to generate a global view. Hence, a
gateway switch always belongs to a single domain (where
the domain is defined by the master controller).

• Indirectly Connected Domains: In real-world networks,
probability of intermediate domains between any source
and destination domains is very high. Hence, when the
source switch �

� �

� and destination switch �
��
� , have to

communicate over domains where flow installation is not
possible, then only best-effort delivery can be guaranteed.
For example, domain �� is a non co-operative domain
and is not willing to share its topological information
thus; the available paths between source destination are
�
� �

� → �
� �

� → X → �
��
� → �

��
� and �

� �

� → �
� �

�
→ X

→ �
��
�

→ �
��
� where �

� �

� , �� �

�
are the gateway switches

for domain � � and �
��
� , ���

�
are the gateway switches for

domain ��.

2) Vertical Modeling: In order to provide the vertical load
balancing, end devices connected with perception plane ele-
ments must be visible in the global topology at the controller.
In practice, these end devices cannot be observed or accessed
by the controller because OpenFlow works only at the SDN
switch level. Our first goal is to generate the global network
view along with end devices connected in perception plane
elements. After creating the global view, the flows should be
created which optimally connect the end devices, and then the
load must be balanced evenly on multiple paths among them.

Figure 4 shows two SDN domains where the perception
plane is at the bottom where �1 and �3 are the perception plane
elements. These elements can be further connected to different
end devices (e.g., n2, n4, and n5) via different short-range
radio interfaces (Bluetooth, NFC, DSRC, etc.). Moreover,
these end devices could have multi-hop routing when they
cannot communicate with access points directly. In this work,
we provide the access points with similar capabilities as SDN
switches, which are connected to the other wired-domain
elements. In a communication scenario, assume that n1 and
n3 want to transfer data, then in traditional SDN there could

Controller

Data Plane
S1

S2

Perception
Plane

n4

n5

n1

n3
Different interfaces of
Device Connectivityn2

H1

H2

H3

S3

AP1 AP2

Figure 4: Unified structure for the vertical extension.

be different paths available, i.e. n1 → AP1 → S2 → AP2 →
n3 and n1 → AP1 → S1 → AP2 → n3. However, in this work
we extend the reach of the controller to the perception plane
thus, making it capable of installing flows within the wireless
domain. With the knowledge of n2’s existence, a more optimal
path can be established as n1 → n2 → n3. A practical example
of such systems can be found in vehicular networks, where the
same vehicle can be accessed through different roadside units
(RSU) and vehicle-to-vehicle (V2V) communication.

IV. HORIZONTAL INTRA-DOMAIN LOAD BALANCING

In this section, we discuss load balancing among data plane
elements inside the control of a single domain. Each source
and destination pair is connected via multiple paths, as shown
in the example topology of Figure 5. Switches S1 and S4
are connected through multiple paths as; S1→S2→S4 and
S1→S3→S4. The proposed Dolphin intra-domain system runs
in the management plane and redirects traffic on the less
loaded path by re-configuring the flow table dynamically. It
is important to clarify here that, while other state-of-the-art
solutions install the flow for its lifetime, the proposed solutions
dynamically changes the path, if it can find a better one. There
are various sub-modules of the Dolphin system are discussed
below and the complete process is given in Algorithm 1 for
least weighted path selection.

Domain Information Sub-Module: The main objective of
this sub-module is to generate the graph G=(�� , E) which
reflects the topology of the entire domain. It obtains the
necessary information of network devices (e.g., IP & MAC
addresses) and links (e.g., switch & port connectivity) from
the controller. It also takes a record of gateway switches
connected to its neighboring domains, which helps in inter-
domain communication. The current state of network elements
is collected in JSON and XML format using API interfaces
of respective controllers. Moreover, this module retrieves port
statistics from each switch of the network which helps to find
the current value of link utilization. Based on the information,
this sub-module creates the graph of the whole network and
finds the optimal paths from source to destination. Depending
on the required optimality, the shortest paths can be obtained
using Dijkstra’s algorithm.

LATIF et al.: DYNAMICALLY OPTIMIZED & LOAD-BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION 7

S1

S3

S2

S4

SDN Controller

Domain
Information

Weight
Computation

Flow
Management

D
at

a
Pl

an
e

C
on

tro
l

Pl
an

e
M

an
ag

em
en

t
Pl

an
e

Northbound Interface

Southbound Interface

DOLPHIN
Intra Domain Module

Figure 5: Intra-domain system and its sub-modules.

Weight Computation Sub-Module: This sub-module cal-
culates the weight of each link by using OpenFlow statistics.
The port statistics of each switch are provided by the topology
information sub-module, which are then used to calculate the
weight on each link. For example, the link utilization from
�
��
� to �

��
� can be obtained from the real-time port statistics as

the bytes received � (���) during k-th time interval ��. This is
then integrated with the controller’s flow information for traffic
types. Following this, the weight of each path is computed as
a sum of each link on that path. In Figure 5, there are two
paths from S1 to S4, and each of these paths has two links.
Total weight on each path can be calculated as ��� =

∑�
�=0 ��

where, �� is the weight of each link on path �� and computed
as �� =

∑�
�=1 (��

�+��)
��
�

. Here, ��
� is the average flow rate of i-th

flow class in �� on the e-th link, �� is the standard deviation
for the flow rate of i-th flow class on the e-th link, and ��

�
is

the available link capacity of the e-th link.
Finally, these weight values are used to find the optimal path

between source and destination pair, where less weight value
signifies better optimality. Moreover, the list of associated
switches is forwarded to the flow management sub-module
for flow installation. If the destination does not belong to
this domain, and the domain information sub-module has no
information for the required destination then this module will
compute and forward optimal paths from source to all of the
gateways of this domain which is further used in the inter-
domain communication module.

Flow Management: Responsibility of Flow Management
Sub-Module is to install flow entries on devices forwarded
by Weight Computation Sub-Module. It translates the path
information into OpenFlow rules and adds or removes them at
each switch. First, the new path is installed, and then the old
path is removed. Notably, the controller is a centralized entity,
thus it can be assumed that it is capable enough to undertake
the load of the system. To avoid path oscillations, a threshold
 is used relative to the ��’s capacity and can be configured
by the system administrator.

The complete process of Intra-domain load balancing is pre-

Algorithm 1 Intra-Domain Path Selection Process
1: procedure INTRA–DOMAIN
2: G = (��� ,�)
3: ��� = {���1 , �

��
2 , �

��
3 , ...�

��
� } where �

��
� , ���� ∈ ��� in ��

4: � : a set of edges from �
��
� to �

��
� in Graph �

5: �� : a set of non-disjoint paths from �
��
� to �

��
�

6: ���
: a set of weight of all paths

7: �� : best Path
8: F: a set of switches to install flows
9: �� ← G

10: for each path � ∈ �� do
11:

���
=

�∑
�=0

��

12: end for
13: �� =
	�(�� ,���)
14: � ← list of switches in ��

15: return �

16: end procedure

sented in Algorithm 1 where the shortest paths are computed
after generating graph G for intra-domain communication.
Weight values of each path are calculated by summation of
link weights of each path and the path with minimum weight
value is considered as the best path. Finally, the list of switches
coming under the best path is returned by the algorithm in
order to install the flow rules.

V. INTER-DOMAIN LOAD BALANCING AND VERTICAL
EXTENSION

This section presents horizontal load balancing and ver-
tical extension for inter-domain communication. If source
and destination belong to different domains (horizontally or
vertically), then inter-domain communication is required. In
the proposed solution, some of the data plane devices (such as
Access Points) are delegated partial controller functionalities
in vertical extension, thus making them sub-domain controllers
for the perception plane device groups. The communica-
tion between the domain controller and these sub-domain
controllers (with delegated functions) is conceptually similar
to inter-domain communication. As every domain controller
has the information of its domain only hence, generating a
detailed multi-domain global graph of the network becomes
a challenge. Moreover, each domain controller only optimizes
the path within its domain, hence, a gateway switch selected
by the source as the optimal exit point, may not be an optimal
entry point for the neighboring or destination domain. As all
the controllers have equal rights within their domains, hence
forming a consensus among them is challenging. Finally, the
presence of a non-cooperative domain between source and
destination domains is an added challenge.

In horizontal load balancing, if the domain controller re-
ceives a packet for a destination that is not under its domain,
then the packet is forwarded to the inter-domain communi-
cation module. This module uses various sub-modules and
collects information from all the controllers by using the
REST API of the respective controller to create a global view
of the complete network, thus enabling optimal inter-domain

8 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, JANUARY 2021

S1

S3

S2

S4

Domain Controller 1

Network Information

D
at

a
Pl

an
e

C
on

tro
l

Pl
an

e
M

an
ag

em
en

t
Pl

an
e

Southbound Interface

S5

S7

S6

S8

Domain Controller 2

Northbound Interface

Southbound Interface

End-to-End Weight Computation

Flow Deployment

DOLPHIN
Inter Domain Module

Figure 6: Inter-domain system and its sub-modules.

communication. To generate the global view for different
domains, connectivity of gateway switches of each domain is
used. Horizontal inter-domain load balancing is classified into
two parts; directly connected domains and indirectly connected
domains. Similarly, the vertical extension also involves inter-
domain communication, as we discuss later, that the Radio
Access Network (RAN) is treated as a domain with a sub-
controller at the AP. Similar to the intra-domain dynamic path
changing principle, the paths are updated during the lifetime
of the flow. Below we discuss each of the modules in detail,
and then describe the complete process in Algorithm 2.

A. Directly Connected Domains

In directly-connected domains, gateway switches of source
and destination domains are adjacent and connected, as shown
in Figure 6. Here two different domain controllers are manag-
ing their respective domains. If there is only a single path
connecting two domains, then the process is simple. Both
domains only have to optimize the paths to the gateway
switches in their domains. However, if there is more than
one link connecting the domains, then selecting ingress and
egress switches and balancing the load on multiple links is
difficult. In either case, the proposed Dolphin solution can
find the optimal path and balance the load dynamically. It is
important to note that, there can be � intermediate domains
between source and destination. If all of these domains are
cooperative, then we still consider the source and destination
to be directly connected. In the following subsections, we
describe the individual processes of the inter-domain module,
as shown in Figure 6.

Network Information Sub-Module: Similar to the domain
information process of the intra-domain module, the network
information sub-module also has complete information on the
data plane devices and links. This information is forwarded
to it by the controllers of respective domains as a summary
graph. When a flow is required, it first determines all possible
paths from the source switch to the destination switch and
then appends the network state information with each link.
For simplicity, assume the topology as shown in Figure 6.

Algorithm 2 Inter-Domain Path Selection Process
1: procedure INTER–DOMAIN
2: G = (�� ,E): network graph
3: �� = set of switches of all domains
4: ��� : a set of controllers for n domains
5: �� : a set of paths from s to t
6: ���

: a set of weight for all paths
7: �� : best Path
8: �: a set of switches to install flows
9: �� ← G

10: for each path � ∈ �� do
11:

���
=

�∑
�=0

��

12: end for
13: �� =
	�(�� ,���

)
14: � ← list of switches in ��

15: for each � ∈ ��� do
16: for each �� ∈ � do
17: if �� ∈ ��� then
18: ��� ← ��
19: end if
20: end for
21: end for
22: end procedure

The global graph G = (�� ,E) for these two different domains
�� and � � can be designed by using following information:
���∈�� is a set of nodes in domain �� , ����∈��� is a set of
gateways in domain �� , �� � ∈�� is a set of nodes in domain
� � , ��� � ∈�� � is a set of gateways in domain � � , ���∈� is
a set of edges between ��� & ���� , �� � ∈� is a set of edges
between �� � & ��� � , and ��� � ∈� is a set of edges between
���� & ��� � . Once it collects all the required information
of switches and gateways from domain controllers, it generates
paths from source to destination.

End-To-End Weight Computation Sub-Module: Based
on the paths provided by the network information sub-module,
the end-to-end weight computation sub-module calculates the
weight on the individual links and sums all the weight values
to find the total weight of each path. Furthermore, it computes
the optimal path from source to destination by comparing these
weight values. Path with less weight value is considered as an
optimal path, and a list of all associated gateways and switches
coming under the best path is forwarded to the deployment
module for flow installation. The formulation is the same as
that of intra-domain weight calculation, hence we skip it for
simplicity.

Deployment Sub-Module: To install the flow entries on
switches and gateways, this sub-module communicates with
the domain controllers to provide a list of associated switches
of each domain controller. Based on this information, each
domain controller installs flow entries on each switch to
establish the communication between source and destination
pair. Similar to the prior explanation, can be used to avoid
path oscillations.

Algorithm 2 presents inter-domain communication where a
graph for the whole network is built by taking information
from each controller. This graph is further used to find the
shortest paths between source and destination pair. Weight

LATIF et al.: DYNAMICALLY OPTIMIZED & LOAD-BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION 9

values of each path are computed by summation of link
weights and path with minimum weight value is considered as
the best optimal path. Finally, the list of switches is returned
to the respective controllers to install flow rules.

B. Indirectly Connected Domains

Here we cover a scenario where the source and destination
domains are connected via an intermediate domain, which
does not cooperate in a topology information exchange or
flow installation. The data plane in such a scenario is depicted
in Figure 7 where the intermediate domain has five switches
R1-R5. There can be multiple paths available, however, the
Dolphin system has no control over them.

Periodic Probes: The Network Information Sub-Module
of the inter-domain communication system periodically sends
probe messages across the intermediate non-cooperative do-
main to estimate the network conditions, such as delay and
available throughput. The objective is to find the optimal
ingress and/or egress gateway from the neighboring domain.
For example, in Figure 7, the network information sub-
module sends probe packets from S2 & S3 towards dummy
destinations connected to S6 & S8. By observing where the
probe packet was received, it determines the potential path
and its QoS properties in the non-cooperative domain. Using
this information, this model then builds a list of paths with
their network conditions, when a flow needs to be created
over the said domain. It is important to note, that it is not
possible to dictate a specific path within the non-cooperative
domain, hence only the selection of ingress/egress switches
is of importance to the proposed solution. If there is only
one such pair, then he solution does not use probes, while
the frequency of probes in the other cases is very less. From
experimentation, we have observed that these probes have no
performance effect on the links.

Flow Creation: The End-to-End Weight computation mod-
ules use the information gathered by probes, in the previous
process to estimate the weight of using a specific egress switch
(e.g., S2 or S3) when finding the optimal paths, using intra-
domain formulas.

Flow Installation: The Deployment sub-module installs the
flow from the source switch to the egress switch based on
the optimal weight value as determined in the previous step
(i.e. S2 or S3 in the example). However, it is important to
install the rest of the flow on all possible re-entry points in
the next cooperative domain. Hence, in Figure 7 the flow
entries are made on both S6 and S8, as it is not possible
to determine the behavior of the intermediate domain. Even
during communication, the path may change, hence, the flow
entries must be present for continued forwarding of flow.
However, this only occurs when there are multiple gateways
connecting the intermediate domain.

C. Vertical Extension

To enable the vertical extension and allow the controllers
to have topological information beyond the SDN switches
(into the perception plane), the proposed solution creates
hybrid devices at the network access points. These devices

S1 S4 S5 S7

R3

R4

R1

S2

S3

R2 S6

S8R5

Source	Domain Intermediate	Domain Destination	Domain

Figure 7: Data plane of indirectly connected domains.

are considered as secondary controllers, with the ability to
discover the topology and configure underlying devices only.
Hence, the partial control functions of the controller are
delegated to the APs. This scenario becomes very similar
to a generic inter-domain communication situation, with the
only difference is that the secondary controller (or delegated
control device) has limited capabilities. It is important to
note, that in this solution, we assume that the underlying
perception plane devices can communicate with each other
and form an ad-hoc network. This assumption is realistic, as
V2V, M2M, and 5G communication allows such multi-hoping
in the mobile domain. In our implementation and evaluation,
we have achieved this through similar programming of devices
and custom wrapper classes for forwarding rules in the routing
tables. Figure 8 shows the complete topological structure and
the secondary controller’s control delegation. Here, we explain
the working of inter-domain sub-modules in relation to this
delegation.

Network Information Sub-Module: This module receives
the topological information from controllers of different do-
mains. In addition to this, it also receives the topological
information from secondary controllers at APs. Each AP uses
a specialized SBI for sending this information. It is important
to note that this information includes, device details, interface
types (data rate and technology), and connectivity. In the
proposed system, we have enabled all mobile devices to run
a piece of simple information reporting app, which updates
the secondary controller with the desired information. After
receiving this periodic information, the AP generates a sub-
graph and sends it to the Network Information Sub-Module,
where it is merged with the global topology graph to find
optimal paths.

End-To-End Weight Computation Sub-Module: After
computing all possible paths between data plane and percep-
tion plane elements, the weight value of each path is calcu-
lated. Unlike horizontal load balancing, weight computation in
vertical extension is different because due to the involvement
of different user level devices. Hence, �� =

∑�
� =0 (�

�
�)

��
�

is used,
without any traffic class. This is because only mice flows
are allowed to traverse the perception plane links and �

�

is the average flow rate of f-th flow using that link at the
measurement time. Moreover, ��

�
is the leftover link capacity

from a specific shared bandwidth value allowed by the device.
After computing the best path, a list of switches is forwarded
to associated controllers and sub-controllers for configuring
the associated switches and devices, respectively.

Deployment Sub-Module: Similar to previous sections,
this module installs the flows on switches and devices. Figure
8 presents a topology where APs are working as secondary

10 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, JANUARY 2021

SDN Controller

Control
Delegation

AP1 AP2

Network Information

Northbound Interface

End-to-End Weight Computation

Flow Deployment

DOLPHIN
Beyond vSwitch Module

Sta1 Sta2

Control
Delegation

S1

H1

n1

Figure 8: Vertical extension beyond SDN switch.

controllers as well. Two mobile stations (i.e., sta1 and sta2)
are connected with these APs, and at the same time by using
different interfaces these stations are connected with an end
device n1. In order to transfer data between h1 and n1, there
are two possible paths as S1 → AP1 → Sta1 → n1 and S1
→ AP2 → Sta2 → n1. Both the APs and SDN controller
forward all the connectivity information of their respective
domains to the network information module. Based on this
information, the global network view is generated which helps
in finding the best optimal path. After weight computation,
flow entries are forwarded to respective controllers, which
then use the customized APIs to configure the routing and
forwarding tables of the devices in the perception plane. It is
important to note that such modification to device tables is
possible in the majority of open-source systems.

VI. PERFORMANCE EVALUATION AND ANALYSIS

The performance of the proposed architecture and solution
is evaluated in several scenarios. First, we present a proof
of work, with a limited topological setup in Mininet [39]
and its fork Mininet-WiFi [40] to evaluate the soundness
of the approach. However, as this is only proof of concept
and must be translated to real applications, in the second set
of experiments, we implement the solution in a data center
network scenario with multiple controllers to evaluate the flow
completion times. This is a multi-domain environment with a
diverse set of data traffic. Finally, we evaluate the extended
perception plane architecture in a 5G vehicular network sce-
nario to show the flow completion and path changes in a highly
dynamic topology.

A. Proof of Concept

To evaluate the basic working principle of the Dolphin
solution we have evaluated it in 4 different scenarios. The
network is modeled in Mininet and Mininet-WiFi to mimic

H1
H2

P1

P2

S1
S2

S3
S4

Figure 9: Intra-domain topology.

the 5G access, edge, and core networks. It is important to
note here, that the objective of this work is not to evaluate 5G
communication, rather we evaluate the effect of multi-domain
SDN in a 5G environment.

In our evaluations, we have used OpenDayLight (ODL)
[41] Beryllium-SR4 and FloodLight (FL) [42] controllers, both
written in JAVA. FloodLight is a modularized and extensible
controller with large community-based support. It uses the
OpenFlow protocol to orchestrate flows in the SDN environ-
ment. OpenDaylight, on the other hand, provides extensive
flexibility in a distributed environment. It is a collection of
OSGi bundles that run as Apache Karaf components. Addition-
ally, we deploy the extended Dijkstra’s algorithm proposed in
mED-SDN [26] to compare our work regarding performance
metrics such as RTT and link utilization. Although the per-
formance evaluation for both works has been initialized in the
Mininet-based test environment, the performance evaluation of
[26] was limited to Abilene as the testbed topology, and ODL
as a centralized controller. It is important to note that only
ODL provides multi-controller support, hence the evaluation
has been limited to it in the inter-domain experiments. More-
over, switch migration solutions are not comparable to the
proposed multi-domain/vertical extension solution. Dolphin is
implemented as a Python application and uses REST APIs as
the northbound interface. The simulation parameters are listed
in Table II, and the hosts only generate the traffic and are not
considered for weight calculations.

1) Intra-Domain Communication: The initial scenario con-
sists of a single SDN controller which can be realized as
shown in Figure 9. There are four switches and two hosts
connected at switches S1 and S3, respectively. It can be
observed that there are two possible paths between the source
and the destination. This scenario determines if the proposed

Table II: Sim. parameters for proof-of-concept experiments.

Parameter Value
Platform Mininet (with OVS), Mininet-WiFi
Topology Figs. 9, 12a, 13a
Link bandwidth 10 Gbps

Traffic types Observed flow (UDP)
Domain traffic (UDP)

Host pairs 1 per topology
Flow rate 50 per sec
Per flow data rate 50 Mbps
Link latency 2 �s
Simulation time 20 sec. (without setup)

LATIF et al.: DYNAMICALLY OPTIMIZED & LOAD-BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION 11

Avg. FL Avg. mED-SDN

Avg. Dolphin

(a) Minimum RTT.

Avg. FL

Avg. mED-SDN

Avg. Dolphin

(b) Average RTT.

Avg. FL

Avg. mED-SDN

Avg. Dolphin

(c) Maximum RTT.

Avg. FL

Avg. mED-SDN

Avg. Dolphin

(d) Mean Deviation of RTT.

Figure 10: RTT for intra-domain using FloodLight.

(a) Against ODL and mED-SDN. (b) Against FloodLight.

Figure 11: Link utilization for intra-domain module.

solution can maintain the optimal path and redirect traffic on a
less loaded path dynamically. The main evaluation parameters
in this scenario are the Round Trip Time (RTT) and the
link utilization of different paths when H1 transfers data to
H2. Figure 10 presents the minimum, average, maximum,
and mean deviation RTT against floodlight controller and
mED-SDN, while Figure 11 shows the link utilization against
different controllers. The experiments have been repeated 10
times, and average results are presented.

It can be observed from Figure 10, that there is a minor
difference in minimum RTT between FloodLight controller,
mED-SDN, and Dolphin. Average RTT is more than 1.5
ms with FloodLight controller whereas, mED-SDN performs
better as compared to Floodlight and takes 0.3 ms to 0.6 ms.
Dolphin outperforms both of the existing solutions and gives
0.25 ms average RTT. Similarly, maximum RTT is less than
1 ms, and the mean deviation is less than 0.3 ms with the
proposed solution.

To compute link utilization on all possible paths from source
to destination, we created two applications. One application
generates the observed data flow, while the other generates
random traffic across the network to model load on links. It
can be observed from Figure 11 that without Dolphin the usage

2

4

6

8

H1

1

H2

3

H3 H4

5 7

Source	Domain Destination	Domain

P1

P2

(a) Topology in directly connected domains.

(b) Link utilization with ODL.

Figure 12: Inter-domain topology and link utilization.

2

4

6

8

H1

1

H2

3

H3 H4

5 7

Source	Domain Intermediate	Domain Destination	Domain

P1

P2

(a) Topology in indirectly connected domains.

(b) Link utilization with ODL.

Figure 13: Indirectly connected domains and link utilization.

of the initial path is maximum, whereas the second path is
neglected by using the OpenDaylight controller. For example,
path P1 is overloaded with more than 50% utilization, whereas
usage of path P2 is zero for the observed flow. It is important
to note that the load generating application directs traffic
randomly on the different links, hence it is not possible that the
other path is overloaded with it. Similar to ODL, mED-SDN
results show that its behavior is almost similar. Contrary to
these, the proposed algorithm dynamically switches the path
of the observed flow and utilizes both the links evenly. It can be
seen that the link utilization is less than 30% for the observed
flow on both links. Similarly, when the Floodlight controller
is used, link utilization of one path is more than 70% and
the other link is not being used at all. However, both of these
links are being used to transfer data after running Dolphin and
overall link utilization has been reduced for the observed flow.

12 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, JANUARY 2021

H1 H2

S1 S2

AP1 AP2

Station 1 Station 2

n1 n2 n3 n4

(a) Vertical extension topology.

Avg. w Normal Controller

Avg. w Custom Controller

(b) 2 Nodes

Avg. w Normal Controller

Avg. w Custom Controller

(c) 3 Nodes

Avg. w Normal Controller

Avg. w Custom Controller

(d) 4 Nodes

Figure 14: Topology and average delay with different number of nodes in the vertical extension. Delay is measured end-to-end.

Avg. w/o Dolphin

Avg. w Dolphin

Figure 15: Controller load with vertical extension.

Notably, due to multiple cost functions of weight value, there
is no link flapping while Dolphin is used.

2) Communication Among Directly Connected Domains:
The scenario to evaluate inter-domain (but directly connected)
load balancing is shown in Figure12a. It can be seen that there
are multiple paths from the source domain to the destination
domain, and within each domain, there are multiple paths
from the egress/ingress switch to the destination switch. It
is important to note that we have evaluated this using ODL
only, as the Floodlight controller is entirely centralized, and
does not work with multiple domains. Figure 12b presents
the performance of Dolphin in terms of link utilization. It is
evident that without the use of any load balancing system,
the initially selected path is utilized throughout the duration
of flow, while the other path has free bandwidth available.
However, with the use of the proposed algorithms, both of the
paths are utilized at the rate of 30% to 40% by the observed
flow. Reduction of link utilization and load on both links
proves that the load is distributed evenly and resources are
being utilized efficiently.

3) Communication Among Indirectly Connected Domains:
The third scenario uses almost the same topology as in the
previous experiment, but with an intermediate domain as
presented in Figure 13a. This intermediate domain does not
provide any internal topological information and does not
allow the proposed scheme to install paths on its switches.
However, it uses a heuristic approach for the flows to tran-
sit through its network. For simplicity, we assume that the
possible paths for observed flow are P1 and P2. Furthermore,
the intermediate domain has some internal traffic so that the
flows are disrupted. Figure 13b presents the link utilization for
indirectly connected domain scenario. Due to changes in the

uncontrolled intermediate domain, both links are used without
applying Dolphin but this utilization is less than 5%. It is
important to note that the link utilization shown here does
not include the path-segment from within the non-cooperative
intermediate domain. Hence, the links from H1 to egress of
source domain (switch 4) and then switch 8 to H4 are the
segments which are measured, which remains low due to the
generic method. However, link utilization is improved for the
observed flows to 10% after running Dolphin.

4) Communication Among Data Plane and Perception
Plane Elements: Particularly for this scenario, we have used
Mininet-WiFi to enable wireless communication. Mininet-
WiFi is a fork to Mininet and extends its functionality by
adding different classes to support stations and access points.
In order to delegate control, we have modified Mininet-WiFi
where an AP can act as a sub-controller. Moreover, the mobile
stations are also made capable of interacting with controllers
through a specialized SBI. Figure 14a presents the topology
used for this scenario. Due to the delegation of controller
functionalities to access points, it becomes an inter-domain
communication. To evaluate vertical extension, we compute
delay and evaluate by comparing the performance of a cus-
tom controller (i.e., secondary controller) and performance of
directly connected domains in Mininet-WiFi.

Moreover, Figure 14 shows the delay with the custom and
normal controller. The custom controller presents the delay
when control is delegated to data plane elements to handle
the perception plane. Whereas, normal controller delay shows
a traditional SDN controller to handle data plane elements.
Figure 14b presents delay when both of these controllers
handle only 2 nodes. In Figure 14c and 14d number of nodes
are increased by one. In all three cases, the delay with custom
controller and normal controller is almost similar, which shows
that after control delegation no additional delay is introduced.
The controller load is presented in Figure 15, where load is
computed by using number of requests sent by each switch.
It can be noticed that load is reduced slightly when control
is delegated to data plane elements by using Dolphin. As
communication among different devices at perception plane is
handled by data plane elements which also work as controller
thus, it reduces the load over the main controller.

B. Multi-Domain Datacenter Communication

We have implemented the proposed Dolphin algorithm in a
simulated environment using Mininet and then raw data output

LATIF et al.: DYNAMICALLY OPTIMIZED & LOAD-BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION 13

Table III: Sim. parameters for datacenter experiments.

Parameter Value
Topology 4-Post Leaf-Spine (Fig. 16)
Core routers 4
Clusters/Domains 4
Spin switches 4 per cluster
Leaf ToR switches 8 per cluster
Worker servers 8 per rack
Link capacity 10 Gbps
Link latency 2 �s
Non-coop. domain Cluster 3 (Fig. 16b)
Max host pairs 7680
Traffic types 3 (Fig. 17)
Flow rate 30 per worker
Simulation time 30 sec. (without setup)

has been processed in Matlab to evaluate scalability, response
to realistic traffic, and overall performance.

The network topology is designed to represent a 4-post leaf-
spine architecture, with a core router at the top, as shown in
Figure 16a. The whole network consists of 4 such clusters as
shown in Figure 16b. Each cluster mimics a domain, where the
controller is running at the core router. The workloads used
in experimentation are similar to the one in literature [43]–
[45], which are derived from actual data centers. We use three
different types of services: Web search, Data mining, and
Hadoop. The traffic distribution of these services is shown
in Figure 17. Each server in topology initiates connections
for destinations in rack, in cluster, and cross-cluster with even
distribution. The service type is also uniformly distributed for
connections. All flows have associated completion deadlines.
As part of the experiment, we have enabled the Dolphin
algorithm to prioritize the flow installation of those flows
which have higher priority (i.e., shorter deadline).

We have evaluated the performance of Dolphin in terms
of the Flow Completion Times (FCT) as the main metric for
comparison. We show the Normalized FCT for small flows,
large flows, and for 99th percentile. The simulation parameters
are listed in Table III.

The normalized flow completion times for all flows aggre-
gated is shown in Figure 18. The overall FCT in Figure 18a
shows a clear improvement in reaching deadlines within the
given amount of time. At lighter loads on the network,
the FCTs are comparable for all the controllers, but as the
load on the network increases the congestion also increases.
Figures 18b & 18c show mice flow completion as average, and
at 99th percentile (note the change in scale). The performance
increase is quite evident especially with a high number of
connections in the topology against generic ODL. The large
throughput sensitive flows also show improved completion
time of orders of magnitude more in Figure 18d. The load
balancing of new flows (for congested destinations) helps
in reducing the congestion quickly at intermediate points,
while the existing flows are switched to paths with less load.
The knowledge of the network state helps in picking the
appropriate path and dynamically change it using Dolphin.
When Dolphin is made priority aware, it dynamically adjusts
the flows for shorter deadline flows before the other regular
flows. Hence, they experience better FCT as compared to the

(a) Cluster Topology.

Non	Co-operative	Domain
Cluster	2

Cluster	4Cluster	1

Cluster	3

(b) Core connecting 4 clusters.

Figure 16: Topological connectivity of data center.

Figure 17: Traffic distribution of three services for simulation.

rest.
Figure 19 shows the completed flows within their dead-

lines and the average link utilization of the network within
the rack, within the cluster (ToR to spine), and across the
cluster. Figure 19a shows the percentage of completed flows
within deadlines at different locations of the network. The
performance of flows within the rack is almost similar in each
case, as the possible paths are short and not many congested
points are available. It becomes more prominent in cross-
cluster communication and within the cluster, where there may
be more congestion points. Dolphin has shown to complete
99.5% of the flows within the deadline. In Figure 19b we
show the average utilization of the links, which gives an
estimation of the load balancing through the minimum and
maximum deviations. It needs to be clarified here, that the
error lines are depicting minimum and maximum deviation
in link utilization from the average. We can observe that the
deviation is less when Dolphin is used, and more when generic
ODL is working. Moreover, the overall link utilization for
ODL is also less as compared to the Dolphin solution.

C. 5G Vehicular Network

In this section, we evaluate the performance of the proposed
scheme for the vertical extension in 5G vehicular network
environment. 5G networks extended for vehicular communica-
tion are also similar to inter-domain communication, where the
Road Side Units (RSUs) connected through next-generation
Node-B (gNB) to edge clouds [46]. These clouds are highly
programmable and can have their own controllers. However,
the controller can only view the gNB, while the perception
plane (RSUs and vehicles with V2X communication) is not
visible (or programmable). Hence, in this experiment we
model the vertical extension of Dolphin, enable V2I and V2V
communication [47]. It is important to note, that the objective

14 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, JANUARY 2021

(a) Overall (b) (0,100KB]:Avg

(c) (0,100KB]:99�ℎ Percentile (d) (10MB,∞):Avg

Figure 18: Normalized FCTs for all services.

(a) Completed flows in deadline. (b) Average link utilization.

Figure 19: Flow completion and link utilization percentage.

is not to evaluate the 5G communication, but use a 5G envi-
ronment to model the connectivity of V2V and V2I systems.
Hence, we have used a hybrid modeling environment. The
topology and connectivity has first been built using NS-3 [48],
and then time-stamped connectivity and data rate statistics of
vehicles have been ported to Mininet-WiFi, where the hosts
are modeled based on these input parameters. In Figure 20 we
show the FCT and average path changes of topology, which
has 3 edge clouds (i.e. domains) and parameters as shown in
Table IV. For simplicity, all domains are cooperative.

Figure 20a shows the normalized FCT of all flows. It
can be observed that by using the vertical extension of the
proposed scheme, we can improve the completion times, as the
flows within the V2X communication can be programmed and
dynamically optimized. In Figure 20b we present the number
of average path changes with the increasing number of flows. It
is important to note that once the path is selected in traditional
controllers it is not changed until the flow completes. Hence,
ODL has only 1 path per flow. However for the proposed
solution, as there are a number of flows, the possible path
changes become more frequent. It is obvious that more path
changes will mean more control information packets (flow
installation packets) in the network. However, given the clear

Table IV: Sim. parameters for vehicular network experiments.

Parameter Value
Platform Mininet-WiFi, NS-3
Topology Trace data [49]
Edge Clouds/Domains 3
RSUs 10 per cloud
Ingress/Egress RSUs 3 per cloud
No. of vehicles 53
RSU Range 100 m
No. of Flows 10-500
Simulation time 30 sec. (without setup)

(a) Average FCT. (b) Average path changes.

Figure 20: Perf. of vertical extension using vehicular network.

improvement in flow completion times, we believe that the
control overhead is acceptable.

VII. CONCLUSION

In real-world networks, redundant paths are available be-
tween any pair of communicating devices, especially when
they exist in different network domains. In most of the
scenarios, these network resources in terms of link utilization
are wasted because the flows are not dynamically managed.
In this work, we have proposed a dynamic solution for SDN
controllers which load balances the flows among multiple links
dynamically across different domains. Furthermore, it also
provides better resource utilization in case of an intermediate
domain which is not co-operative. The solution gives dynamic
control over network elements beyond the traditional virtual
switches, in the perception plane, such as IoT devices, sensors,
and mobile stations. Moreover, the algorithms developed in
this work are also applied to vehicular communication, which
is yet another example of an extended perception plane with
unique requirements and different domains. The experimental
results first establish that the solution is viable through a
simple testbed, and then rigorous testing on the data center
environment and 5G vehicular network further prove its capa-
bilities.

Several future research directions can be taken for the
work proposed in this article. The extension of perception
plane devices may include different physical communications
standards and their tight integration into the topological graph
and Openflow data can be an interesting optimization. Sim-
ilarly, intelligent flow rule modification at the access points,
and understanding of Openflow can prove to be beneficial.
Currently, the interfacing APIs between the master controller
and delegated-control devices only work for the designed
system. These APIs can be further extended and standardized

LATIF et al.: DYNAMICALLY OPTIMIZED & LOAD-BALANCED PATH FOR INTER-DOMAIN SDN COMMUNICATION 15

to be more capable. Implementation of similar work in the
UAV domain is also possible and may prove to be extremely
valuable, and further experimentation can also be beneficial to
evaluate performance.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
Jan 2015.

[2] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 114–119, Feb 2013.

[3] S. Saraswat, V. Agarwal, H. P. Gupta, R. Mishra, A. Gupta, and T. Dutta,
“Challenges and solutions in software defined networking: A survey,”
Journal of Network and Computer Applications, vol. 141, pp. 23–58,
Sep 2019.

[4] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, and Y. Wang,
“A comprehensive survey of interface protocols for software defined
networks,” Journal of Network and Computer Applications, vol. 156, p.
102563, 2020.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, Mar 2008.

[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4, pp. 3–14, Sep 2013.

[7] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven WAN,”
in Proceedings of the ACM SIGCOMM. ACM, 2013, pp. 15–26.

[8] M. Karakus and A. Durresi, “A survey: Control plane scalability is-
sues and approaches in software-defined networking (SDN),” Computer
Networks, vol. 112, pp. 279–293, Jan 2017.

[9] K. Kuroki, M. Fukushima, M. Hayashi, and N. Matsumoto, “Redun-
dancy method for highly available openflow controller,” Inter. Journal
on Advances in Internet Technology, vol. 7, no. 1, pp. 114–123, 2014.

[10] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,” in
USENIX Conference on Operating Systems Design and Implementation.
USENIX Association, 2010, p. 351–364.

[11] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, “Multi-controller based
software-defined networking: A survey,” IEEE Access, vol. 6, pp.
15 980–15 996, 2018.

[12] L. Zhu, M. M. Karim, K. Sharif, C. Xu, F. Li, X. Du, and M. Guizani,
“SDN Controllers: A Comprehensive Analysis and Performance Eval-
uation Study,” ACM Computing Surveys, vol. 53, no. 6, pp. 1–40, Dec
2020.

[13] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking
for internet of things: A survey,” IEEE Internet of Things Journal, vol. 4,
no. 6, pp. 1994–2008, Dec 2017.

[14] I. Alam, K. Sharif, F. Li, Z. Latif, M. Karim, S. Biswas, B. Nour, and
Y. Wang, “A Survey of Network Virtualization Techniques for Internet
of Things Using SDN and NFV,” ACM Computing Surveys, vol. 53,
no. 2, pp. 1–40, 2020.

[15] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “Nox: Towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, Jul 2008.

[16] “POX,” 2017, (Accessed: Oct. 25, 2020). [Online]. Available:
https://github.com/noxrepo/pox

[17] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Internet Network Management Conference on Research
on Enterprise Networking. USENIX Association, 2010, p. 3.

[18] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Elasticon: an elastic distributed sdn controller,” in ACM/IEEE sym-
posium on Architectures for networking and communications systems.
ACM, Oct 2014, pp. 17–27.

[19] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and
scalable offloading of control applications,” in Workshop on Hot topics
in software defined networks. ACM, 2012, pp. 19–24.

[20] H. Long, Y. Shen, M. Guo, and F. Tang, “LABERIO: Dynamic
load-balanced routing in OpenFlow-enabled networks,” in IEEE 27th
International Conference on Advanced Information Networking and
Applications. IEEE, Mar 2013, pp. 290–297.

[21] A. M. Al-Sadi, A. Al-Sherbaz, J. Xue, and S. Turner, “Routing algo-
rithm optimization for software defined network WAN,” in Al-Sadeq
International Conference on Multidisciplinary in IT and Communication
Science and Applications. IEEE, May 2016, pp. 1–6.

[22] M. F. Ramdhani, S. N. Hertiana, and B. Dirgantara, “Multipath routing
with load balancing and admission control in software-defined net-
working (SDN),” in 4th International Conference on Information and
Communication Technology. IEEE, May 2016, pp. 1–6.

[23] A. Khaliq, S. H. Adil, and J. Jamshid, “Enhancing throughput and load
balancing in software-defined networks,” in International Conference on
Computing, Mathematics and Engineering Technologies. IEEE, Mar
2018, pp. 1–6.

[24] D. Adami, S. Giordano, M. Pagano, and G. Portaluri, “A novel SDN
controller for traffic recovery and load balancing in data centers,” in
IEEE International Workshop on Computer Aided Modelling and Design
of Communication Links and Networks, Oct 2016, pp. 77–82.

[25] Y.-L. Lan, K. Wang, and Y.-H. Hsu, “Dynamic load-balanced path
optimization in SDN-based data center networks,” in 10th International
Symposium on Communication Systems, Networks and Digital Signal
Processing. IEEE, Jul 2016, pp. 1–6.

[26] A. Abdulaziz, E. A. Adedokun, and S. Man-Yahya, “Improved extended
dijkstra’s algorithm for software defined networks,” International Jour-
nal of Applied Information Systems, vol. 12, no. 8, pp. 22–26, 2017.

[27] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering
in software defined networks,” in IEEE International Conference on
Computer Communications (INFOCOM). IEEE, Apr 2013, pp. 2211–
2219.

[28] J. Wang, G. Shou, Y. Hu, and Z. Guo, “A multi-domain SDN scalability
architecture implementation based on the coordinate controller,” in
International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery. IEEE, Oct 2016, pp. 494–499.

[29] H. Wang, H. Xu, L. Huang, J. Wang, and X. Yang, “Load-balancing
routing in software defined networks with multiple controllers,” Com-
puter Networks, vol. 141, pp. 82–91, Aug 2018.

[30] W. Lan, F. Li, X. Liu, and Y. Qiu, “A dynamic load balancing
mechanism for distributed controllers in software-defined networking,”
in International Conference on Measuring Technology and Mechatronics
Automation. IEEE, Feb 2018, pp. 259–262.

[31] Y. Zhou, M. Zhu, L. Xiao, L. Ruan, W. Duan, D. Li, R. Liu, and M. Zhu,
“A load balancing strategy of SDN controller based on distributed
decision,” in IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, Sep 2014, pp. 851–856.

[32] K. Hikichi, T. Soumiya, and A. Yamada, “Dynamic application load
balancing in distributed SDN controller,” in 18th Asia-Pacific Network
Operations and Management Symposium. IEEE, Oct 2016, pp. 1–6.

[33] P. Sun, Z. Guo, G. Wang, J. Lan, and Y. Hu, “Marvel: Enabling
controller load balancing in software-defined networks with multi-agent
reinforcement learning,” Computer Networks, p. 107230, 2020.

[34] M. Bagaa, D. L. C. Dutra, T. Taleb, and K. Samdanis, “On sdn-driven
network optimization and qos aware routing using multiple paths,” IEEE
Transactions on Wireless Communications, vol. 19, no. 7, pp. 4700–
4714, Jul 2020.

[35] Z. Duliński, G. Rzym, and P. Chołda, “Mpls-based reduction of flow
table entries in sdn switches supporting multipath transmission,” Com-
puter Communications, vol. 151, pp. 365–385, 2020.

[36] S. Bera, S. Misra, and A. Jamalipour, “Flowstat: Adaptive flow-rule
placement for per-flow statistics in sdn,” IEEE Journal on Selected Areas
in Communications, vol. 37, no. 3, pp. 530–539, 2019.

[37] P. R. Torres-Jr, A. Garcı́a-Martı́nez, M. Bagnulo, and E. P. Ribeiro,
“Bartolomeu: An sdn rebalancing system across multiple interdomain
paths,” Computer Networks, vol. 169, p. 107117, 2020.

[38] M. Hamdan, E. Hassan, A. Abdelaziz, A. Elhigazi, B. Mohammed,
S. Khan, A. V. Vasilakos, and M. Marsono, “A comprehensive survey
of load balancing techniques in software-defined network,” Journal of
Network and Computer Applications, p. 102856, Oct 2020.

[39] “Mininet: An Instant Virtual Network on your Laptop (or other
PC),” 2015, (Accessed: Oct. 25, 2020). [Online]. Available: http:
//www.mininet.org/

[40] “MiniNet-WiFi: Emulator for Software-Defined Wireless Networks,”
2017, (Accessed: Oct. 25, 2020). [Online]. Available: https://github.
com/intrig-unicamp/mininet-wifi

[41] “Opendaylight: A linux foundation collaborative project,” (Accessed:
Oct. 25, 2020). [Online]. Available: https://www.opendaylight.org

16 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, JANUARY 2021

[42] “Project FloodLight,” 2014, (Accessed: Oct. 25,2020). [Online].
Available: https://github.com/floodlight/floodlight

[43] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),”
ACM SIGCOMM Computer Communication Review, vol. 40, no. 4, pp.
63–74, Aug 2010.

[44] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S.
Iqbal, and B. Khan, “Minimizing flow completion times in data cen-
ters,” in IEEE International Conference on Computer Communications
(INFOCOM). IEEE, Apr 2013, pp. 2157–2165.

[45] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp.
435–446, 2013.

[46] “View on 5G Architecture,” 5G PPP Architecture Working
Group, Technical Paper for Public Consultation, Jun 2019.
[Online]. Available: https://5g-ppp.eu/wp-content/uploads/2019/07/
5G-PPP-5G-Architecture-White-Paper v3.0 PublicConsultation.pdf

[47] W. B. Jaballah, M. Conti, and C. Lal, “Security and design requirements
for software-defined vanets,” Computer Networks, vol. 169, p. 107099,
2020.

[48] “Network Simulator (NS-3),” 2020, (Accessed: Oct. 25,2020). [Online].
Available: https://www.nsnam.org/

[49] Y. Zheng, “T-Drive trajectory data sample,” 2011, (Accessed:
Oct. 25,2020). [Online]. Available: https://www.microsoft.com/en-us/
research/publication/t-drive-trajectory-data-sample/

Zohaib Latif did his BS in Electrical Engineer-
ing in 2006 and MS in Electrical and Electronics
Engineering from University of Glasgow, UK in
2008. Since 2011 he was working as senior lecturer
and recently completed his PhD from School of
Computer Science, Beijing Institute of Technology,
Beijing, China. Currently he is working as an assis-
tant professor in Department of Computing, Riphah
International University, Faisalabad Campus. His
major interests are in Software-Defined Networks
(SDN), Distributed Controllers in SDN, and Internet

of Things.

Kashif Sharif received his M.S. degree in informa-
tion technology in 2004 from National University of
Sciences and Technology, Pakistan, and Ph.D. de-
gree in computing and informatics from University
of North Carolina at Charlotte, NC, USA in 2012.
He is currently an Associate Professor for research
at Beijing Institute of Technology, Beijing, China.
His research interests include data centric networks,
blockchain & distributed ledger technologies, wire-
less & sensor networks, software-defined networks,
and 5G vehicular & UAV networks. He is a senior

member of IEEE and serves as associate editor for IEEE Access. He also
serves on several TPCs of IEEE and ACM conferences.

Fan Li received her Ph.D. degree in computer
science from the University of North Carolina at
Charlotte, Charlotte, NC, USA, in 2008, the M.Eng.
degree in electrical engineering from the University
of Delaware, Newark, DE, USA, in 2004, and the
M.Eng. and B.Eng. degrees in communications and
information system from the Huazhong University of
Science and Technology, Wuhan, China, in 2001 and
1998, respectively. She is currently a Professor with
the School of Computer Science, Beijing Institute of
Technology, Beijing, China. She has more than 100

publications in reputed journals and conferences. Her current research focuses
on wireless networks, ad hoc and sensor networks, and mobile computing. Her
papers have won Best Paper Awards from IEEE MASS (2013), IEEE IPCCC
(2013), ACM MobiHoc (2014), and Tsinghua Science and Technology (2015).
She is a Member of the ACM and the IEEE.

Md Monjurul Karim is pursuing his Ph.D. in Com-
puter Science and Technology at Beijing Institute of
Technology, Beijing, China. Previously, he received
both M.Eng and B. Eng in Computer Science from
Northwestern Polytechnical University, Xian, China.
His research interests include Software-Defined Net-
working, Information-Centric Networking, Named
Data Networks, and Next-Generation Networking

Sujit Biswas received his Ph.D degree in Computer
Science and Technology from Beijing Institute of
Technology, China, and M. Engineering degree in
Computer Engineering from Northwestern Polytech-
nical University, China in 2015. He is also an
Assistant Professor with Computer Science and En-
gineering department, Faridpur Engineering College,
University of Dhaka, Bangladesh. His basic research
interest is in Intern of Things, Blockchain, Mobile
computing security and privacy, Big Data, Machine
Learning, Data driven decision making, etc.

Madiha Shahzad received her M.S. (2004) in in-
formation technology from National University of
Science and Technology, NUST, Pakistan and her
Ph.D. (2012) in computer science from Univer-
sity of the West of England, UWE, UK. She is
currently working as an Associate Lecturer and a
Post Doctoral Scholar at UCLan Cyprus, School of
Sciences. She has actively participated in several
EU FP6/FP7 research projects and authored numer-
ous peer-reviewed journal publications, conference
papers and book chapters. Her current research in-

terests include evolving telecommunication systems especially 5G, Internet
of Things, QoS aspects and the considerations of responsible research and
innovation in these domains.

Saraju P. Mohanty received the bachelor’s de-
gree (Honors) in electrical engineering from the
Orissa University of Agriculture and Technology,
Bhubaneswar, in 1995, the master’s degree in Sys-
tems Science and Automation from the Indian Insti-
tute of Science, Bengaluru, in 1999, and the Ph.D.
degree in Computer Science and Engineering from
the University of South Florida, Tampa, in 2003. He
is a Professor with the University of North Texas.
His research is in “Smart Electronic Systems” which
has been funded by National Science Foundations

(NSF), Semiconductor Research Corporation (SRC), U.S. Air Force, IUSSTF,
and Mission Innovation. He has authored 350 research articles, 4 books, and
invented 4 granted and 1 pending patents. His Google Scholar h-index is 38
and i10-index is 147 with 6500 citations. He is regarded as a visionary re-
searcher on Smart Cities technology in which his research deals with security
and energy aware, and AI/ML-integrated smart components.. He introduced
the Secure Digital Camera (SDC) in 2004 with built-in security features
designed using Hardware-Assisted Security (HAS) or Security by Design
(SbD) principle. He is widely credited as the designer for the first digital
watermarking chip in 2004 and first the low-power digital watermarking chip
in 2006. He is a recipient of 12 best paper awards, Fulbright Specialist
Award in 2020, IEEE Consumer Technology Society Outstanding Service
Award in 2020, the IEEE-CS-TCVLSI Distinguished Leadership Award in
2018, and the PROSE Award for Best Textbook in Physical Sciences and
Mathematics category in 2016. He has delivered 10 keynotes and served
on 9 panels at various International Conferences. He has been serving on
the editorial board of several peer-reviewed international journals, including
IEEE Transactions on Consumer Electronics (TCE), and IEEE Transactions
on Big Data (TBD). He is the Editor-in-Chief (EiC) of the IEEE Consumer
Electronics Magazine (MCE). He has been serving on the Board of Governors
(BoG) of the IEEE Consumer Technology Society, and has served as the
Chair of Technical Committee on Very Large Scale Integration (TCVLSI),
IEEE Computer Society (IEEE-CS) during 2014-2018. He is the founding
steering committee chair for the IEEE International Symposium on Smart
Electronic Systems (iSES), steering committee vice-chair of the IEEE-CS
Symposium on VLSI (ISVLSI), and steering committee vice-chair of the
OITS International Conference on Information Technology (ICIT). He has
mentored 2 post-doctoral researchers, and supervised 12 Ph.D. dissertations,
26 M.S. theses, and 10 undergraduate projects.

