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Abstract—In medical practices, the detection of diseases highly
depends on different medical tests. Electrocardiogram (ECG)
technique is commonly used for heart disease diagnosis. Doctors
can measure pulse and other heart boundaries with the aid of
it. Fast and precise detection of forms of arrhythmia is critical
while identifying heart disease. In this work, we proposed an
intelligent ECG device (called iKardo) with the built-in automatic
capability to classify into critical and non-critical data from an
imbalanced ECG dataset for the smart IoT or Internet of Things
based smart healthcare device. Particular emphasis is given to
the reduction of data misclassification by converting imbalanced
data into a balanced dataset using necessary techniques. This
proposed iKardo helps in the accurate detection of critical ECG
beats with an accuracy of 99.58 % and result in a smart healthcare
monitoring device that would make the disease detection fast and
precise.

Index Terms—ECG signals, Machine learning, Smart health-
care, Critical signal beats, Imbalanced data

I. INTRODUCTION

An efficient IoT-based smart ECG monitoring device can
revolutionize the healthcare system. Electrocardiogram (ECG)
analyses the tiny electrical impulses produced by the heart.
An ECG system shows the electrical activity data as a graph
with clear traces. A medical professional interprets the data
afterwards. The ECG helps to detect irregular heart rhythm
(cardiac) anomalies.

A smart and remote ECG monitoring system is more
effective when identifying critical signal beats within the
device itself. This may be realized with the application of
machine learning-based approaches. A healthcare program
built on the Internet of Things (IoT) may track individuals’
ECG signals remotely and accurately with proposed iKardo
over an extended period. IoT guided WBAN or wireless
body area network based smart ECG monitoring system will
dramatically improve the safety and well-being, especially by
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Fig. 1. A Smart Healthcare Framework for Automatic Heart Monitoring

monitoring the patient’s ECG signal automatically, feeding it
to the relevant classifier. It is found by adequately classifying
the ECG data monitored [1]. In this context, it is crucial to find
a simple and less resource-consuming machine learning based
device capable of identifying critical and non-critical signals
accurately and consumes less power. Our aim is to provide
the best possible hardware-based machine learning model for
ECG beat recognition and in Fig. 1 we show the proposed
model of a smart healthcare system.

The classification of ECG signals with the help of machine
learning techniques have some vital issues [2]. For example,
the lack of proper guidelines and imbalanced nature of present
standard database,the task is more complicated but in iKardo
we are able to overcome most of these issues. Medical
practitioners’ observations differ a great extent on the same
ECG signal reading i.e. individuals are generally incapable of
perceiving the morphological changes of ECG signals without
specialized aids [3].The salient contributions of this paper are
discussed in the novelty section. The remainder of the paper is
arranged as follows: Section II discusses related prior work,the
problem addressed in ECG beat classification in Section III,
smart [oT based healthcare device is discussed in Section IV,
Section V describes machine learning modeling, Section VI
contains experimental validation of the results, concluded by
Section VII.

II. RELATED PRIOR WORK

Rapid Advancement in technology and health awareness re-
sulted a massive growth in smart healthcare system and by the



end of 2020 it reached above 809 million, that can discussed
in [4]. Multi feature ECG classification proposed in [5] using
Distance weighted k nearest neighbour (DWKNN) by dividing
the data set into two categories: V-type and S-type with up-to
99% average accuracy. In [6] proposed a convolutional neural
network and multi-layer perceptron based ECG classification
with focal loss and 96.27% accuracy. A wavelet based Ar-
rhythmia Monitoring System proposed in [7] with chip fabri-
cation and tested on human body achieved 95.83% accuracy
for arrhythmia detection.In [8] a health monitoring system was
proposed for ECG of elder people when they are in outdoor
using multi-thread method and GPS to locate that person when
there is any detection of falling event. They were able to
decrease the detection time by 38%. A wearable diabetes care
device [9] was proposed using PPG signal by random forest
and adaboost regression models and achieved 90% accuracy in
glucose prediction. In [10] the authors proposed an automated
IoMT based seizure detection system from EEG signal using
SRA (Signal Rejection Algorithm) and VLD (Voltage Level
Detector) and achieved sensitivity and specificity of 96.9% and
97.5% respectively. A deep learning neural network (DNN)
based stress level detection device was proposed in [11] They
were able to achieve a 99.7% accuracy rate, which was proved
to be beneficial to schizophrenia patients. In [12] a long term
ECG monitoring considered with general regression neural
network (GRNN) model with accuracy 89%. A cellphone-
based healthcare wireless framework was created in [13]for
providing continuous online data about anatomical states of a
patient.

An algorithm trained with the patient’s heart rate, EEG,
temperature information being forwarded to a mobile ap-
plication. However, deep learning based algorithms are not
utilized in [14]. In [15] Ahmad, discussed beat classification in
multiple classes using waveform and RR interval by wavelet-
based classification in MIT/BIH dataset with 97.52% accuracy
without consulting the problem of imbalanced nature of data.
They introduced an IoT-based health observation framework
with Wavelet for removing highlights, and group the ECG
beats alongside PCA (Principal Component Analysis) in [16],
[17].

In [18],they implement ECG classification based on HHT
(Hilbert-Huang Transform) for pre-processing and statistical
features with multi-class SVM proposed and got results up
to 98.8%. Among the algorithms, SVM has performed truly
well in this regard for multi-class and binary characterization
alongside the KNN (K-nearest neighbour) algorithm in [19],
[20]. Brain-inspired Al approach is utilized for wireless wear-
able devices for ECG monitoring. In MIT/BIH dataset, they
had a positive prediction rate of 86.1% [21].

SMOTE was used for detecting breast cancer [22] [23]
where it is used to manage missing data and the imbal-
anced nature of the dataset and improved the accuracy from
97.4% to 98.1%. In [24] they proposed a automatic body
vital monitoring wearable garments with average accuracy of
96.9%. In [25], a new bidirectional deep LSTM network-based
wavelet sequences(DBLSTM-WS) model was deployed for
classification of ECG signals. However, target application is
not mentioned. The results of 5 types of heartbeats collected

from the MIT-BIH arrhythmia database are evaluated with a
performance of 99.39%.

III. CONTRIBUTION OF THE WORK

The main favourable circumstances in smart health care
system are the checking, investigation, finding, and monitor-
ing of patients’ symptoms by IoT based health monitoring
device. The primary motivation of this proposed model is to
support medical practitioners in the diagnosis of patient health
using ECG signals. The proposed iKardo is an IoT-based
health monitoring device. Therefore, power consumption is
an important issue to extend its battery life. An adaptive
power management technique has been explored. The pro-
posed health monitoring device works with the ECG signals
received from the sensor present in the patient’s body. Firstly,
the outputs of the sensors are connected with the computation
unit. The outputs of the computation unit are connected with
the classifier. Then received signals are classified using our
proposed classifier model in terms of critical and non-critical
signals. Apart from the power-aware device, another important
contribution of this work is to achieve accuracy, which is
significant over the existing works. We explore a ResNet
residual CNN (Convolution Neural Network) stack method for
various machine learning approaches for classification, which
outperformed individual algorithms. One of the major issues
with ECG signal classification is the imbalanced nature of the
standard datasets. In the case of an imbalanced dataset, the
number of non-critical data is larger than the critical data.
Due to this lots of misclassifications take place. Hence, this
affects the performance of the applied machine learning model.
As a consequence, the diagnosis of patient health may be
wrong. To address this bottleneck, we explore two well-known
techniques SMOTE and BIRCH for healthcare applications.
In comparison to the state-of-the-art, we improve the iKardo
device’s performance in terms of power consumption using
adaptive power-saving method, and accuracy by reducing
misclassifications. Table I shows that the state-of-the-art has
primarily focused on classification or as a health monitoring
device. We took into account the dataset’s imbalanced nature
as well as the power consumption. The proposed work ad-
dressed both the problem and presented a better solution. Fig.
1 and Fig. 2 depicted the framework and illustration of the
proposed new generation health monitoring device, iKardo.

A. Problems Addressed in the current work

In Table I, we compare iKardo to the state of the art and
highlighted our contributions in terms of accuracy precision,
and adaptive power management scheme. The existing works
are entirely focused on improving classification accuracy for
health monitoring, however, the issues associated with the
imbalanced nature of ECG dataset have not discussed. In
addition to that, power consumption has become a major issue
at ultra-submicron technology node which is also explored. To
improve the performance of a healthcare device, the proposed
work focused on both accuracy and power management

The proposed iKardo can accurately determine whether an
incoming ECG signal packet is critical or non-critical using



TABLE I
SUMMARY OF THE RELATED WORKS

Ref Dataset Used Approach Accuracy Remarks
Ji [5] MIT/BIH DWKNN 96% V-type and S-type data considered
Wang [6] MIT/BIH CNN with MLP 96.27% Morphological features used
Lee [7] MIT/BIH Wavelet based Classification 95.83% Chip fabricated and Tested
Li [12] MIT/BIH GRNN 89% Long term ECG monitoring
Khoureich [15] MIT/BIH Wavelet based Classification 97.52% Classify six types of heart beats
Sharma [18] MIT/BIH HHT 98.8% Statistical Features used
Alfaras [21] MIT/BIH Brain Inspired Al 86.1% Wireless wearable Device
Fallahi [22] Wisconsin SMOTE 98.1% Breast cancer detection
Sethuraman [24] MIT/BIH DNN 96.9% Wearable garments for body vital monitoring
Yildirim Ozal [25] MIT/BIH LSTM 99.39% Bidirectional deep LSTM network-based
wavelet sequence model
iKardo MIT/BIH SMOTE and BIRCH with 99.58% Adaptive power management scheme has been introduced
(Proposed) ResNet residual CNN stack

a trained model and respond accordingly. If the incoming
ECG signal packet is critical, the adaptive power management
technique activates the subsystems and transmits the data to
its intended location before returning to sleep mode; if signal
is not critical, the subsystems enter into sleep mode or power
saving mode and wait for the next signal. In addition to Table
I, we compared our proposed device to the existing devices
in Table II. Summary of proposed and existing devices are
shown in Table II. Our proposed iKardo device is capable
of improving further in terms of accuracy as well as power
consumption.

B. Solution Proposed

A significant amount of power consumption is one of the
major bottlenecks in IoT. Hence, there is a great need to
explore radical alternatives and architectural innovations for
sustaining the IoT for the long term. We explore the power
consumption issue as well as accuracy which is the most
crucial parameter for any healthcare device. We proposed
effective solutions to overcome the potential problems.

The imbalanced nature of the data is a major challenge
for ECG and it has been resolved by a combination of
two methods: SMOTE and BIRCH to perform a comparative
study.We randomly initialized Residual Network (ResNet)
CNN stacking instead and the results are then compared with
some well known classification algorithm (SVM, RF, and BN)
and to come up with the best possible solution.

C. Novelty of the Work

The proposed solution has been applied to get the desired
results and the salient contributions of this paper are:

o A device to help medical practitioners in the analysis and
diagnosis of pathologies through ECG signal processing

« Adaptive power management techniques for power-aware
healthcare devices. It improves the life of the device in
terms of usage and power consumption.

o Improvement of the performance of the applied ResNet
residual CNN stack model by handling imbalanced data

using BIRCH and SMOTE and identifying each category
with the reduction of misclassified data.

« Machine learning-based intelligent ECG signal classifica-
tion system suitable for IoT-based smart ECG monitoring
device iKardo.

/ECG \\ ML Engine gowelr
/ Sensor \ el
Multiplexor Power Control [
) —
g \ Wireless
| / Transmitter
L/ N
\solati Amplif Analog to Sample VIN
solation mpiitiers Digital Converter  Buffer
Circuitry ’
ECG Sample
Compressor Critical Beats|
Transmitted 1
Packet V\

Fig. 2. Illustration of new generation ECG device, iKardo

IV. 10T BASED SMART HEALTHCARE DEVICE FOR
ECG MONITORING

A. WBAN and Smart Healthcare

IoT technology has made possible the perception of an intel-
ligent, automated, and remotely real-time healthcare network.
Wireless Body Area Network (WBAN), with IoT, will attach
wearable sensor devices to track signals for an intelligent
healthcare system. As in [27] IoT-based WBAN sensor nodes
have four major units: body sensor unit, power unit, a commu-
nication unit, and a processing unit. The sensor unit receives
ECG signal packets from ECG sensors. Microcontroller Unit
processes the ECG signal packets by sampling with integrated
Analog to Digital Converter. The digital samples are identi-
fied as non-critical and critical classes and proposed iKardo
belongs to ML engine improved the overall classification
accuracy. The Power Management Controller (PMC) reduces
power consumption adaptively with the help of power saving



TABLE II
COMPARISON WITH EXISTING CONSUMER ELECTRONICS DEVICE
Ref Approach Accuracy  Medical Data Used Remarks
Tsai [9] Random Forest 90% PPG Self-generated data without imbalance nature,
Adaboost Regression Power related issues not discussed
Sayeed [10] SRA and IoMT 97.5% EEG Imbalance Nature not in consideration however,
Adaboost Regression total power consumption is mentioned
Raj [26] LSTSVM and Bee 96.14% ECG The imbalanced nature of the ECG dataset
colony optimization and Power related issues are not discussed
iKardo ResNet Residual 99.58% ECG Imbalance problem discussed and resolved and
(Proposed) CNN Stack adaptive power management scheme has been introduced

techniques. The structural diagram of new generation ECG
device is shown in Fig. 2.

B. Power Management

To improve the lifetime of IoT-WBAN, a crucial design
criterion is power management. In [28] a flexible power-saving
technique is used to maximize the effectiveness of the ECG
monitoring system by a adaptive power management scheme.
It monitors power utilization based on battery energy level and
non-critical or critical data by transmitting the alert signal only
when it is critical and saves power consumption. Therefore, it
is imperative for the healthcare system to accurately identify
critical signals to produce an efficient performance in adverse
situations. Machine learning-based approaches seem to be the
feasible solution to this issue. The detailed implementation of
adaptive power management scheme discussed in Algorithm 1
along with walkthrough example. The flowchart for the power
management is shown in Fig. 3.
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1) Walkthrough Example: Suppose an ECG signal data is
received by a node ‘m’ at time t. The flag for the transmit-
ter, ‘Trans_f’ (transmitter power flag) will be 1 (High) on
receiving of the packet which was initially 0 (Low). Each sub-
unit S has a power consumption of P. The transition period
from active to sleep is ¢y is ignored, as it is very small. The
raw ECG packet data transfer time is ¢2, while the warning
signal data transmission time is ¢3. The received ECG signal is
preprocessed and to check it is critical or not by the proposed

Algorithm 1 Adaptive Power Management

[1] Initialized Trans_f = 0 and Ack = 0

(where Trans_f is Transmitter power flag and Ack for
Acknowledgement)

[2] W hile ECG packets are available go through all the steps
[3] Set Trans_f = 1

[4] Received ECG signal processed and input to classifier in
iKardo for classification

[5] If Input ECG packet is Critical then goto step6 otherwise
goto step7

[6] Supply All units Vdd i.e. Active Mode (mode 1)

To transmit an alert signal, use adaptive voltage scaling.

Set Ack = 1 when transmission completed and goto step7
[7] Supply all units 0V;i.e. Sleep Mode (mode 0)

[8] Loop back to step2

ML classifier model in iKardo the ‘Trans_f’ is set to 1. If
the ECG data is judged to be critical, the adaptive power
model active the subsystems and sent alert signals to the
destination, otherwise the subsystems are going to be in sleep
mode. The power saving strategy is based on the employment
of all subunits engaged in signal transmission. The user will
get the packet at time t + t3. The acknowledgment, ‘Ack’ is
altered from ‘0’ to ‘1’°, which indicates, that data transmitted
successfully.

C. Proposed Deep Learning Model for ECG Classification

Accessible ECG signals are grouped into two basic classes:
critical class and non-critical class, as indicated by AAMI
recommended practice [29]. From the required signal, high-
lights are determined, and their qualities are contrasted with
the estimations of typical ECG signals to decide whether
the signal is critical. Significant highlights of ECG and their
characteristic ranges are shown in Table III [29]. By the
AAMI recommendations, two types of labels are there for
representing various types of ECG signal as described in
Table IV [28]. According to the MIT labels, ECG signals are
classified into several classes. But due to the research purpose,
those are combined into non-critical and critical classes i.e.,
in 2 classes, as shown in Table V [30].



D. Dataset Overview and Feature Description

This experiment is performed by utilizing the information of
the MIT/BIH arrhythmia database by Dr Surekha Pal Reddy.

TABLE III
PARAMETERS OF ECG SIGNAL WITH NORMAL RANGE

PARAMETERS NORMAL RANGE
RR(Time Between 2 successive R waves) interval 0.6s-1s
PR (P to QRS Complex) interval 0.12s-0.2s
ST( QRS Complex to Starting of T) interval 0.08s-0.12s

TABLE IV
TWO TYPES OF BEAT LABELS USED IN THIS MM(AAMI
RECOMMENDATE BEAT LABEL)

Beats that do not belong to the normal beats(V),
N | super ventricular ectopic beats (F), or Others (Q)

The ventricular premature beat,Ron-T ventricular
\Y premature beat, or ventricular escape beat
(ventricular ectopic beats (VEB))

TABLE V
ACCORDING TO AAMI RECOMMENDATIONS MIT/BIH
DATABASE BEATS WITH TWO CATEGORIES

Description of BEAT MIT  Test

label  label
Normal 1 1
Left Bundle Branch Block 2 1
Right Bundle Branch Block 3 1
Bundle Branch Block(Unspecified) 25 1
Nodal (Junctional) Premature 7 1
Article Premature 8 1
Supra Ventricular Premature 1

(Atrial OR Nodal)

Aberrated Atrial Premature 4 1
Nodal (Junctional) Escape 11 1
Atrial Escape 34 1
Ventricular Premature 5 2
R-on-T Ventricular Premature 41 2
Ventricular Escape 10 2

The first database has 48 records, each of which is 30 min
long. Thirty three out of 48 records contain the ordinary beats
and untimely ventricular withdrawals. Premature ventricular
contractions (PVC) are utilized for this investigation. In the
dataset, in the 10" column, the initial four feature components
are temporal parameters (e.g. the R-R intervals), which are
determined as the duration between the two successive QRS
peaks. It contains names (1 for non-critical and 2 for critical).
The initial 9 sections include all the highlights separated in
the MIT/BIH dataset for characterizing the ECG signals in
ordinary and basic classes. The rest five feature components
are separated according to morphology.

The fifth feature is the relationship with the past beat and
the sixth feature is the connection beat with the next. These
are separated for all the beats in the database, and the feature
represents one except for the first and last beat in a record.

The last three features depend on the rate span of the wave-

form above certain given thresholds. Since the standardized
waveform lies somewhere in the range of 0 and 1, three limits
are selected that are 0.2, 0.5, and 0.8. These features have
great discriminate force for PVCs as they are commonly wide
complexes compared to sharp ordinary beats.

There is an imbalance in the dataset i.e., Out of the 74,000
plus beats only 6612 beats have been labelled as 2 (i.e. they
are critical), and the rest are labelled as 1 (Non-critical). The
presence of such imbalance in the dataset can create a large
amount of bias in the performance of the applied machine
learning model. This issue needs to be addressed. We fixed
the same using two different ways, i.e. SMOTE (Synthetic
Minority Oversampling Technique) & BIRCH (Balanced Iter-
ative Reducing and Clustering produces aggregated data from
massive databases).

V. PROPOSED MACHINE LEARNING MODELING
FOR ECG CLASSIFICATION

A. Proposed Methods for Managing ECG Data Imbalance

The imbalance nature of the dataset have been solved
by resampling of data,with two common approaches broadly
upsampling and downsampling. In most of the cases the
upsampling is preferred over the downsampling method.We
used both the methods to handle the imbalance nature of the
dataset.

The first approach is to downsample the set of non-critical
ECG signal beats to a size comparable to that of the set of
critical ECG signal beats with the implementation parameters
includes, number of cluster i.e. 6612 and threshold 0.12 which
indicate the radius of the subcluster by merging new sample
and the nearest subcluster must be lesser than that. However, it
is necessary to retain the distribution of the original dataset as
much as possible in the downsampled dataset. For this purpose,
the BIRCH algorithm is applied to get a dataset of non-critical
ECG signal beats of length around 6800. This is combined
with the set of critical ECG signal beats and then shuffled to
prepare a balanced dataset for training and testing the proposed
machine-learning model.Fig. 4 shows the BIRCH method.

Another balanced dataset is created with the application of
oversampling method SMOTE [31].It maintained the binary
class distribution of 1:1. It selects the minority class and find
its nearest neighbors by KNN (k=5 default value) and draw a
line between them.Choose any one of the neighbor and place
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a synthetic point on that line and oversampling the minority
class.Working process of SMOTE is in Fig. 5.This dataset is
larger with each of the classes consisting of samples 16892 in
number and details are shown in Table VI. All the experiments
have been performed on both the datasets separately and
achieved results are compared in the result section.

B. Proposed Method for ECG Data Classification

Instead of using very deep neural networks or pre-trained
models, we have experimented with default and randomly
initialized Residual Network (ResNet) stacking, instead the
results are then compared to a well-known classification algo-
rithm (SVM, RF, and BN) to come up with the best possible
solution.

TABLE VI
BALANCE DATASET
Class 1 Class 2
(Non-Critical)  (Critical)
Before Balancing 67570 6612
After Balancing (BIRCH) 6814 6612
After Balancing (SMOTE) 16892 16892

1) Classification Algorithms: Different standard machine
learning algorithms have been deployed. The algorithms are:
KNN,Logistic Regression,SVM,Gaussian Naive and Random
Forest. The MLP, a feed forward ANN with minimum three
number of layers namely input layer, hidden layer and an
output layer with activation function in each node except
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the input layer nodes is used along with ResNet on the
ECG dataset.the performance is noted for both. For internal
layers, ReLu activation is considered in ResNet. We have used
Adam optimizer and binary cross-entropy loss function. The
Structure of the MLP model is shown in Fig. 6.

2) ResNet: The infamous vanishing gradient problem
makes training deep network models difficult. The core idea of
ResNet is applying a so-called“Identity shortcut connection,
which skips for one or more layers, as shown in Fig. 7. We
can characterize a residual neural network (ResNet) as an
artificial neural network (ANN) of a kind that depends on
pyramidal cells construction in the cerebral cortex. Regular
ResNet models are executed with 2 fold or 3 layer skips with
non-linearities (ReLU) and normalization between batches.

VI. EXPERIMENTAL VALIDATION OF 1IKARDO

In this experimental setup, the dataset prepared by SMOTE
and BIRCH algorithm is explored. A power management
algorithm has been proposed and implemented in WBAN to
control the operating voltage in order to implement adaptive
power savings.

A. Simulation Setup

The experiments have been carried out using Python 3.7
and Keras with Tensorflow 2.0 backend. SKLearn library has
been used for the application of machine learning algorithms.
We also look after the binary cross-entropy loss or Sigmoid
Cross-Entropy loss. It used the Sigmoid activation function,
which is not independent of all vector components like Soft-
max loss, which means the loss calculated for every CNN
output vector element is not affected by other values. Adam
Optimizer is used to optimize that loss which is predefined
in TensorFlow Model. In different classification algorithm,
parametric changes are incorporated for random forest 65%
data for training. Rest are used for testing purpose with the
estimator size 100, (implies 100 numbers of different decision
trees in the forest), logistic regression used ‘Ibfgs’ solver. It
performs gradient evaluation and saves memory by reducing
the last few steps only. SVM used with linear kernel and
C value is 10 that tells the SVM classifier how much it
avoids misclassifying the training set. The larger value of
C chooses a small-margin hyperplane, and for the smaller
value, it chooses a large-margin hyper plane, and in KNN,



we consider K=4 after performing some operations with other
values of K (The no. of nearest neighbours to include in the
majority). Reduction of power consumption considered only
the critical data transmission with available energy from source
was implemented using Cadence tools to obtain power,area,
and delay of sleep transistors and Synopsis Design Controller
with 65nm and 28nm technology node with default parameters.

TABLE VII
COMPARISON For RESNET WITH BIRCH

Classifier Accuracy  Labels  Precision  Recall F1
Score
KNN 0.97 1 0.97 0.97 0.97
2 0.97 0.97 0.97
Logistic 0.89 1 0.90 0.88 0.89
Regression 2 0.88 0.90 0.89
0.95 1 0.96 0.94 0.95
SVM 2 0.94 0.96 0.95
Gaussian 0.90 1 0.90 0.89 0.90
NB 2 0.89 0.90 0.90
Random 0.93 1 0.94 0.93 0.93
Forest Clas- 2 0.93 0.94 0.93

sifier
MLP 0.9884 1 0.99 0.98 0.98
2 0.98 0.99 0.98
ResNet 0.995 1 1.00 0.99 1.00
2 0.92 1.00 0.95
TABLE VIII

COMPARISON FOR RESNET WITH SMOTE

Classifier Accuracy  Labels  Precision  Recall F1
Score
KNN 0.99 1 1.00 0.99 0.99
2 0.99 1.00 0.99
Logistic 0.95 1 0.95 0.94 0.95
Regression 2 0.95 0.94 0.95
0.98 1 0.98 0.98 0.98
SVM 2 0.98 0.98 0.98
Gaussian 0.90 1 0.86 0.95 0.90
NB 2 0.94 0.85 0.89
Random 0.93 1 0.97 0.98 0.98
Forest Clas- 2 0.98 0.97 0.97

sifier

MLP 0.9914 1 1.00 0.99 0.99
2 0.98 0.97 0.97
ResNet 0.9958 1 1.00 0.99 0.99
2 0.97 0.99 0.99

B. Metrics used for Evaluation

Classification algorithms usually suffer from the over fitting
or under fitting problem. To measure any ML model’s perfor-
mance, accuracy may not be the only metric to look after
always and to validate the model’s precision, Recall and F1
score metrics have an equally vital role to validate any model.

Precision provides the rate of correctly positive predicted
values over the total positive predicted values (True Positive/
(True positive + False Positive)) where Recall is used to
measure correctly positive predicted values overall predicted
values(True Positive/ (True positive + False Negative)), as
we discussed precision and recall we have to consider F1
score because it makes a balance between them and it is
calculated weighted average and can be a good measure when
the distribution of classes is uneven.

True Positive Rate

— Model+SMOTE(AOQC=0.998)

0.0 0.2 04 0.6 (VR:] 10
False Positive Rate

Fig. 8. ROC curve using SMOTE with ResNet

C. Results and Discussion

We have experimented with different standard algorithms
on our balanced (using BIRCH with threshold 0.12 and
SMOTE) dataset and achieved promising results, as shown in
the tables. The performance of each one of these algorithms
reaches a level of saturation quite early, as suggested by the
corresponding ROC curves. The high value of the area under
the curve in every case is a sign of employed algorithms’ good
performance. However, considering the importance of accurate
classification of ECG signals in the field of healthcare, this
performance is not sufficient. To achieve better performance,
the stacking approach using ResNet architecture has been
followed, and achieved better result.

1) Result with BIRCH: Table VII clearly shows that ResNet
gives the highest accuracy for both the classes in the BIRCH
model. With accuracy, we can also observe the other metrics
like precision, recall, and F1 scores with values 1, 0.99, and
1, respectively, where MLP and KNN are just after it with the
0.97, 0.98, 0.97 for other matrices with an accuracy of 0.98 and
0.97 respectively. ResNet module used two no of dense block
and four no of ResNet block (RNBO to RNB3). Initial dense
block activated using Relu activation, and last dense block
had sigmoidal activation function. The dense layers belong to
Keras API and with binary cross-entropy and Adam optimizer.

2) Result with SMOTE: Table VIII shows the best results
for both MLP and ResNet using SMOTE Model. Not only
in terms of accuracy, and it has demonstrated the other
matrices with 0.97, 0.99, and 0.98 for precision, recall, and
F1 score respectively. ResNet module had the same setup as
used in BIRCH, and for MLP, two hidden layers are consid-
ered with several hidden nodes 20 and 5 respectively with
‘sgd’(stochastic gradient descent) solver and 150 iterations.
The F1 score for the ResNet model shown that the problem
of uneven distribution or imbalanced nature of the dataset
is addressed as the value of it up to 0.99. Although the
performance of ResNet is slightly increases for smote in terms
of accuracy, and the ROC curve, which indicates the true
positive rate of SMOTE with ResNet stack in Fig. 8.

3) Power Overhead: State of the art smart healthcare
devices consumes significance amount of power. Fig. 9 depicts
the distribution of power consumption by subsystem in terms
of percentage of total power. We observed that a significant
portion of the power is involved in the communication subsys-
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tem [32]. In order to serve PMC with adaptive voltage scaling,
the independent component-wise voltage must be supplied to
the respective components. The voltage levels should change
quickly depending on the type of data packet received. To
provide different voltage levels, a voltage regulator based on
a switched capacitor and a switched inductor is used, which
is adopted from [28]. The regulator’s output voltage levels are
Vi, Vo, Vs, and V, with 1V, 0.9V, 0.8V, and 0V, respectively,
which are used when communicating ECG data and critical
data. The voltage regulator unit (VRU) regulates the four
different output voltage levels based on the signal supplied
by the PMC.

The component voltage is switched to the desired voltage
level at each transmission.Because the voltage level changes
dynamically during each ECG packet transmission, a level
shifter is included to handle voltage transitions from one level
to another. Depending on the signal received from the PMC,
transmission gates pass various voltage levels V1, Vs, Vs, and
V4 as Vout. As a result, the output voltage Vout has switched
adaptively for that particular instance for different components
of a specific subunit.

The power consumption involved in Communication Unit
for WBAN architecture goes to inactive mode instantly, if
identified ECG signal is non-critical. The major share of ECG
signals is classified as noncritical, which contributes to 87%
of power saving for the current application of WBAN. Again,
if iKardo finds a critical, it sends a low bandwidth alert signal
rather than sending raw ECG data. It saves 70% power in raw
ECG data transfer and 74% power saving when working with
the critical signal. The controller consumed 0.24nW power.
The area occupied is 10.17 um? by the single controller and
area overhead 36.5 pwm? for the level shifter with a power
consumption of 6 x 103W. The voltage monitor has an area
of 0.033 mm? that consumes 0.058 W power. We achieved a
gain of 27% power saving over the conventional method.

We mainly emphasize on the classification of critical data
labelled as 2 in table V. From the above tables and metrics,
we make a precise observation of 99.58 % accuracy with 27%
power savings and successfully addressed the contribution that
is a ML-based power-aware intelligent ECG signal classifi-
cation system suitable for IoT-based smart ECG monitoring
device iKardo, and we are able to achieve efficient results in
comparison with other works shown in Table I and II.

VII. CONCLUSION

This work proposes an intelligent ECG device for automatic
critical beat identification using a machine learning-based
approach for smart healthcare applications, iKardo, to alleviate
the major issues associated with an imbalanced dataset, using
IoT and WBAN frameworks. In addition to that, the proposed
model also reduces power consumption significantly. Based on
the observation, it is found that iKardo is a suitable candidate
for consumer electronics applications with the help of a
machine learning approach. The proposed model reduces the
detection timing, memory utilization, and power consumption
significantly over the existing models.

Implemented fine-tuned ResNet model has outperformed
compared to the existing methods. During the experiments,
special attention is given to identify the critical ECG signal
beats. This work can be further extended the boundary of ML
approaches for several biomedical applications. With proper
optimization, it would be possible to identify a particular
category of signals accurately. The proposed work may be
extended even for multi-class classification tasks.
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