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Abstract—Wearables are getting large acceptance in the con-
tinuous monitoring of health status and physiological data.
Medical devices and their connectivity through Internet along
with the electronics health record (EHR) and AI analytics
making smart healthcare possible. Internet-of-Medical-Things
(IoMT)-end devices like wearables and implantables are key
for smart healthcare. Smart garment is a specific wearable
which can be used for smart healthcare. This paper presents
the design and development of a smart garment called MyWear
that continuously monitors and collects physiological data. It can
analyze muscle activity, stress levels, and heart rate variations
and send all the data to the cloud. Through abnormal variations
in vitals, it can also predict the risk of heart failure and with the
in-built alert system, it can notify the associated medical officials
if necessary. We also propose a deep neural network model that
classifies heartbeat data into abnormalities with 96.9% accuracy
and 97.3% precision.

Index Terms—Smart Healthcare, Internet-of-Medical-Things
(IoMT), Smart Garment, Smart Garment Security and Privacy.

I. INTRODUCTION

The Internet of Medical Things (IoMT) based system has
made smart healthcare possible with enhanced quality of care
and faster diagnosis [1]–[3]. From acquiring blood samples to
performing analysis on CT scan, Technology has revolution-
ized every aspect of Healthcare. Introduction of IoMT into
multiple systems has made devices work efficiently. IoMT
has allowed doctors to remotely monitor patients based on
their fitness tracker data. Wearables such as smartwatches [4]
allow users to record ECG from the wrist and share a copy of
the report to doctors for assistance and opinion. Most of the
hospitals around the globe use body vital systems that backup
the data in real-time in the cloud for doctors to monitor by
sitting at home.

IoMT helps in collecting several vitals that describe the
health of the person and transmit them to the cloud for post
processing using wired or wireless communication means.
IoMT in wearable devices has unlocked various applications
in areas such as smart healthcare, fitness and yoga. Globally,
over a half-billion people use wrist-worn fitness trackers alone.
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And millions use wearable IoMT technology that keeps track
of both physical and mental health. This led to the use of
home-based health monitoring equipment involving a bed-
side monitor with sophisticated devices connected to the user
through wires making them immobile. These devices often
require the user to be rested while collecting and analyzing
data. With the upcoming technologies such as bio-medical
textiles, user’s movement is not restricted. However, they are
not cheap and user-friendly. Wearable garments are being used
by sports teams and athletes to improve their performance by
analyzing body musculoskeletal data recorded by the garment
[5]. Wearable garments are being developed not only to
monitor ECG but also the activity the user is performing while
wearing them [5], [6]. With detailed analysis of the body and
its muscle activity, analysts are helping athletes and teams
perform and build better. The conceptual overview of MyWear
is depicted in Fig. 1.
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Figure 1. Conceptual overview of the proposed MyWear in a IoMT frame-
work.

The significance of the proposed solutions:

• Technique to analyze stress levels in real-time from Heart
Rate Variability using Electrocardiogram which is absent
in most of the smart garments.

• A CNN model for Electrocardiogram analysis to detect
different types of abnormalities in heartbeat that is not
observed in any of the smart garments listed in Table I.

Rest of the paper is organized as follows: Section II explains
the existing related research. Section III provides the system
level architecture. Section IV outlines the novel methods
proposed for automatic heart rate, stress and abnormality mon-
itoring system. Section V presents a novel deep learning model
for detecting heart arrhythmia. Section VI presents a prototype
of the MyWear along with the validation of the results of the
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proposed MyWear and also provides a comparative analysis of
MyWear with the state of the art wearables. Finally, the paper
concludes in Section VII.

II. EXISTING RELATED WORKS AND ADVANCEMENT
THROUGH THE CURRENT PAPER

Consumer electronics to build smart healthcare is an active
research area as evident from the fact that we see increas-
ing more healthcare features are available in wearable and
smart phones. The research on consumer electronics for smart
healthcare has been undertaken in many fronts [11], [12]
including stress management, diet management, assisting visu-
ally impaired individuals and wearables focusing on women’s
health [13], hearing aids [14], and garments [15]. A consumer
electronic device that can automatically quantify calorie intake
as well as stress of an user is available [11]. Heart rate
estimation using a photoplethysmography (PPG) based device
was presented in [7] that deployed neural network models.

A framework that can automatically monitor stress level
from the physical activities was proposed in [12]. A study
on the meta-analysis of stress and Heart Rate Variability
showed that neuroimaging studies suggested HRV may be
linked to cortical regions that are involved in stressful situation
appraisal [16]. A review on the relationship between HRV
and occupational stress provided an insight that lowered HRV
specifically RMSSD value of the user indicated heightened
occupational stress [17]. A framework to monitor different
brain dynamics with HRV as the key factor, determining
the relationship between RMSSD value as an indicator of
change in stress levels was observed [18]. A wearable which
considered RMSSD value as a contributing factor to assess
the mental stress levels [19]. A framework for detection of
elderly fall and ECG abnormality detection was presented in
[9]. A smart phone based fall detection was presented in [20].
Table II shows the comparison of the existing fall detection
implementations.

ECG signal analysis method using discrete cosine trans-
formation (DCT) has been presented in [8]. Xu and Liu
performed ECG classification using coupled-convolution layer
structure with supporting group mechanism along with CNN
trained on Holter data, achieving accuracy over 99% [21].
Niu et.al proposed MPCNN classifier to automatically learn
and classifying the heartbeat [22]. Jin and Dong proposed a
cloud computing framework with CNN and Bayesian Fusion
to predict heartbeats with an accuracy of 98.26% [23]. Table
I presents a comparative perspective of similar consumer
electronics as MyWear.

A. Problem Formulation for the Current Paper

• Detection of abnormalities in heart beat and immediate
medical assistance, if any.

• Continuous health monitoring system for medical officials
to check patient vitals remotely.

• Stress level detection to understand user’s physical and
mental health status.

• Creating a portable and user friendly remote vital moni-
toring system.

B. Proposed Solution and Novelty of the Current Paper

It is evident from the above discussion that there are few
smart wearable garments that can monitor human body vitals
in real-time [26]. A smart wearable garment in the literature
[6] used surface electromyography (sEMG) to analyze the
intensity of muscle activity of athletes. However, there is no
HRV analysis observed in the training system to detect stress
levels of the user. A consumer products [5] analyzes sleep
activity and ECG for heart rate variability (HRV) analysis
and it does not examine the muscle activity of the user.
The mentioned wearables store data in the cloud and allow
users to comprehend the data. The garments presented by
Farjadian et al. [10] used electromyography (EMG) to detect
muscle activity and assist the user in physical therapy. A
few proposed solutions leverage accelerometer data to analyze
exercises, however, it is not sufficient to indicate individual
muscle activity. Moreover, accurate measurement of body
orientation and built-in alert system to notify paramedics and
users contacts in case of emergency is not observed in the
above-mentioned solution. We believe that MyWear is the first
garment to introduce an integrated mechanism for automatic
HRV analysis, stress analysis, muscular activity analysis, and
alert system to seek assistance in emergencies while providing
data security.

III. PROPOSED IOMT-BASED SYSTEM LEVEL
ARCHITECTURE OF MYWEAR

A. Proposed IoMT Architecture

The complete architecture of the proposed MyWear is
shown in Fig. 2. The garment acts as the End device and
the input point for the mobile application and cloud service.
Surface dry electrodes are connected to the respective ECG
and EMG sensors. These sensors extract, amplify and filter the
raw signals therefore removing noise and unwanted artifacts.
The filtered data is sampled by sampling unit along with the
data received from the temperature and Inertial Measurement
Unit (IMU) sensors. The temperature sensor measures the
body temperature whereas IMU sensors measure the change in
body orientation. Collectively, data is transmitted to the mobile
application and cloud for further analysis using the embedded
Bluetooth and Wi-Fi module respectively. The vital data is
AES128 encrypted and can only be decrypted or accessed in
the user’s mobile application keeping the data safe and secure.
The mobile device displays ECG in real-time along with the
stress level of the user. The mobile application visualizes
muscle activity in different muscle regions on the human map
pertaining to the individual along with the body orientation and
body temperature. Meanwhile, the proposed Deep Learning
model deployed in the cloud checks for any abnormalities and
detects the kind of abnormality that occurred in the transmitted
ECG data from the garment. In case of emergency, an alert is
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Table I
MYWEAR AS COMPARED TO SIMILAR WORKS IN CONSUMER ELECTRONICS.

Consumer Electronics Real-Time
HRV

Muscle Activity
Detection

Abnormal Heart-
beat Detection

Stress Level
Detection

Fall
Detection

Fall
Prediction

Built-in
Alert

Data
Security

Puranik et al. [7] Yes No No No No No No No

Garment in [5] Yes No No Yes Yes No No No

Raj et al. [8] Yes No Yes No No No No No

Garment in [6] No Yes No Yes Yes No No No

Wang et al. [9] Yes No Yes No Yes No No No

Farjadian et al. [10] No Yes No No No No No No

MyWear (Current Paper) Yes Yes Yes Yes Yes Yes Yes Yes

Table II
COMPARISON OF THE EXISTING FALL DETECTION IMPLEMENTATIONS.

Research Sensors Algorithm
Used

Supported Fall
Types

Supported Activities
of Daily Life

Built-in Alert

Hemalatha et al. [24] Accelerometer CEP 3 8 No

Mezghani et al. [25] Accelerometer,
gyroscope

Non Linear
SVM

4 11 No

Wang et al. [9] GPS H-Box 4 11 No

Lee et al. [20] Accelerometer Thresholding 4 11 No

MyWear (Current Paper) Accelerometer CNN 4 11 Yes

sent to medical officials for immediate assistance. Moreover,
the body vital data received in the cloud can be monitored
by medical officials in real-time. MyWear collects body vitals
such as Heart Rate, Body temperature, Muscle activity and
sends it to smartphone and cloud. The smartphone acts as an
interface to visualize data post analysis for user’s information.
A report is sent to user to access post complete analysis.

The main objectives of MyWear are the following:

• Create an automated health monitoring wearable that
analyzes the user’s body vitals regularly.

• Provide a solution that analyzes a user’s stress level based
on Electrocardiogram.

• Bridge the communication between User and medical of-
ficials, real-time user monitoring system to allow doctors,
therapists to analyze the user’s routines.

• Create an alert system to call for help in case of emer-
gency.

B. Electrocardiogram (ECG) Acquisition Unit for Heart Rate

Electrocardiogram (ECG) is a technique used to measure the
electrical activity produced by the heart during a diastole and
systole(relaxation and contraction). ECG is a reliable method
to measure the heart rate variability and beats per minute
(BPM) [27]. For convenient use, a 3 electrode system is used.
The electrodes are placed following the Einthoven’s triangle
to obtain stable ECG [28], [29].

C. EMG Unit

Electromyography is used to measure the change in electric
potential that depicts the force exerted by the muscle. Two
electrodes are used to measure the muscle signal and the
third electrode acts as a ground. Initially, to capture stable
signals with low noise, the sensor is tuned by changing the
gain. The gain helps in adjusting the sensitivity of signal
acquisition. EMG helps in understanding the muscle activity
and its intensity in a muscle region. EMG is used to measure
the change in electric potential generated at neuromuscular
junctions as electric signals or action potential pass through.
Clinical settings of EMG use a needle that is inserted into the
muscle. For measuring ECG on the go and better ease of use,
surface EMG is chosen [30], [31]. Muscle activity is measured
in voltage and represents the amount of force exerted by the
muscle in real-time. MyWear records muscle activity at the
biceps and the chest region.

D. Emergency Alert Unit

The ECG data is sent to the model to detect any ab-
normalities. The proposed deep Learning model detects any
abnormalities if any. Detected abnormalities are sent as an
alert to the user’s mobile application and the medical official.
Regular intervals of Abnormalities are usually considered to
cause a potential heart failure and hence, a prompt is sent to the
user’s smartphone application and triggers an alarm. Another
alert is sent to Medical officials and doctors for immediate
assistance.
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Figure 2. Architecture of the proposed MyWear.
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IV. PROPOSED METHODS FOR AUTOMATIC HEALTH
CONDITION MONITORING THROUGH MYWEAR

A. Proposed Method to Obtain Heart Rate from ECG

Fig. 3 shows ECG graph along with its features. Every
beat of the heart corresponds to a P-QRS-T waveform in
the graph and collection of multiple waveforms depicts the
successive beats in a period of time where the ‘P’ wave
represents the depolarization of atria which results in brief
isoelectric period or state of near zero voltage and lasts no
more than 0.10 seconds. P wave is followed rapid succession
of Q, R and S waves called the QRS complex, and lasts
no more than 100 milliseconds representing the activation of
ventricular muscles. QRS complex is followed by the T wave
and indicates ventricular repolarization that depicts relaxation
of the heart. This repeats for every single beat of the heart. The
heart rate is measured in beats per minute as the following:

Heart Rate (bpm) =

(
60

Tr

)
, (1)

where Tr = time between two successive R peaks.
To calculate the time between two successive ‘R’ peaks,

the time at which first and second peaks occurred is saved.

Subtracting the first peak time from second peak time results
in RR-interval time. Beats per minute are obtained as:

Heart Rate (bpm) =

(
1.0

RRinterval

)
× 60.0× 1000, (2)

where RR intervals are used for Heart Rate Variability (HRV)
analysis to detect the stress levels of the user.

B. Metrics for obtaining Heart Rate Variability (HRV) score

1) Time-domain metrics: HRV score can be calculated by
measuring the time between two successive RR intervals using
Time domain metrics as shown below:

a) MeanRR: Average of all RR intervals (distance be-
tween two ‘R’ peaks) is calculated using the following expres-
sion:

MeanRR =




n∑
i=1

Ri

n


 . (3)

b) Standard Deviation of RR intervals (SDNN): The
standard deviation of RR intervals (also known as NN-interval)
is calculated by using the following:

SDNN =

√√√√
n∑

i=1

(Ri −mean)2

n
. (4)

c) Root Mean Square of Successive Differences
(RMSSD): The root mean square of two RR intervals’
differences is calculated using the following expression:

RMSSD =

√√√√√
n−1∑
i=1

(Ri −Ri+1)2

n− 1
. (5)
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C. Proposed Method to Automatically Monitor Stress from
ECG

Fig. 4 shows the algorithm to calculate stress level using
Heart rate. RMSSD is usually obtained from Electrocardio-
gram and is considered as the HRV score [32]. Studies have
shown that an increase in HRV depicts a reduction in stress
levels [33] and vice versa. High HRV score was found in users
performing optimal levels of fitness routine.A user achieves a
high HRV score during sleep as the result of state of relaxation
and low stress levels. HRV score changes depending on the
user’s activity. Table III shows the relation between HRV score
and stress levels [34].
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Figure 4. Proposed approach for calculating stress level from the heart rate.

Table III
RELATION BETWEEN HRV SCORE AND STRESS LEVELS [34].

HRV Score Stress level
90+ Very low
80-90 Low
71-80 Moderate
61-70 Average
<60 High

D. Proposed Method to Calculate Body Orientation

In order to determine the body orientation. The sensor is
calibrated with the user’s initial position and orientation. The
increase or decrease in the Euler’s angle determines the change
in body orientation of the user. Upon initializing the sensor, it
provides the X, Y and Z values, however, these values depend
on the sensitivity. The default sensitivity is -2g to +2g. To
calibrate the sensor, offset values are initialized. Initial position
or offset values are recorded when the person is stood up
straight and still. These values are written in X , Y and Z
axis offset registers. After calibration, the user’s movements
are measured as Xout, Yout and Zout. Roll, pitch and yaw are
calculated [35]. These values define the change in the X, Y

and Z values from the calibrated values. The user is prompted
with the text in the application that shows the orientation of
the user as shown in Fig. 6(b).

E. Proposed Method for Fall Prediction and Detection

1) Fall Prediction: In order to detect sudden fall of the
person triggered by involuntary force, simple three-layer CNN
followed by two MaxPooling layers and an output Softmax
function is used to predict a probable fall [36]. The model
predicts whether the person is about to fall by the change in
resultant acceleration obtained from the garment’s Accelerom-
eter. Resultant acceleration is calculated using the expression:

g
i =

√
x2
i + y2i + z2i

9.8
, (6)

where the acceleration of gravity value is 9.8, gi is the
resultant acceleration at instance i, xi, yi, zi are the values of
accelerations at instance i along x, y and z axis, respectively.
gi is calculated at every instance of time that accelerometer is
received.

2) Fall Detection: After a fall is predicted, if it found
that the resultant acceleration swiftly decreases below the
maximum threshold of +0.90g from +1g in less and quickly
increases over +1g in less than 0.3 seconds, it can be concluded
that the predicted fall occurred and is detected as in Fig. 10.

V. THE PROPOSED DEEP NEURAL NETWORK (DNN)
MODEL FOR DETECTING HEART ARRHYTHMIA

A. Preparation of Dataset

In order to detect abnormalities in ECG, a dataset with
classification of heartbeats into normal beats, Ventricular and
Supraventricular beats along with Fusion beats and Unknown
beats is considered. The MIT-BIH Arrhythmia Dataset [37] is
used that contains 48 half an hour excerpts of two channel
ECG with over 150,000 samples. The proposed model is
trained on 100,000 and tested on 22,000 samples.

B. Proposed DNN Model for Heart Arrhythmia

Fig. 5 depicts the architecture of the proposed deep learning
model that consists of 6 one-dimensional convolutional layers
with 64 filters each and input stride length of 2. Every
convolutional layer is succeeded by the Maxpool layer of pool
size 2 and stride size 2. These are connected to three Fully
Connected Layers. probabilities of individual classes. The
model is used to classify the dataset into four categories based
on the heart beat rhythm and predict whether the input heart
beat is normal or consisting of abnormalities. The activation
function used in every layer is ReLU which is represented as
the following expression:

f(x) =





1 x>1
x x = 1 and 0
0 x<0

(7)
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The output layer connected to the fully connected layer of n
neuron, the predicted classification of heartbeats for a sample
x is denoted by the Softmax function [38] defined as:

fn (x) =
e(Wnhx + bk)

K∑
j=1

e(Wjhx + bj)

(n = 0, ..., n− 1), (8)

where hx is the feature representation of x extracted from the
previous convolutional layer, Wk and bk from nth neuron in
the output layer.

C. Metrics for evaluating the DNN Model

The metrics used for evaluating the proposed DNN model
are precision, recall, accuracy and Loss [11].

• Precision: The ability of the model to identify the possible
heart beats from the input:

P =

[
TP

TP + FP
∗ 100%

]
. (9)

• Recall: The ability of the model to identify all the relevant
heartbeats from the predicted possible heartbeats:

R =

[
TP

TP + FN
∗ 100%

]
. (10)

• Accuracy: The ratio of correct predictions made by the
model to the total number of predictions by the model:

α =

[
TP + TN

TP + TN + FP + FN
∗ 100%

]
. (11)

VI. EXPERIMENTAL VALIDATION OF MYWEAR

A. A Specific Design of Proposed MyWear

Fig. 6(a) shows the photograph of the experimental proto-
type. The application displays vitals data as shown in the Fig.
6(b) being transmitted from the garment. The temperature and
body orientation is updated and displayed time-to-time. Incase
of a detected fall,an automatic alert along with the location
is sent to the caregiver within the next 10-15 seconds. A
notification appears on the user’s app prompting the user that
a fall has been detected, and the user can choose to cancel the
transmission of the message if he/she chooses to.However, the
fall is logged simultaneously to the cloud for future purposes
.The HRV score is calculated from ECG which helps in
determining the stress level of the user. The muscle activity
and its intensity are visualized on the human map in forms of
colors. The darker the color is, the Larger the exerted muscle
force is for the particular muscle. The vital data is stored in
a Firebase database (cloud platform) that is also capable of
running a deep learning model. The model detects whether
the heartbeat is normal or irregular. The same is repeated for
two samples. If an abnormal or irregular beat is detected, a
prompt is then sent to the users application and an alert is sent
to the prescribed doctor and medical officials for immediate
assistance if needed.

B. Validation of Detecting Muscle Activity

A total of 5 tests of 20 minutes each were carried out to
study the relation of flexing of muscle on the intensity of
activity was recorded. And the recorded electrical activity was
plotted with respect to time. It was noted that while flexing,
there was an increase in muscle activity depicted by peaks
in the graph. The peaks were sharper and taller when the
subject flexed a muscle with greater effort, hence conveying
high intensity of muscle force. It was concluded that the
higher the intensity is, the taller the peaks appear in the graph,
stating greater exert force exerted by the muscle. Fig. 7 shows
the plotted graph depicting instances of increase in muscle
intensity in left bicep brachii (bicep).

C. Validation of Stress Detection using Heart Rate Variability

Electrocardiogram was collected from three different sub-
jects wearing the garment. The healthy subject showed a HRV
score of 71.87. The HRV score is equal to the RMSSD value
as discussed earlier in the paper. Fig. 8 depicts the abnormal
heartbeats extracted from MIT-BIH Arrhythmia Dataset [37].
A test subject showed a Mean RR of 865.41ms, STDNN of
66.51ms and a RMSSD value of 71.87.

D. Validation of the DNN Model for Heart Arrhythmia and
Fall Prediction

The accuracy obtained for the proposed model is 98.2%.
The rate of learning of the model was 0.001. The pattern of
maintaining accuracy and tracking loss in classifying heart-
beats is shown Fig. 9(b) and Fig. 9(a), respectively. Fig.
9(c) shows a plot depicting the relation of performance of
recall and precision metric with the number of epochs trained
with. The average accuracy of the model is 96.9% and the
precision, recall was 97.3% and 97.1%. Table IV shows
the comparison of the heartbeat classification results with
other state of the art models [39]–[41]. Table V shows the
comparison of classifying myocardial infarction results with
other models [39], [42], [43]. Fig. 6(b) shows the MyWear’s
mobile application displaying the body vitals such as Heart
rate, body temperature, body orientation and HRV score along
with plotting ECG data in real-time. The application visualizes
the muscle activity on the human map.

Fig. 10 depicts the instance at which the model predicts
when the person/user is about to experience a fall by recog-
nizing a sudden and quick drop in the resultant acceleration.
And a drop is detected when the resultant acceleration drops
below 1g and quickly increases over +1g. Table VI shows the
comparison of Fall detection results with other models [9],
[24], [25].

VII. CONCLUSION AND FUTURE RESEARCH

Body vital provides insights into the life and lifestyle of
the user. They are an essential part of smart healthcare and
analyzing them provides the user information to improve
his/her health on a daily basis. Approach presented in this
paper helps prevent Heart Arrhythmia and Fall Prediction of
the user based on analysis of ECG and EMG data, respectively.
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Table IV
COMPARISON OF HEARTBEAT CLASSIFICATION RESULTS

Methodology Approach Average
Accuracy
(%)

Raj et al. [8] DCST + ABC-SVM 96.1
Wang et al. [9] H-Box 95
Acharya et al. [39] Augmentation + CNN 93.5
Martis et al. [40] DWT + SWM 93.8
Li et al. [41] DWT + random forest 94.6
MyWear
(Current Paper)

DNN 96.9

Table V
COMPARISON OF CLASSIFYING MYOCARDIAL INFARCTION RESULTS

Methodology Accuracy(%) Precision(%) Recall(%)
Raj et al. [8] 96.1 - -
Acharya et al. [44] 93.5 92.8 93.7
Kojuri et al. [42] 95.6 97.9 93.7
Sharma et al. [43] 96 99 93
MyWear
(Current Paper)

98.2 97.3 97.1

The proposed garment is integrated with a deep learning model
in cloud server that helps in detecting any abnormalities in the
heart beat and classifies into the type of abnormality detected.
The average accuracy and precision of the proposed deep
learning model was 96.9% and 97.3%, respectively. MyWear
could also potentially help in rehabilitation of athletes and
sportsmen with the help of embedded sensors that detect
Muscle activity and body movement to come up with help

Table VI
COMPARISON OF FALL DETECTION RESULTS

Methodology Accuracy(%) Sensitivity(%) Specificity(%)
Hemalatha et al. [24] 92 - -
Mezghani et al. [25] 98 97.5 98.5
Wang et al. [9] 95 - -
MyWear (Current
Paper)

98.5 98 99.5
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Figure 9. Performance measures of the proposed DNN model.
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for overall body development. Further, implementing the deep
learning model on edge platforms would reduce computational
time and resources hence giving results quicker. This can be
an extension of the proposed garment and potentially future
improvement.
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