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Abstract—In case of diabetes, fingertip pricking
for blood sample is inconvenient for glucose mea-
surement. Invasive approaches like laboratory test
and one touch glucometer enhance the risk of blood
related infections. To mitigate this important issue,
in the current paper, we propose a novel Internet-
of-Medical-Things (IoMT) enabled edge-device for
precise, non-invasive blood glucose measurement. The
novel device called “Intelligent Glucose Meter” (i.e.
iGLU) is based on near-infrared (NIR) spectroscopy
and machine learning (ML) model of high accuracy.
iGLU has been validated in a hospital and blood
glucose values are stored IoMT platform for remote
monitoring by endocrinologist.

I. INTRODUCTION

SMart healthcare system comprises of ambient
intelligence, quality of service and also offers

continuous support of the critical diseases moni-
toring [1], [2]. This system is most demandable for
remote monitoring of diabetic patients with low cost
and rapid diagnosis [3]. Traditional blood glucose
measurement is unable to serve everyone’s need
at remote location. Despite having good diagnos-
tic centers for clinical test facility in urban area,
medical services are not approachable to everyone
at remote location [4], [5]. It is necessary to monitor
blood glucose of diabetic patients where diagnosis
facility are not easily available. The instant di-
agnose of blood glucose and frequent monitoring
are the recent challenges in smart healthcare. The
process flow of blood glucose diagnosis in smart
healthcare is depicted in Figure 1.
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Fig. 1: Blood glucose diagnosis in smart healthcare.

IoMT enabled handheld non-invasive glucose
measurement end-device has strong potential for
rapid monitoring as well as to facilitate the interact
with endocrinologist to the remote located diabetic
patients where diagnosis centers and hospitals are
not easily available. According to this environment,
patients measure their glucose without pricking
blood and directly store to the cloud where nearby
endocrinologist can monitor the glucose data of
each patient. The prescription would also be pro-
vided by endocrinologist to the remote located
patient for further treatment. The ubiquity of di-
abetic patients has become double from 2010 over
the world. The estimated diabetes dissemination
from 2009 is 290 million and is expected to affect
450 million people by 2030. Hence, it is essential
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to develop the glucose measurement device for
rapid diagnosis of diabetes. People will be more
conscious for their glucose level with frequent mon-
itoring. Invasive method for glucose measurement
is not advisable in case of continuous monitoring.
Therefore, it required to design the non-invasive
device for clinical tests, which is beneficial for
health care. In proposed work, optical detection is
involved. Blood glucose is predicted by machine
learning based computation model.

II. STATE-OF-ART IN BLOOD GLUCOSE-LEVEL

MEASUREMENT

Blood glucose measurement is possible using
invasive, minimally invasive and non-invasive meth-
ods (Figure 2). Frequent pricking, as needed in
invasive methods, for glucose measurement causes
trauma. Therefore, the semi-invasive approach has
the advantage of continuous glucose monitoring
without multiple times pricking. However, non-
invasive methods can completely eliminate prick-
ing which opens door to painless and continuous
glucose monitoring (CGM).

A. Invasive Methods

A low-invasive amperometric glucose monitoring
biosensor has been proposed using fine pointed glu-
cose oxidase immobilized electrode which doesn’t
require more than 1mm in length to be inserted
in skin [6]. A fully implanted first-generation pro-
totype sensor has been presented for long-term
monitoring of subcutaneous tissue glucose [7]. This
wearable sensor which is integrated as an implant
is based on a membrane containing immobilized
glucose oxidase and catalase coupled to oxygen
electrodes, and a telemetry system.

B. Minimally Invasive Methods

Implantable biosensors have been deployed for
continuous glucose monitoring [8]. Wearable min-
imally invasive microsystem has been explored for
glucose monitoring [9]. A microsystem has been
presented for glucose monitoring which consists
of microfabricated biosensor flip-chip bonded to a
transponder chip [10]. A method has been discussed
to reduce the frequency of calibration of minimally
invasive Dexcom sensor [11]. An artificial pancreas

has been represented along with glucose sensor
to control diabetes [12]. But, approaches based
semi-invasive devices have not been tried for real
time application. These wearable microsystems are
neither painless nor cost effective solutions.

C. Non-invasive Methods

To make the painless system, photoacoustic spec-
troscopy has been introduced for non-invasive glu-
cose measurement [13]. However, utilization of
LASER makes the setup costly and bulky. An
enzyme sensor has been explored for glucose mea-
surement in saliva [14]. Glucose detection is possi-
ble using Intensity Modulated Photocurrent Spec-
troscopy (IMPS) spectroscopy that connects the
electrodes to the skin which is affected by sweat
[15]. High precision level is not possible through
these methods as sweat and saliva properties vary
for individuals. The blood glucose measurement has
also been explored using Raman spectroscopy in
laboratory [16]. The experimental setup for Raman
spectroscopy required a large area and will not be
portable. Glucose measurement has also been done
from anterior chamber of the eye which limits it’s
usage of continuous monitoring [17]. Blood glucose
can been estimated using photoplethysmography
(PPG) signal [18], [19].

PPG signal analysis is not based on principle
of glucose molecule detection. Therefore, specific
wavelengths are not required for glucose estimation.
Hence, iGLU is more precise compared to PPG sig-
nal analysis based system for glucose measurement.
In this way, long NIR wave for optical detection has
been considered for glucose measurement which
is not comparatively precise glucose measurement
system as long wave has shallow penetration [20].
Therefore, small NIR wave is preferred for glucose
detection (Figure 3).

Prior works related to glucose monitoring have
been discussed which represent wearable and non-
wearable approaches. Raman spectroscopy, photoa-
coustic spectroscopy and invasive approach based
systems are not wearable. Minimally invasive de-
vices which have been discussed, are implantable.
Other approaches based non-invasive device are
wearable. Here, iGLU is non-invasive, optical de-
tection based wearable device for continuous glu-
cose monitoring with IoMT framework.
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Fig. 2: An overview of various blood glucose-level measurement devices or systems.
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D. Consumer Electronics for Glucose-Level Moni-
toring

Several devices have been developed for non-
invasive blood glucose measurement. Some prod-
ucts such as glucotrack, glutrac, glucowise, DiaMon
Tech and device from CNOGA medical are not
commercialized. Glutrac is multi-parameter health
test device with smart healthcare. However, they
have limitations in terms of precise measurement.
The cost of product is also high which varies in
the range of 300-400 USD. Therefore, the cost
effective solution for non-invasive blood glucose
measurement is needed.

III. NOVEL DEVICE IGLU TO ADVANCE THE

STATE-OF-ART IN WEARABLE FOR

CONTINUOUS BLOOD GLUCOSE MONITORING

Non-invasive measurement reduces the possibil-
ity of blood-related diseases. However, this ap-
proach have some limitations such as large set-
up, measuring object (ratina) and skin properties
(including dielectric constant and sweat level).

Therefore, portable non-invasive precise glucose
measurement device for continuous monitoring is
needed. An initial example is a non-invasive glu-
cose measurement using NIR spectroscopy and
Huber’s regression model [21]. There are several
glucose monitoring systems which neither provide
precise measurement nor cost effective solution.
These systems are not enabled for smart healthcare.
The following questions are resolved in iGLU for
the advancement of smart healthcare: (1) How can
we have a device that automatically performs all
the tasks of blood-glucose monitoring at the user
end without internet connectivity and stores the
data in cloud for future use by the patient and
healthcare providers? (2) Can we have a device that
can perform automatically to avoid hassle and risky
finger pricking all the time monitoring is needed?

This article introduces an edge-device called “In-
telligent Glucose Meter” (i.e. iGLU) for noninva-
sive, precise, painless, low-cost continuous glucose
monitoring at the user-end and stores the data
on cloud in an IoMT framework. A non-invasive
device has been proposed with precise and low
cost solution. The proposed device is also integrated
with IoMT where the data is accessible to caretaker
for point of care. The device will be portable after
packaging to use everywhere. The device is fast
operated and easy to use for smart healthcare. The
flow of proposed iGLU is represented in Figure 4.

The contributions this article to advance the state-
of-art in smart healthcare include the following:

1) A novel accurate non-invasive glucometer
(iGLU) by judiciously using short NIR waves
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Fig. 4: A conceptual overview of iGLU.

with absorption and reflectance of light using
specific wavelengths (940 and 1300 nm) has
been introduced. The wavelengths are judi-
ciously selected after experimental analysis
which has been done in material research
center MNIT, Jaipur (India).

2) A novel accurate machine learning based
method for glucose sensor calibration has
been presented with calibrated and validated
healthy, prediabetic and diabetic samples.

3) The proposed non-invasive blood glucose
measurement device has been integrated in
IoMT framework for data (blood glucose val-
ues) storage, patient monitoring and treatment
on proper time with cloud access by both the
patient and doctor.

IV. PROPOSED NON-INVASIVE BLOOD

GLUCOSE MEASUREMENT DEVICE (IGLU)

The proposed device based on NIR spectroscopy
with two short wavelengths is designed and im-
plemented using three channels. Each channel is
embedded with emitter and detector of specific
wavelength for optical detection. The data is col-
lected and serially processed by 16 bit ADC with
sampling rate of 128 samples per second. The
logged data is calibrated and validated thorough
existing regression techniques to analyse the op-
timized model. The flow of data acquisition for
proposed iGLU is presented in Figure 5.

A. The Approach for Glucose Molecule Detection

Glucose molecule vibrates according to its
atomic structure at specific wavelengths. It is an-
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Fig. 5: Process flow data acquisition for iGLU.

alyzed that absorbance and reflectance are sharper
and stronger in short wave NIR region [22]. The
absorption peak of glucose spectra at 1314 nm has
been analyzed [23]. The non-invasive blood glucose
measurement using 850, 950 and 1300 nm has
been implemented [15]. The 940 nm wavelength for
detection of glucose molecule has been identified
[24]. NIR spectra of sucrose, glucose and fructose
are elaborated with CH2, CH and OH stretching at
930, 960 and 984 nm, respectively [25].

B. Proposed Module for Data Acquisition

Proposed iGLU uses NIR spectroscopy to im-
prove the accuracy. A 2-Layer PCB has been devel-
oped to embed infra-red emitters (MTE1300W -for
1300 nm, TSAL6200 -for 940 nm, TCRT1000 -for
940 nm) and detectors (MTPD1364D -for 1300 nm,
3004MID -for 940 nm, TCRT1000 -for 940 nm).
The hardware is designed for data acquisition from
emitters, detectors and ADC with 5V DC supply.
According to the emitters and detectors, compatible
passive components have been chosen. Architecture
of glucose sensing is shown in Figure 6. Detectors
with daylight blocking filters are packaged and not
affected by sweat. ADS 1115 with 860 SPS, 16
bit, I2C compatible and single ended is controlled
through microcontroller ATmega328P and used to
convert the data (in Volts) from all channel in
decimal form. The noise power and signal-to-noise
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ratio (SNR) have also been found 0.08 and 25.2 dB,
respectively, which show the minimum noise level.
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Fig. 6: Circuit topology of proposed device (iGLU).

C. A Specific Prototype of the iGLU

Absorption and reflectance at 940 nm and ab-
sorption at 1300 nm are implemented for detection
of the glucose molecules. The detector’s voltage
depends on received light intensity. After placing
the fingertip between emitter and detector, the
voltage values are logged. Change in light inten-
sity depends upon glucose molecule concentration.
During experiments, blood glucose is measured
through the invasive device standard diagnostics
(SD) check glucometer for validation of the non-
invasive results. The reading is taken as refer-
enced blood glucose values (mg/dl). During the
process, optical responses through detectors have
been collected from 3 channels simultaneously.
During measurement, the channels data is collected
in the form of voltages from 3 detectors. These
collected voltages correspond to referenced blood
glucose concentration. These voltage values are
converted into decimal form using 4-channel ADS
1115 (Texas Instruments) ADC [26]. Coherent av-
eraging has been done after collection of responses.
Specification of a iGLU prototype are presented in
Table I.

The prototype view of proposed iGLU is shown
in Figure 7. The data is collected after fixing three
fingers in free space of pads. The pads are designed
in such a way that emitters and detectors are placed
beneath the surfaces of pads. Because of this, there
will be enough free spaces between the object

TABLE I: Specification of iGLU prototype

Channel 1 Channel 2 Channel 3
Measured (Ideal)

Arduino Supply 4.95V 4.96V 4.95V
(5V) (5V) (5V)

Forward Voltage 0.96V 1.42V 1.40V
(Emitter) (1.1V) (1.5V) (1.5V)
Forward Current 53.4mA 52.8mA 52.9mA
(Emitter) (100mA) (60mA) (60mA)
Reverse Voltage 4.25V 4.16V 4.25V
(Detector) (5V) (5V) (5V)
Output Current 0.45mA 0.5mA 0.52mA
(Detector) (1mA) (1mA) (1mA)
Measurement range 3.2-4.68V 0.8-4.7V 0.5-4.7V
Specific
Wavelength

1300nm 940nm 940nm

Spectroscopy Absorption Absorption Reflectance

and sensors (emitters and detectors). Hence, the
probability of a faulty measurement is minimized.

Fig. 7: Prototype view of proposed device (iGLU).

V. PROPOSED MACHINE-LEARNING (ML)
BASED METHOD FOR IGLU CALIBRATION

Regression models are calibrated to analyze the
optimized computation model for glucose estima-
tion. The detector’s output from three channels
are logged as input vectors for glucose prediction.
The collected data from the samples is required to
convert in the form of estimated glucose values.
It is necessary to develop optimal model for pre-
cise measurement and hence analysis of MAD,
mARD, AvgE and RMSE are performed to
ensure accuracy. The estimated and reference blood
glucose concentration are calculated as BGEst and
BGRef , respectively. A total of 97 samples are
taken for device calibration which include predi-
abetic, diabetic and healthy samples. The baseline
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characteristics of samples for calibration is repre-
sented in Table II. The proposed process flow of
calibration and validation is shown in Figure 8.

TABLE II: Baseline characteristics of samples

Samples Basic Calibration Validation
Characteristics and Testing
Age (Years) Gender Wise Samples
Male:- 22-77 Male:- 53 Male:- 64
Female:- 17-75 Female:- 44 Female:- 29
Age (Years) Prediabetic
Male:- 22-65 Male:- 18 Male:- 11
Female:- 26-75 Female:- 13 Female:- 10
Age (Years) Diabetic
Male:- 30-68 Male:- 16 Male:- 17
Female:- 30-73 Female:- 14 Female:- 11
Age (Years) Healthy
Male:- 22-65 Male:- 19 Male:- 36
Female:- 17-70 Female:- 17 Female:- 08
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Fig. 8: The process flow of calibration and valida-
tion of proposed device (iGLU).

Deep Neural Network (DNN) based machine
learning model has been applied for precise blood
glucose prediction (Figure 9) [2]. Proposed DNN
uses sigmoid activation functions and has been
trained through Levenberg-Marquardt backpropaga-
tion algorithm [15]. In proposed model, 10 hidden
neurons and 10 hidden layers are analyzed to esti-
mate the precise blood glucose values. This model
has been used to analyze the non-linear statistical
data which is utilized to calibrate and validate the
model for precise measurement. Here, the voltage
values from three channels are used as inputs of
proposed DNN model. The predicted blood glucose

values are formed through the modeling of three
channels voltage values. Weights of the voltage
values correlate predicted glucose values to the
channels data. The overall accuracy is improved
using 10 hidden layers.
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Fig. 9: The Deep Neural Network (DNN) for pro-
posed work

The Pearson’s correlation coefficient (R) is 0.953.
The error analysis of calibrated machine learning
models is represented in Table III.

TABLE III: Analysis of calibration and validation
of proposed combination and ML model (DNN).

mARD AvgE MAD RMSE
(%) (%) (mg/dl) (mg/dl)

Calibration 6.65 7.30 12.67 21.95
(Validation) 7.32 7.03 09.89 11.56

VI. VALIDATION OF THE PROPOSED IGLU
DEVICE

To validate and test iGLU, 93 healthy, prediabetic
and diabetic samples aged 17-75 are taken follow-
ing medical protocols. A total of 64 males and 29
females are identified during collection of these 93
samples. All samples are taken in fasting, post-
prandial and random modes. The baseline charac-
teristics and error analysis is represented in Table
II and III, respectively. A 10-fold cross validation
has been performed to validate iGLU.

To test the device stability, an experiments have
been performed from multiple measurements of
same sample by couple of times. For this exper-
imental work, a volunteer has been recruited to
measure blood glucose through iGLU and invasive
method with time intervals of 5 minutes.

A value of 10 mg/dl deviation are considered in
observations during 7 iterations of blood glucose
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measurement. During analysis, 2-4 mg/dl deviation
has been observed (Figure 10(a)). A different vol-
unteer has also been taken for another experimental
analysis to validate the accuracy of iGLU (Figure
10(b)). Measurement has been done with time inter-
val of 60 minutes using 7 iterations. Variations (low
to high) in reference blood glucose values between
8:00 AM-10:00 AM, 10:00 AM-2:00 PM and 2:00
PM-4:00 PM represent the glucose intakes in the
form of food. During analysis, 5-10 mg/dl deviation
represents the stability of iGLU. It was observed
that the effect of fingers or earlobes changes is
negligible. CEG analysis is used to analyze the
accuracy of predicted glucose values from proposed
device. CEG categorizes the devices in terms of
precise measurement and elaborates the zones by
the difference between referenced and predicted
glucose values [27]. The predicted values are in the
zone A and B; then the device will be desirable.
During analysis, all predicted glucose values found
in zone A and B (Figure 11).
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Fig. 10: Predicted and reference blood glucose con-
centration for validation of iGLU on single sample.
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Fig. 11: CEG analysis of predicted glucose values

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This article introduced a dual short-wave spec-
troscopy NIR technique based non-invasive glucose
monitoring low cost (approximately 20-25 USD)
device iGLU for real-life application. The error
margins for iGLU are improved compared to other
non-invasive approach based systems. After CEG
analysis, 100% samples come in the zone A and B.
During analysis of possible combinations with pro-
posed ML model, iGLU is found more optimized
compared to other measurement device.

In the future research on iGLU, we will involve
more features of IoMT. Glucose-level measurement
from serum is a immediate next goal to further
improve accuracy of iGLU. Integration of stress
measurement along with blood-glucose level is also
in pipeline. A closed feedback from healthcare
providers-end to the end-user side for control of
effects when needed to ensure remote healthcare
when there may be shortage of healthcare providers
can be more effective.
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