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Abstract—Psychological stress affects physiological parameters
of a person. Prolonged exposure to stress can have detrimental
effects which might require expensive treatments. Acute levels
of stress in people who are already diagnosed with borderline
personality disorder or schizophrenia, can cost them their lives.
To self-manage this important health problem in the framework
of smart healthcare, a deep learning based novel system (Stress-
Lysis) is proposed in this article. The learning system is trained
such that it monitors stress levels in a person through human
body temperature, rate of motion and sweat during physical
activity. The proposed deep learning system has been trained
with a total of 26,000 samples per dataset and demonstrates
accuracy as high as 99.7%. The collected data are transmitted
and stored in the cloud which can help in real time monitoring
of a person’s stress levels, thereby reducing the risk of death
and expensive treatments. The proposed system has the ability
to produce results with an overall accuracy of 98.3% to 99.7%,
is simple to implement and its cost is moderate. Stress-Lysis can
not only help in keeping an individual self-aware by providing
immediate feedback to change the lifestyle of the person in order
to lead a healthier life but also plays a significant role in the
state-of-the-art by allowing computing on the edge devices.

Index Terms—Smart Healthcare, Ambient Intelligence, Inter-
net of Medical Things (IoMT), Stress Level Detection, Deep
Neural Network (DNN)

I. INTRODUCTION

Stress in humans can be classified into eustress, neustress

and distress. Eustress is considered to be “good” stress and

can motivate a person to elevated performance [1]. Neutral

stress is called neustress. As it does not cause any harm to

the well-being of a person, it can be ignored. Stress with

negative effects on the human body is called distress and is

an important type of stress to focus on. Depending on its

time characteristics, distress is classified into acute and chronic

stress. Acute stress are short but intense levels of stress, while

long term intense levels are considered as chronic stress.

Chronic stress has very serious consequences on the healthy

living of humans [2], [3]. Stress increases muscle tension and

causes impairment in daily physical activity. Increase in stress

levels can push a person to complex mental illnesses such as

borderline personality disorder (BPD) which causes dangerous

mood swings, change in behavioral patterns, eating disorders

L. Rachakonda is with the Dept. of Computer Science and Engineering,
University of North Texas, Denton, TX, E-mail: rl0286@unt.edu.

S. P. Mohanty is with the Dept. of Computer Science and Engineering,
University of North Texas, Denton, TX, E-mail: saraju.mohanty@unt.edu.

E. Kougianos is with the Dept. of Engineering Technology, University of
North Texas, Denton, TX, E-mail: elias.kougianos@unt.edu.

P. Sundaravadivel is with the Dept. of Electrical Engineering, University of
Texas, Tyler, TX, E-mail: psundaravadivel@uttyler.edu.

and provoke the stressed person to take unhealthy decisions

[4], [5].

The Internet of Things (IoT) helps in creating seamless

wireless health monitoring systems. Some significant IoT

applications include secure surveillance systems [6], [7], the

smart grid, smart parking systems, smart healthcare and nu-

merous other applications in smart cities [8]. The “edge” IoT

includes a wide range of sensors and actuators (“things”)

wherein edge computations are performed. Edge computing

involves intelligent processing closer to the things in order to

reduce communication traffic and improve IoT response [9],

[10]. The edge also includes devices which collect and transmit

real time data [11].

The Internet of Medical Things (IoMT) is a particular

application of the IoT consisting of primarily medical-related

devices and services, such as on-body sensors, smart gadgets,

smart infrastructure, smart homes, emergency response, and

smart hospitals, all connected through through the IoT. One of

the primary applications of the IoMT is real time monitoring,

which leads to better emergency response, provides easy but

controlled access to patient data, remote access to healthcare

and connectivity among stake holders in the smart healthcare

framework [12].

Through this research we have developed an accurate, rapid

stress level detection IoMT system, called “Stress-Lysis”, that

can detect stress level at the user end (at the edge) while

storing the data in the cloud. The proposed Stress-Lysis sensor

system can be easily integrated in a glove or a palm-band to

monitor stress levels in real-time. The overall objective is to

provide a solution to the monitoring of the stress levels of

a person by developing an intelligent system which helps in

maintaining the emotional balance of the users, as shown in

Fig. 1.
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Fig. 1. Conceptual overview of the proposed stress-level detection system.
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This paper is organized as follows: Section II highlights the

novel contributions of this paper. Section III presents exist-

ing related research. A detailed presentation of our research

is given in Section IV. Section V discusses the proposed

novel approach for accurate analysis of stress level. Section

VI validates the model with implementation results of the

proposed system. Section VII presents the proposed solution

within a Consumer Electronics (CE) framework, and section

VIII concludes the paper.

II. NOVEL CONTRIBUTIONS

The proposed Stress-Lysis system, when developed into

a wearable can allow individuals to monitor the naturally

occurring parameters, and track their estimated stress levels

without any manual interaction. When deployed, this system

will be of benefit in the fields of smart healthcare. A cloth

band across the palm can be the final fabricated device with

sensors incorporated. The network connectivity can be made

using Wi-Fi with which the measured data can be stored in the

cloud allowing for easy, controlled access. The display unit of

the device lets the user know the status of stress allowing for

immediate relief measures.

The novel contributions of the current paper can be

summarized as follows:

• A novel, accurate, and rapid stress level detection system

that acquires and models sensor data, and detects stress

level at the user end (at the edge) and stores the data in

the cloud.

• A novel real-time deep learning system for accurate stress

detection from physiological activity.

• A novel consumer electronic proof of concept with Deep

Neural Networks (DNN) deployed on edge devices, thus

contributing to the advancement of the state-of-the-art.

• A novel approach that combines human body tempera-

ture, rate of motion, and body sweat to accurately detect

stress rapidly, in contrast to existing approaches which

use only a single parameter.

• A novel smart sensor device that uniquely quantifies the

body temperature, rate of motion, and body sweat for fast

and accurate stress level detection.

• A hypothesis to monitor stress level in real-time based

on daily activities is proposed.

III. STRESS DETECTION APPROACHES:

STATE-OF-THE-ART

Though consumer electronics for smart healthcare has a

great potential to improve the quality of our lives, its usage

is limited based on its accuracy and reliability. Research in

consumer electronics for smart healthcare has been focused on

assisting visually impaired individuals [13], [14], monitoring

physiological signals such as Electrocardiography (ECG) [15],

heart rate [16], and wearables such as wrist gadgets, rings,

patches, badges, glasses, and bracelets [1].

In [16], the researchers have proposed a wrist gadget for

monitoring stress level using the heart rate, which has the

limitation of detecting stress level during a high intensity

workout. In such scenarios, though the increase in heart rate

might help in burning more calories, it cannot identify the

stress level of the individual. Other stress monitoring consumer

electronic wearables include the Inner Balance by Heartmath,

the Spire, the WellBe, Zensorium’s Being, and Tinke. They

use IR blood flow sensors with breathing as a parameter,

patented respiration sensors, vibration motors, optical sensors,

and three-axis accelerometers with small meditation sessions

and breathing exercises as remedies. However, the complexity

of the design increases the overall cost of these available

systems.
A taxonomic representation of various stress detection sys-

tems is represented in Fig. 2. The classification is done based

on the type of sensing device, the cause of stress, and the type

of computing. In this figure, “things” refers to any physical

device such as sensors, actuators etc., that has its own IP

address and can connect to a network to send/receive data [9].

“Stressors” are the behaviors that stimulate the signals detected

by the sensors used. Computing in the data preprocessing stage

can be done at the edge, the fog, or the cloud. Computational

facilities near the sensor are called edge, while computations

between the sensors and the cloud are called fog.
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Fig. 2. Taxonomy of different stress detection approaches.

For monitoring stress level using different types of stressors,

researchers have proposed biofeedback processes integrated

with gaming [17], usage of mobile phones [18], monitoring

linguistic outputs of an individual [19] etc. Biomarkers for

stress level detection have been identified through ECG, res-

piration, skin conductance, and surface electrocardiography in

[20], heart rate variability in [21], continuous monitoring of

ECG, impedance and acceleration of the head in [22], and

functional Magnetic Resonance Imaging (fMRI) in [23].
In [24] and [25] stress level prediction is performed with

a fuzzy logic controller using sweat rate, step count and

temperature as the stressors. However, this proposed system

had only 150 samples of data thus affecting the accuracy and

increasing its complexity, as the samples have to be entered

manually in the system.

IV. THE PROPOSED IOMT-BASED STRESS DETECTION

SYSTEM - STRESS-LYSIS

The proposed IoMT-based stress detection system is devel-

oped based on a hypothesis which can help in monitoring acute
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and chronic stress. The proposed hypotheses and architecture

along with the sensor design are explained in the following

subsections.

A. Proposed Hypothesis for stress level detection

The main contribution of this research includes developing

a real-time stress detection system, Stress-Lysis, with physical

activity as the stressor. Through the Stress-Lysis system, we

propose a hypothesis as follows:

Hypothesis: By monitoring acute stress levels through vari-
ation in temperature and sweat during different physical
activities, biomarkers for chronic stress can be detected.
Background: This is based on the fact that physical activity

produces endorphin, which is the “feel good” hormone pro-

duced by the human brain. Increase in stress levels, can limit

the production of endorphin, therefore limiting the benefits

of physical activities [3]. With the increase in the number of

steps taken per minute, the number of breaths per minute also

increases along with the heartbeat and stress of the human

body [26], [27]. When the sweat content on the basic parts

like palms and face increases, the stress levels of a human

being also increase linearly [28], [29]. The temperature of the

human body changes with the blood flow in the body. When

the hands or feet are cold, the stress levels are high. Warmer

hands or feet indicate that the stress levels are normal [30].

The following subsections define the proposed design at the

architecture-level and sensor-level.

B. Proposed Novel IoMT Based Architecture

To support our hypothesis, we designed the Stress-Lysis

sensor system to monitor three parameters: human body

temperature, sweat reduction rate and motion detection. The

overall architecture of the Stress-Lysis system is represented

in Fig. 3. The sensor inputs from the human body are received

and stress analysis is done using deep learning and the stress

detection unit. The stress level is classified as low, normal, and

high. With the help of Wi-Fi, cloud connectivity is available

which helps for storing present and previous stress levels at

certain intervals.

C. Design of Stress-Lysis Sensing Wrist Band

1) Sensor for measuring Body Temperature Variability:
Body temperature is a primary symptom for any major or

minor health issues. By searching for patterns in the temper-

ature variation, the physical and mental condition of a person

can be analyzed. Temperature rate is the rate of variation of

body temperature within a given amount of time. Generally,

temperature sensors can be classified in 2 types: Contact

temperature sensors that measure temperature when placed

on the body and non-contact sensors that measure infrared

or optical radiation received from any area of the body. In

this work we modeled a contact temperature sensor that can

monitor the rate of variation in body temperature.

2) Sensor for Sweat Analysis: Sweat is defined as the

physical quantity which is released through the pores of

the skin in certain quantities as a reaction to heat, physical

exercise and emotional changes. As the sweat of the body

increases, the current flow between two electrodes increases

making the human body effectively a variable resistor [31].

Sensors that detect humidity can be used to monitor sweat

secretion levels, which are controlled by the human central

nervous system. Monitoring the amount of sweat generated

can help in finding the stress and arousal levels of the subject

monitored. Sweat gland activity as a variable is used in many

biofeedback applications such as lie detection, and emotion

recognition [32]. The process of normal sweating is called

perspiration while an excess sweating disorder is known as

hyperhidrosis and is associated with emotional, occupational

and social stress. In this work a humidity sensor is used to

detect sweat secretion on the palms.

3) Sensor for Activity Monitoring: Accelerometer sensors

measure the rate of change in velocity of an object. They

typically consist of three separate accelerometers mounted

orthogonally on a 3-physical axis system (x, y, and z).

The forces causing acceleration can be static or dynamic.

The sensed voltage is generated when microscopic crystal

structures get stressed by these forces [33]. In this work an

accelerometer sensor is used to measure the step count of a

person.

V. THE PROPOSED MACHINE LEARNING BASED NOVEL

APPROACH FOR PRECISE DETECTION OF STRESS-LEVEL

The design methodologies used for developing Stress-Lysis

are explained by a system-level flow chart while the machine

learning modeling techniques for stress-level detection are

discussed in the following subsections. Fig. 4 presents the

proposed DNN based novel stress-level detection algorithm.

The operational flow of the Stress-Lysis is also represented

in pseudocode form with 3 straight forward combinations of

sensor levels in order to determine stress level of a person in

Algorithm 1.

A. Deep Neural Network (DNN) Theory

Deep Neural Networks (DNN) or Deep Learning Models

are used in pattern recognition applications with very large

larger datasets. An identification of the input patterns is done

by the network in order to find out the associated output

pattern. In other words, a model determines the relationship

between features and the label. A standard neural network

consists of many simple connected processors called neurons.

Input neurons get activated from the sensors perceiving the

environment and other neurons gets activated by their weighted

connections from the previously activated neurons as follows:

z(X) =
N∑
i=1

(ωixi + ωo), (1)

where X = x1, x2, · · · , xn is the n-dimensional input, z is

the response of the neuron, ωi are the weights for each input

and ωo is a constant bias. A neural network with more than
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Fig. 3. The proposed architecture of the Stress-Lysis system.

Fig. 4. The proposed algorithm for stress detection in Stress-Lysis.

three hidden layers can be considered a deep neural network

layer. There are a number of neural networks such as feed-

forward neural network or fully connected neural network,

convolutional neural network, reverse neural network, etc.

There are different types of activation functions such as

sigmoid or logistic, Re-Lu (Rectified Linear Unit), soft-max,

tanh, leaky Re-Lu, etc. The number of hidden layers and the

neurons associated with each of the hidden layers are free

parameters and can be considered at random. The output layer

is where the network ends and the predictions are given.

B. Deep Neural Network Model for Stress-Lysis

As the Stress-Lysis system monitors stress data on a daily

basis, a large amount of data will be generated. Hence, DNNs

are used. In this work, a supervised learning mechanism is

deployed, where the system will be trained with known out-

puts. In this work a fully connected neural network was used

in which the neurons in one layer receive input connections

from the previous layer. The number of neurons in the input

layer corresponds exactly to the number of input features

considered, here 3.

The detailed structural organization of the network is given

in Fig. 5. This organization can be divided into three different

stages: stage one has sensor inputs from the Stress-Lysis wrist

band , stage two consists of a series of hidden layers which

can help in analyzing the sensor inputs, and the third stage has

Algorithm 1 Pseudocode for Stress-Lysis

1: Initialize the accelerometer sensor variable (acc) to zero.

2: Initialize the Humidity sensor variable (hum) to zero.

3: Initialize the temperature sensor variable (tem) to zero.

4: Get in and store the actual sensor data values to the

assigned variables.

5: Feed the data to the DNN model.

6: Using tf.Transform remove the garbage values from the

obtained sensor data.

7: if acc < 91 and 10<hum>15 and 79.01<tem> 84 then
8: assign stresslevel variable to low

9: else
10: if 92<acc<129 and 15.01<hum>20.00 and

84.01<tem>95.00 then
11: assign stresslevel variable to normal

12: else
13: if 130<acc<200 and 20.01<hum>30.00 and

95.01<tem>99.00 then
14: assign stresslevel variable to high

15: end if
16: end if
17: end if
18: Repeat the steps from 7 though 17 for all the possible

combinations in the epoch.

19: Classify the Stress Range by using the stresslevel variable.

20: To determine the efficiency of the system, calculate loss,

accuracy of the model with the functions in the model.

the output as detected stress. With help of logistic regression,

Stress-Lysis is designed as a classification model to predict

one of n categories from m inputs. The series of hidden layers

are represented as L1, L2, L3. In Stress-Lysis, the neurons at

the three hidden layers are 10, 20 and 10, respectively. The

number of neurons in the output layer corresponds exactly to

the number of stress range classifications. After the boundary-

conditioned sensor values (explained in Section VI) is fed to

the network, the data goes through all the hidden layers where

the weighed inputs to that layer are calculated using Eqn. (1).

This produces a net input, as given in Eqn. (2) which is then

applied to the activation functions to produce the output. The

predictions at the output layer are produced as given in Eqn.

(2). Given a layer i and its values (x)i, the next layer j with
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values (h)j can be derived by:

hj = f((W )j , i · (x)i + (b)j , i), (2)

where (W )j , i is the weight matrix, (b)j , i the bias, and f is

the Rectified Linear Unit (ReLU) activation function:

f(x) =

⎧⎪⎨
⎪⎩
1 x > 1

x x = 1 and 0

0 x < 0

(3)

Output
(Stress Detected)

Stress-Lysis Hidden Layers
(Weighted input and net output with activation function) 

Input
(Sensor Data)

1st Hidden Layer
(Reads Sensor Values)

2nd Hidden Layer
(Boundary-conditioned sensor values)

3rd Hidden Layer
(Stress Range Classification)

Temperature Sensor

Accelerometer

Humidity Sensor

Fig. 5. Hierarchical learning used in Stress-Lysis.

The output layer does the classification and prediction of the

input sensor data to a stress range using the soft-max function:

p = softmax(ω · x+ b), (4)

where ω, p, and b denote weight, predictor function and bias,

respectively.

C. Proposed Methodology for training the Stress-Lysis DNN
model

The process of helping the algorithm learn in order to make

better predictions is known as training. The training loop feeds

the datasets to the model in epochs. The Stress-level training

epoch denotes the count at which the model should learn from

the training set of the Stress-Lysis dataset. The steps involved

in training the Stress-Lysis model are presented in Algorithm

2.

The predicted stress values must be compared to the real

stress values in order to estimate the cost or the loss function,

accuracy and confidence of the Stress- Lysis system [34]. In

Stress-Lysis, the gradient descent algorithm is used in order to

optimize the training algorithm. The Stress Prediction Accu-

racy (SPA), which can be defined as the skill of the Stress-lysis

learning algorithm to predict stress levels accurately, is given

as:

SPA =

(
TAS

TSP
· 100

)
, (5)

where TAS and TSP denote the Total Accurate Stress Pre-

dictions and Total Stress Predictions made, respectively. The

confidence of the Stress-lysis system defines the probability of

the detected event to fall in different stress-level classifications.

Instead of presenting a single error or accuracy value, a Stress

Algorithm 2 Proposed methodology for training of Stress-

Lysis DNN models

1: Iterate each stress epoch.

2: Iterate over each variable of the Stress-Lysis dataset by

considering the Stress-Lysis sensor inputs and output

factor.

3: Predict stress ranges by using the boundary-conditioned

Stress-Lysis sensor inputs.

4: Compare the detected stress outputs with the stress pre-

dictions from the previous step.

5: Calculate the Stress-Lysis training algorithm’s inaccuracy.

6: Calculate the stress data loss and stress level detection

accuracy in order to determine the overall efficiency.

7: Update the variables to predict stress levels with the

help of optimized algorithm using the Gradient Descent
algorithm.

8: Repeat the above steps for the stress epoch count.

Confidence Interval (SCI) is calculated by analyzing the stress

interval radius (SIR) of each SCI as follows:

SIR = z

√(
(SPA · (1− SPA))

n

)
, (6)

where SPA is the detected stress accuracy defined from

Equation (5), n is the Stress-lysis sample size and z is a

critical value from the normal distribution [34]. The training

and testing of the network are done using a dataset of 26,000

samples based on sensor ranges from Table I which tabulates

the range of sensor values classified into 3 levels of stress:

low, normal and high.

TABLE I
RANGE OF SENSOR VALUES.

Sensor Low Stress Normal Stress High Stress

Accelerometer (steps/min) 0-91 92-129 130-200

Humidity (mg/min) 10.00-15.00 15.01-20.00 20.01-30.00

Temperature (◦F) 79.01-84.00 84.01-95.00 95.01-99.00

VI. DNN MODELS OF STRESS FROM REAL-LIFE

DATASETS

This Section presents DNN models which are derived from

datasets to be integrated in the sensor for edge computing.

A. Deep Learning System Based Validation

The collected data from Sec. V-A are analyzed using Python

and TensorFlow. TensorFlow is a framework which is designed

to define and run computations with tensors. Tensors are vector

generalizations to higher dimensions. The main objective of

writing the program is to manipulate and pass around in

the program a tf.Tensor object which will eventually

produce a value. To address out-of-range, invalid and missing

values from the datasets, data pre-processing is done with the
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tf.Transform library in TensorFlow which allows instance

and full-pass data transformations through pipelines.

In the DNN, the activation functions are Re-Lu for the 3

hidden layers and soft-max for the final layer as it is useful for

classification. The training dataset consists of 2000 samples

with 1334 samples used for training while the remaining

667 are used for testing. The accuracy obtained is approx.

99% with 1500 training epochs. The confidence interval of

the system using Eqn. (6) is 0.007. Thus the classification

accuracy of the model is 99% ± 0.7%. This implies that the

true classification accuracy of this model with 2000 samples

lies between 99.7% to 98.3%.

Fig. 6 presents a graphical representation of the DNN. All

connections can be checked and changes can be made in the

program through TensorBoard. The training and testing for

TensorFlow here is done with the ranges presented in Table I.

Fig. 7(a) shows the accuracy plot with the number of iterations

on the x-axis and the accuracy ranging from 0 to 1 on the y-

axis. Fig. 7(b) presents the loss function plot. The loss function

is the function which is meant to minimize the error in the

network over a certain number of iterations.

OPT

NN

AccuracyLoss

FNN 2 FNN3 OPFNN1
init initinitinitx

y

Fig. 6. Graphical representation of the DNN.

B. DL Modeling of Human Motion Primitives (HMP)

The DNN is again implemented using the Human Motion

Primitives (HMP) by using a dataset for activities of daily

living (ADL) recognition with wrist-worn accelerometer data

[35], [36], [37]. This dataset provides accelerometer data

readings of the x, y and z axes of labeled recorded executions

of a number of simple human activities which are called

Human Motion Primitives. There are fourteen activities that

are recorded: brushing teeth, climbing stairs, combing hair,

descending stairs, drinking glass, eating meat, eating soup,

getting up from bed, laying down on bed, pouring water,

sitting, standing, walking and using a telephone. The activities

are represented in 979 elements with each element having an

average of 300 sample sensor data. The temperature data is

considered from [38] and sweat count for training is taken

from the existing literature, as shown in Table I. The dataset

is composed of the recordings of selected Human Motion

Primitives performed by a total of 16 volunteers. The basic

characteristics of the volunteers are presented in Table II.

The accelerometer specifications are: Type: tri-axial; Sen-

sitivity: 6 bits per axis; Output data rate: 32 Hz; Location:

attached to the right wrist of the user with the x axis pointing

10.9993 3.999k Tue May 8, 00:03:41 4m 54s

(a) Accuracy

=training\. 0.5781 0.5780 3.999k Tue May 8, 00:03:41 4m 54s

(b) Loss

Fig. 7. Accuracy and loss in the deep learning system validation.

TABLE II
BASIC CHARACTERISTICS OF THE VOLUNTEERS

Gender Age Weight
Male : Female Min — Max — Avg Min — Max — Avg

11 : 5 19 — 81 — 57.4 56 — 85 — 72.7

toward the hand, the y axis pointing towards the left, and the z
axis perpendicular to the plane of the hand. The measurement

range is ±14.709g.

The DNN is trained with 4000 samples, out of which 2667

samples are used for training and 1333 samples are used for

testing. The accuracy is as high of 99% with a loss of 1%,

with 1500 training epochs as shown in Fig. 8(a) and Fig. 8(b),

respectively. The confidence interval of the system using Eqn.

(6) is 0.005. Thus the classification accuracy of the model is

99% ± 0.5%. This implies that the true classification accuracy

of this model with 4000 samples lies between 99.5% to 98.5%.

C. DL Modeling of Physical Activity Monitoring

The DNN presented above is tested with another dataset, the

PAMAP2 Physical Activity Monitoring dataset which contains

data of 18 different physical activities, performed by 9 subjects

wearing 3 inertial measurement units and a heart rate monitor

[38], [39], [40]. The data is gathered by using three Colibri

wireless inertial measurement units with sampling frequency

of 100 Hz. The activity data along with the optional data

consist of 18 sample datasets with each dataset comprising

of an average of 400,000 sensor data readings. The location
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Fig. 8. Accuracy and loss in the deep learning system validation.

of the sensors is at the wrist, ankle and chest of the person.

The heart rate is also listed in this dataset but not used for

the training purpose of the system. The sensor units at the

ankle, wrist and chest also contain the temperature unit which

helps in monitoring the temperature as defined in the protocol.

The sweat count is again considered from the literature,

as shown in Table I. The activities that are considered are

laying, sitting, standing, ironing, vacuuming, ascending and

descending stairs, normal and Nordic walk. The protocol of

the dataset is described in Table III.

TABLE III
DATASET PROTOCOL

Activity Metabolic Equivalent (MET) Time-stamp (min)

laying 1.0 3

sit 1.8 3

stand 1.8 3

iron 2.3 3

break 0 1

vacuum 3.5 3

break 0 1

ascend stairs 8 1

break 0 1

descend stairs 3 1

break 0 1

ascend stairs 8 1

descend stairs 3 1

break 0 1

normal walk 3.3-3.8 3

break 0 1

Nordic walk 5.0-6.0 3

break 0 1

The IMU sensory data contains the following columns: 1

temperature; 2-4 3D-acceleration data; 5-7 3D-acceleration

data; 8-10 3D-gyroscope data; 11-13 3D-magnetometer data;

14-17 orientation. Volunteer information is presented in Table

IV. The measurement range of the sensor is ±16g.

TABLE IV
CHARACTERISTICS OF VOLUNTEERS FOR EXPERIMENTAL ANALYSIS

USING STRESS-LYSIS PROTOTYPE

Gender Age BMI (kg)
Male : Female Min — Max — Avg Min — Max — Avg

8 : 1 23 — 30 — 27.22 22.49 — 27 — 25.11

The deep learning system is trained with 20,000 samples,

out of which 13,340 samples are used for training the system

and 6660 samples are used for testing. TensorBoard is used

to calculate the accuracy which is as high as 99% with a loss

of 1%, with 1500 training epochs, as shown in Fig. 9(a) and

Fig. 9(b), respectively. The confidence interval of the system

using Eqn. (6) is 0.002. Thus the classification accuracy of the

model is 99% ± 0.2%. This implies that the true classification

accuracy of this model with 4000 samples lies between 99.2%

and 98.8%.

CSV JSON

1

run to download

=training\. 0.9963 0.9963 3.999k Tue Jan 29, 20:48:41 25m 26s

(a) Accuracy

CSV JSONrun to download

=training\. 0.5973 0.5972 3.999k Tue Jan 29, 20:48:41 25m 26s

(b) Loss

Fig. 9. Accuracy and Loss in the deep learning system validation.

VII. CONSUMER ELECTRONIC PROOF-OF-CONCEPT USING

OFF-THE-SHELF COMPONENTS

A. Consumer Electronic Validation of Stress-Lysis

A single-board computer is used in order to connect the

hardware to the cloud server. An accelerometer sensor along

with temperature and humidity sensors are used to measure the

step-count, humidity and temperature of a person respectively.

Here, the sensor used digitally measures relative humidity with

a range of 0-80%RH with a 3% accuracy. The maximum value

of humidity that can be sensed is 107. The temperature range

for this sensor is within the range of -10 to +85°C. The DNN



8

model described above is executed on this device with the

real time dataset therefore satisfying the requirements of edge

level detection. Fig. 10 shows the complete flow of the data

collected from the setup and the collected data given in Fig.

10(a) is sent to the IoT cloud as shown in Fig. 10(b) where it

is stored for future analysis. The average time for evaluating

stress level in the proposed framework is 2-4 minutes. The

purpose of presenting a consumer electronic implementation

is to provide a proof of concept for monitoring stress levels

using a wearable. However, various factors including proper

usage and placement affect the accuracy of the system.

pi@raspberrypi ~$  Python3 iStress.py
Stress is Low: H=54.8865 
T=27.5824
A=11

pi@raspberrypi ~$  Python3 iStress.py
Stress is High: H=29.2458 
T=80.0010
A=175

File    Edit    Tabs    Help 

(a) Serial Monitor Window

(b) CE Cloud Server Connectivity.

Fig. 10. Stress data analysis using the developed Stress-Lysis prototype.

The quality of resources that are used to validate the effi-

ciency of the system depends on the computational complexity

of the model. The most important characteristics that are

considered to evaluate the efficiency of the model are time

complexity and space complexity. With an approximate accu-

racy of 99% and SCI of 0.007, the time required to complete

the operation in the model is approximately 3 minutes. In

terms of computational time complexity, the neural network

used is O(n4), where n is the total number of neurons in the

model and the space complexity is O(n).

B. Comparative Analysis with Existing Literature

The main factors compared are sample size and accuracy.

The training dataset or the sample size for the deep learn-

ing system based implementation has 26,000 samples. The

predictions lead to an accuracy level of approximately 99%.

The three different datasets with samples of 2,000, 4,000 and

20,000 produced an accuracy as low as 98.3% and as high as

99.7%, with SCI of 0.007, 0.005, and 0.0072 respectively. This

shows that the system that is proposed is trustworthy and the

results are produced with minimal loss. Stress-Lysis is being

compared with already proposed stress related studies. Table V

presents a comparative perspective of Stress-Lysis with other

systems presented in the literature.

VIII. CONCLUSIONS AND FUTURE RESEARCH

A novel system for stress detection has been presented. In

addition to helping the user in achieving emotional balance,

the proposed Stress-Lysis system helps in monitoring chronic

stress from early stages. A deep learning system is developed

and tested with three different datasets with sample sizes of

2000, 4000 and 20,000. The training of the system is done

with 67% of the sample size while the testing is done with

33% of the sample size. Validation and testing of the proposed

framework is done in real-time with the help of available

frameworks. The results when the system is tested with the

training set were accurate in a range of 98.3% to 99.7% with

a loss of 1% or less. The accuracy and loss plots confirm that

as the sample size increases accuracy. A GUI implementation

of the concept is used to represent the ease of use the system

which can later be developed as a mobile application. This

GUI is displayed and connected to an IoT cloud for data

access and storage. The different combinations of the stress,

namely low, medium and high are also displayed. Finally,

a consumer electronics implementation of this approach has

been performed using a dataset of 2,000 samples on a single-

board computer running the DNN, thus proving the system can

be implemented at the edge. The ease of accessing the data off-

line is provided by the IoT cloud implementation. Cloud access

is provided and is verified by using online cloud software. The

results of the proposed system, Stress-Lysis show an accuracy

in the range of 98.3% to 99.7% in determining the stress

range of a person. Advantages of the developed prototype

include low-cost, minimal complexity in the design, low power

consumption and attendance-free operation.

Our future directions in this area of research include de-

ploying the developed prototype as wearables for veterans and

women to analyze the stress values during post-traumatic stress

disorder (PTSD).

ACKNOWLEDGMENT

The authors would like acknowledge the help of Dr. Mad-

havi Ganapathiraju during the initial phases of this research.

This material is based upon work supported by the Na-

tional Science Foundation under Grant Nos. OAC-1924112

and OAC-1924117. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the

National Science Foundation.



9

TABLE V
COMPARATIVE PERSPECTIVE WITH OTHER STRESS DETECTION SYSTEMS.

Research Stressors Sensors/Things Accuracy
%

Cost $ Energy
Consumed

System
Complexity

Wijsman, et al.
[20]

Puzzels, Calculations, Memory
Tasks

ECG, Respiration, ESR 74.5 High-211 Moderate Moderate

Zhang, et al. [41] Daily Acivities Photoplethysmogram not avail-
able

Moderate-
180

Moderate Moderate

Plarre, et al. [42] Public Speaking, Maths Skin Temperature, Ac-
celerometer, ECG, GSR,
Respiration

90.2 High-175 Moderate Complex

Sandulescu, et al.
[43]

Physical Activity HR, Humidity, Temper-
ature

85.7 High-100 High High complexity

Zhai, et al. [44] Stroop Color Test Pupil Diameter, Skin
Temperature, GSR,
Blood Volume Pulse

90.1 High-100 Moderate Complex

Begum, et al. [45] Verbal, Math Finger Temperature 80.0 Moderate
-35

Moderate Moderate

Choi, et al. [21] Mental Arithmetic, Stroop Color
Test

Respiration, GSR, Heart
Rate Monitor

83.0 High -200 Moderate Complex

Akmandor, et al.
[31]

Memory Game, Fly Sound, IAPS,
Ice Test

ECG, BP, GSR, RESP,
BO

95.8 High -200 High Complex

Rachakonda, et al.
[24], [25]

Physical activity Temperature Senor,
Humidity Sensor,
Accelerometer Sensor

95.6 Low -25 Moderate Less Complex

Stress-Lysis Physical Activity- climbing stairs,
descending stairs, running, walking,
sitting, standing, ironing, eating.

Temperature Senor,
Humidity Sensor,
Accelerometer Sensor

98.3 to
99.7

Low -25 Low Less Complex
with high range
of sample size
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