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Abstract—Epilepsy is one of the most common neurological
disorders affecting a significant portion of the world’s pop-
ulation and approximately 2.5 million people in the United
States. Important biomedical research efforts are focused on
the development of energy efficient devices for the real-time
detection of seizures. In this paper we propose an Internet of
Medical Things (IoMT) based automated seizure detection system
which will detect a seizure from electroencephalography (EEG)
signals using a voltage level detector (VLD) and a signal rejection
algorithm (SRA). The proposed system analyzes neural signals
continuously and extracts the hyper-synchronous pulses for the
detection of seizure onset. Within a time frame, if the number
of pulses exceeds a predefined threshold value, a seizure is
declared. The signal rejection algorithm reduces false detections,
which in turn enhances the accuracy of the seizure detector.
The design was validated using system-level simulations and
consumer electronics proof of concept. The proposed seizure
detector reports a sensitivity of 96.9% and specificity of 97.5%.
The use of minimal circuitry can lead to reduction of power
consumption compared to many contemporary approaches. The
proposed approach can be generalized to other sensor modalities
and the use of both wearable and implantable solutions, or a
combination of the two.

Index Terms—Smart Healthcare, IoMT, Wearables, Epilepsy,
Seizure, Electroencephalography, Automated Detection, Energy
Efficient Systems, Low Latency Systems

I. INTRODUCTION

SMART health care is becoming dominant due to the
combined pressures of an increasing and aging population,

an increasing demand for excellent care and limited resources.
Smart health achieved through wearables has been focused
on general wellness, but is now starting to encompass the
management of acute disorders. One example of such an
effort is the use of smart health care for the automated real-
time control of seizures. Epilepsy is a neurological disorder
marked by spontaneous recurrent seizures. A seizure is the
occurrence of an abnormal hyper-synchronous disturbance of
a population of neurons [1], which is manifested in the form
of sensory disturbances, convulsions, and frequently leads to
loss of conscience.

There are multiple lines of treatment for epilepsy. Anti-
convulsant drugs are used as a first line to control seizures,
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but a significant portion (more than 30%) of patients remain
refractory to medication. For patients who are refractory,
uncontrolled seizures have a potentially devastating effect on
the patient’s quality of life. Epilepsy surgery is suitable for
some patients with medically refractory seizures, but not if
the patient has multi-focal seizures or if the seizure onset
area is located in the eloquent cortex [2]. Other possibili-
ties include modification of diet, which may be effective in
some children. Wearable and implantable devices constitute
an important fourth line of treatment, and one whose use is
growing. Automated, closed loop therapy has shown efficacy
in managing epilepsy. Responsive neural stimulation (RNS),
for example, which is approved by the Food and Drug Admin-
istration (FDA) for use in the USA has been shown to reduce
the number of seizures experienced by a patient. Automated
seizure detection systems are a growing need for the treatment
of epilepsy, as early warning can enable a patient to take
protective action such as drug delivery or neurostimulation
when necessary [3, 4].

There are several ways to diagnose epilepsy by clinical
examinations. However, the diagnosis can be best performed
by electroencephalography (EEG) due to its high temporal
resolution [5, 6]. EEG is a process of measuring electrical
activity in the brain. The EEG can be collected in a number
of manners, including through the use of a cap, headband,
and invasive or subcutaneous sensors. Also possible is the use
of other wearable sensors monitoring galvanic skin response
and heart rate to detect changes within the autonomic nervous
system, which is reflective of seizure onset. The manual
seizure detection process is a tedious and time consuming
task, which necessitates automated seizure detection systems
which can detect seizures quickly. In this paper we propose
such an automated seizure detection system in the IoMT
framework. The proposed seizure detector has simple design
complexity, low sensitivity to noise and simulation results
indicate that it can be implemented as a low-power system.
Neural activity is monitored continuously. The input signal is
analyzed by a detection circuit and potential seizure activity
(hyper-synchronization) is detected. Hyper-synchronous pulses
are processed by a different algorithm. A seizure is declared
if the pulses exceed a certain threshold. The proposed seizure
detector consists of a filter, an amplifier, a voltage level
detector, and a signal rejection algorithm. An illustration of
the proposed system is shown in Fig. 1. The IoT framework
associated with the seizure detector enables recording the
patients day to day activities and accessing healthcare data
from anywhere or at anytime, hence the remote connectivity
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leads to a better treatment.
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Fig. 1. Seizure Detection Based on EEG data.

The remainder of this paper is organized as follows: Section
II emphasizes the novel contributions of this work. Existing
relevant research on seizure detection is presented in Section
III. Section IV provides an architectural overview of the
platform. The proposed seizure detector is discussed in Section
V. The implementation of the design block is presented in
Section VI. The simulation results are shown in Section VII
and conclusions are presented in Section VIII.

II. NOVEL CONTRIBUTIONS OF THE CURRENT PAPER

An accurate and energy-efficient seizure detection system
is proposed in the IoMT framework. The detection of EEG
abnormalities is a challenging task because of the its high
complexity. Existing algorithms show promising results for
seizure detection, though accuracy and power consumption
remain critical issues. The novel contributions of this work
address these issues as discussed below:

The proposed signal rejection algorithm (SRA) estimates
the seizure onset by accurately eliminating unwanted bursts of
pulses and noise. The unwanted signal rejection continues in
a time frame up to the threshold point A threshold number of
hyper-synchronous pulses within a time frame defines a seizure
onset. The continuous rejection of unwanted signals leads to
a reduction in false detections, which in turn enhances the
performance of the seizure detector. In common with current
IoMT trend, the proposed system provides the advantages of
remote healthcare monitoring and consultation. The patient’s
EEG data are continuously stored and analyzed on the cloud
and a notification is sent to the physician if a seizure occurs.
Physicians can take required actions based on the healthcare
report from the cloud.

Simulation results of an ideal prototype show low power
consumption. Combined with the system’s increased detection
accuracy, it is suitable for use as a wearable or implantable
device for seizure detection and epilepsy treatment.

III. RELATED PRIOR RESEARCH

Table I provides a comparative presentation of relevant
existing research and development in consumer electronics and
illustrates the contributions of each work to smart healthcare.
An IoMT based smart healthcare system has been proposed
in [7] which collects the patient’s medical data including
blood pressure and heart rate, and sends them to a physician
through the cloud, providing remote healthcare service. An

architecture of remote electrocardiogram (ECG) monitoring
with a wireless sensor network has been proposed in [8–11] in
which portable sensors transmit data to an ECG server which
are then sent to hospitals and physicians for evaluation. An
extensive survey has been conducted in [12] which reviews
the concepts, applications, current research trends, challenges,
opportunities and significance of the IoMT in smart health
care. U.S regulators have recently approved the first medical
grade smart watch, a novel consumer electronics product for
neurological health, which measures abnormal activity during
an epileptic seizure and sends alerts to a physician for proper
action [13]. While this product has shown promising results for
the detection of generalized clonic-tonic seizures, significant
research remains to be conducted for the detection of partial
seizures. The proposed system advances consumer electronics
by bringing seizure detection and control to the smart health
care system.

Several seizure detection algorithms such as wavelet de-
composition [15], phase coherence [16], and signal synchro-
nization have been proposed. The implementations of these
algorithms are only confined to powerful desktop computers
and are not applicable to wearable or implanted devices.
Considerable research has been focused recently on developing
implantable devices [17–19]. An algorithm based on events
[17] distributes EEG datasets into events of identical size. A
seizure state is defined by a threshold voltage associated with
EEG abnormalities. Detection relies on positive and negative
thresholds but can false detection is possible. A method based
on support vector machines (SVM) [20] exhibits excellent
detection accuracy but numerous support vectors are required
to differentiate bewteen a seizure and normal states. This
results in increased power requirements and high cost. A
complex detector [21] requires an ASIC to meet sensitivity
requirements. A detection technique based on a CMOS pream-
plifier [19] provides good seizure detection accuracy at the
cost of high power. Due to poor CMOS noise immunity, noise
related issues degrade its performance [22]. In the current
work, to mitigate the noise problem, the detection method
proposed is energy efficient and more immune to noise.

The wavelet transform has the capability of capturing the
non-stationary behavior of EEG signals using time-frequency
localization. A wavelet transform-based seizure detection
method [23] has been introduced which provides a sensitivity
of 76% and a detection latency of 10 sec. A fast and accurate
approach [24] of seizure detection has been proposed in the
edge-IoT framework that utilizes a naive Bayes classifier
for feature classification. The edge-IoT framework offers a
reduction in latency compared to the cloud-IoT and enhances
the detection accuracy for short duration intracranial icEEG.
A patient-specific seizure classification method [25] has been
presented, which uses an SVM as a classifier and achieves a
sensitivity of 96% and a mean detection latency of 4.6 sec. An
alternative approach to EEG is proposed [26], which uses a
single wrist-worn accelerometer device for monitoring and de-
tection of convulsive seizures in a noninvasive way. The use of
the accelerometer sensor reduces resource and labor associated
with the existing EEG based detection system. In the temporal
synchronization based approach [27], the recurrence pattern of
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TABLE I
EXISTING CONSUMER ELECTRONICS WORKS ON SMART HEALTHCARE.

Existing Works System Details Application to Smart Healthcare Characteristics
Ivanov, et al. 2012 [9] Cooperative wireless sensor network (WSN)

with wireless body area network (WBAN)
Healthcare monitoring includes
ECG, blood oxygen level, and
body temperature

Energy efficient and cost effec-
tive

Spinsante, et al. 2012 [10] An integration of WSN framework, blue-
tooth, and digital TV

Remote health monitoring and
smart sensor

Simplistic and cost effective

Dey, et al. 2017 [8] Wireless sensor network (WSN) and Zigbee
technology

ECG home healthcare monitoring Improvement in device integra-
tion, reliability, and latency

Lee, et al. 2018 [14] Analog front end circuit and Digital signal
processor

Arrhythmia monitoring Enhancement in accuracy and
low power consumption

Raj, et al. 2018 [11] ABC-LSTSVMs ECG health monitoring Improvement in accuracy

Proposed System Signal rejection algorithm (SRA) and IoMT Remote EEG health monitoring
and detection of seizure

Accurate with potentially low
power consumption (based on
simulation results)

seizure and non-seizure behavior is represented by a complex
model and reports a average latency of 6 sec. In the local
mean decomposition (LMD) based seizure detection approach
[28], the raw EEG signal is decomposed into several product
functions (PF) and then the extracted features are given to the
classifier for seizure detection.

In our previous work [29], an energy efficient seizure
detector was proposed. The system needs both software and
hardware validation with extensive EEG data. In the current
extended article, an accurate and energy efficient seizure
detector is proposed in the IoMT platform. The proposed eSeiz
in the present work has been extensively validated, and uses
a signal rejection algorithm (SRA) for seizure detection.

IV. THE PROPOSED SEIZURE DETECTOR IN THE INTERNET
OF MEDICAL THINGS PERSPECTIVE

Due to increased and aging population, traditional health-
care systems are not able to provide the necessary services
to everyone. Smart healthcare utilizes limited resources in an
efficient way to fulfill everyone’s needs [12, 30]. The IoMT in
smart healthcare is an integration of universal communication
and connectivity where all the necessary components can be
connected together [7]. The proposed device is divided into
three components, as shown in Fig. 2.

Seizure 
Detector

Cloud Storage

Hospital

Doctor

Sensor Unit Transmission and Storage Unit Access Unit
EEG Data 
Acquisition

Wireless
Transfer

Seizure 
State

EEG 
Signal

Fig. 2. Proposed eSeiz in the Internet of Medical Things (IoMT).

A. Sensor unit
The sensor unit consists of an EEG pre-processing unit and a

seizure detector . The input EEG signal is analyzed by the pre-
processing unit. The seizure detector continuously monitors

the seizure state of the epileptic subject. The information
relating to the patient’s seizure state is then sent to remote
storage through a wireless transfer.

B. Transmission and storage unit

The transmission unit acts as an interface between the sensor
unit and cloud storage. The main function of the storage unit
is to store and manage the patient’s data. Cloud storage is
preferred as it enables data to be accessed from anywhere and
provides automatic redundancy.

C. Access unit

This unit allows health professionals like physicians, health
practitioners, and hospitals to access data from the cloud. The
information relating to a patient is continuously stored in the
cloud. In the case of a seizure, a notification is sent to the
corresponding physician for proper action. The physician will
check the patient’s medication history as well as documented
seizures and prescribe the required dosage for the treatment
of epilepsy. The data is also accessible by the patients which
allows them to be updated with current health conditions [7].

V. THE PROPOSED NOVEL SEIZURE DETECTOR

The proposed seizure detector (SD) monitors the brain
activity at the seizure onset area. Fig. 3 shows a charac-
terization of seizure onset. The architecture and flowchart
of the proposed detector are shown in Fig. 4 and Fig. 5,
respectively. The input EEG signals are filtered and submitted
to an amplification unit. The amplified signals of desired
range are then passed through a voltage level detector (VLD).
The resulting hyper-synchronous pulses from the VLD are
then submitted to the signal rejection algorithm (SRA) unit.
The SRA unit eliminates unwanted signals and noise. The
elimination of unnecessary signals continues until the number
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of hyper-synchronous pulses surpasses the threshold value.
Seizure detection is characterized by the following equation:

VSE(n) =

{
1, seizure, for V (n− i) = 1 · · · and V (n) = 1

0, no seizure, otherwise,
(1)

where V (n) is the EEG sample at time sample n and i =
1, 2, 3, · · · , N , with N being the threshold number of samples.
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Fig. 3. Seizure Activity Characterization in the Time Domain (a) Invasive
Electroencephalography (EEG) of an Epileptic Seizure (b) Zoom Inset 6-10
seconds.

A. Hyper-synchronous Signal Detection Circuit

The proposed circuit in Fig. 6 consists of a band pass filter,
an amplifier, and a voltage level detector (VLD). The filter
eliminates the unwanted signals and noise associated with
the scalp-EEG signals and only keeps signals of the desired
frequency range. The low amplitude neural signals need to be
amplified prior to analysis. The desired level of the signals
is achieved by the amplification unit. The VLD analyzes the
amplified signals and detects hyper-synchronous pulses. The
threshold values (Vmax, Vmin) of the VLD are determined
from the analysis of known seizure instances. The detection
of the hyper-synchronous signal is based on the following
equation [19, 29]:

Vvld(n) =

{
1, for Vmax > Vmod(n) > Vmin

0, otherwise,
(2)

B. Signal Rejection Algorithm (SRA): Detection of seizure
onset from hypersynchronous signals

The hyper-synchronous signals from the VLD are analyzed
and spurious pulses are eliminated using the SRA. The elim-
ination of unwanted signals is performed by:

VSE1(n) =

{
0, V (n− 2) = 0 or V (n− 1) = 0

V (n), otherwise.
(3)

The spurious pulse is further eliminated using:

VSE2(n) =

{
0, V (n− 1) = 0 and V (n) = 1

V (n), otherwise.
(4)

The seizure onset is characterized by [19, 29]:

VSE(n) =


Seizure, V (n− 2) = 1 and V (n− 1) = 1,

if V (n) = 1 or 0
0, otherwise.

(5)
Neural signals are continuously monitored and seizure is

detected from the hyper-synchronous pulses (Vvld). Within
a time frame, the unwanted pulses are eliminated if their
amplitude is lower than the threshold value. A seizure onset
is declared when the SRA completes the n-th iteration. If
the number of hyper-synchronous pulses is greater than the
threshold number, a seizure is declared according to equations
(3), (4), and (5).

VI. CONSUMER ELECTRONICS (CE) PROOF OF CONCEPT
OF THE PROPOSED ESEIZ

The EEG signal is initially preprocessed and filtered. The
low amplitude neural signal is then amplified using an ad-
justable gain amplifier. The maximum and minimum voltages
of the VLD define the hyper-synchronous signal. Using the
proposed SRA, the seizure onset is identified when it occurs.
The design flow of the proposed seizure detector is shown
in Fig. 7. System-level prototyping of the proposed eSeiz is
performed as a first step towards CE prototyping. The system
level model of the proposed system is shown in Fig. 8. EEG
signals are fed into the system. A band pass filter eliminates
unwanted noise and extracts all seizure onset information. The
adjustable gain amplifier enables signals to be amplified to the
desired level. Hyper-synchronous signals are detected by the
VLD. If the voltage is within the range, the function outputs
a 1, otherwise it is zero.

The maximum and minimum voltage of the VLD is de-
termined by heuristic analysis of the amplified signal. For
an epileptic subject with and even of seizures n, the Vmax

and Vmin values are computed from n/2 seizure instances.
If n is odd, the Vmax and Vmin values are obtained from
(n − 1)/2 seizure instances. The average optimal values
have been adjusted by trial and error and are then applied
to unknown seizure and non-seizure instances. The hyper-
synchronous signal which is obtained from VLD is given to the
SRA unit. In the first iteration of signal rejection, if a sample
is either ’0’ or ’1’ and the previous two samples are ’0’, the
algorithm outputs a 0. In the next iteration, if the previous
sample is ’0’, the algorithm outputs a ’0’. For seizure onset
formation at the (n− k)th iteration, if the previous sample is
’1’, the algorithm results a ’1’. In the n-th stage, the algorithm
define a seizure onset if the number of hyper-synchronous
pulses, which is denoted by ’1’, exceeds the threshold value.
The optimal value of threshold, n and k can be achieved
by heuristic analysis of the known seizure and non-seizure
instances. The SRA technique is illustrated in Table II, where
the signals have been analyzed for seizure onset and non-
seizure onset instances.

Power estimation is generally performed using two ap-
proaches: pattern-dependent and pattern-independent. The
power consumption of the proposed system is computed using
the pattern-independent approach [31]. Different EEG signals
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Fig. 4. Architecture of the Proposed Seizure Detector.
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TABLE II
SIGNAL REJECTION ALGORITHM (SRA) TECHNIQUE.

Location Normal EEG Seizure Onset
VLD output 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1
SRA (1st iteration) 0 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1
SRA (2nd iteration) 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1
SRA (3rd iteration) 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
SRA (nth iteration) 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
Seizure Detection 0 1

Pre-processing Unit Design Using SLM ®
Math Operations library 

Adjustable Gain Amplifier Design Using

SLM ® Math Operations library

Design a filter using SLM ® Filter 

Designs Library

Conditions 

meet?

No Yes
Done

Design a Voltage Level Detector (VLD) 

using SLM ® User Defined Functions

Signal Rejection Algorithm (SRA) using 

SLM ® User Defined Functions 

SLM : System Level Simulator

Fig. 7. Design flow of the proposed eSeiz.

of identical size are applied to the design and the average of the
computed power defines the power dissipation. The proposed
seizure detector is viewed as a black box and current and
voltage values are obtained form current and voltage sensors
available in the system level simulator libraries. A hardware-
in-the-loop simulation approach was followed for the CE pro-
totyping of the proposed system. A vendor-provided hardware
support package was used in the system level simulator and
the proposed model was run on the actual board. EEG data
and seizure information are continuously stored on the eSeiz
channel in the open IoT cloud. A Liquid Crystal Display
(LCD), which is attached to the board, displays information
about seizure state. If any seizure occurs, a notification is
sent to the designated user through the cloud. The EEG data
and seizure state are sent to open cloud storage, while the
system concurrently receives dosage information prescribed by
the physician. The proposed system consists of two channels:
the eSeiz channel and the EEG channel .The information on
seizure state is stored in the eCeiz channel whereas continuous
EEG data are saved in the EEG channel. Both patients and
medical professionals have access to the IoT cloud as well as
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the database using a REST API [24]. Fig. 9 shows the CE
prototyping of the proposed eSeiz. It should be pointed out
that this prototype serves simply as a proof-of-concept and is
not suitable for consumer electronics mass production. It is
not optimized and consumes substantially more power than a
final product would. For these reasons, in this discussion we
examined the power consumption from a simulation point of
view since this will be much closer to an optimized, consumer-
ready device.

LCD

Buzzer

eSeiz Channel

MCU 
Devkit

Fig. 9. CE Prototype of the Proposed eSeiz Device.

VII. EXPERIMENTAL RESULTS

The continuous and long term EEG recordings are taken
from the CHB-MIT scalp EEG database [32], [25], which
consists of EEG recordings from pediatric subjects. This work

uses common EEG data from the following anonymized sub-
jects: chb01, chb03, chb05, chob08, chb11, chb17, and chb19.
EEG recordings were obtained at 256 samples per second with
16-bit resolution. The EEG electrodes were placed according
to the International Federation of Clinical Neurophysiology
10-20 placement system. Initially, the EEG signal is passed
through a band pass filter of frequency range between 3 Hz
to 29 Hz, which is then amplified to a certain level. The
amplified signal is applied to the VLD. The seizure onset
information is extracted using the VLD. The maximum (Vmax)
and minimum (Vmin) voltages are computed by heuristic
analysis of the known seizure instances. As a good number
of non-seizure signals fall in the VLD category, the VLD
produces a number of unwanted pulses. The output of the
VLD, namely hyper-synchronous pulses (Vvld), are fed into
the SRA. The SRA eliminates unwanted pulses in every
iteration. The SRA iterations continue until the number of
hyper-synchronous pulses surpass the threshold number. The
unwanted pulses are being eliminated as SRA completes the n-
th iteration. The time frame (Tf ) is in the range of milliseconds
to seconds. For patient-specific detection, the values of Tf ,
Vmax, and Vmin can be varied accordingly. It is also reported
that some unwanted signals with amplitude of the VLD range
trigger a false detection. In order to solve this problem, the
statistical energy [24] in each time frame is calculated for the
known seizure and non-seizure instances and an optimal value
is determined by a heuristic approach, as discussed earlier.
The optimal threshold value of energy in each time frame
is considered. Even if an instance is incorrectly detected by
SRA unit, further analysis using the threshold energy provides
correct detection. The average amplitude of the seizure pattern
at onset is between 150 mV and 450 mV. The frequency
range for epileptic discharge is between 3 and 29 Hz. The
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performance of the detector is measured using sensitivity,
specificity, and latency. The sensitivity and specificity of the
classifier were evaluated as follows:

Sensitivity =
True Positive

True Positive + False Negative
(6)

Specificity =
True Negative

True Negative + False Positive
(7)

The latency is defined as the delay between the expert marked
seizure onset and the seizure onset marked by the seizure
detector.

Figure 10 shows the analysis of the EEG signal and detec-
tion of seizure for epileptic subject 1 (chb01), in which seizure
starts at 2996 sec. and ends at 3036 sec. The time frame for
chb01 is selected as 500 ms. Fig. 10(a), 10(b), 10(c), 10(e),
and 10(h) represent EEG epochs of different duration. The
output of the VLD contains unnecessary and unwanted pulses,

as depicted in Fig. 10(d). The SRA eliminates the unwanted
signals in every iteration. Fig. 10(f) and 10(g) are the output of
the SRA after the first and second iterations, respectively. Fig.
10(i) shows the initiation of seizure detection after the (n−k)-
th iteration, which reports a smaller number of pulses in the
non-seizure area. After the n-th iteration, the SRA eliminates
all the pulses in the non-seizure area and processes pulses
in the ictal area and declares a seizure. The seizure instance
of epileptic subject 11 (chb11) has been studied in Fig. 11.
Fig. 11(a) shows the time domain characterization of the EEG
epoch of 290-310 sec. The seizure instance originates at 298
sec and ends at 320 sec. The outputs of the VLD and SRA
(after the (n − k)-th iteration) are shown in Fig. 11(b), and
11(d), respectively. Finally, the resulting signal after the n-th
SRA iteration as well as the detection of seizure is presented
in Fig. 11(e). Overall, the detector misses one seizure instance
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TABLE III
COMPARISON WITH EXISTING SYSTEMS

Existing Works Seizure Detection Method Sensitivity Specificity Latency Power
Consumption

IoT Imple-
mentation

Verma, et al. 2010 [20] Amplifier, ADC, digital processor
and Support vector machine

>90% NA 5 sec 120 µW NA

Shoeb, et al. 2010 [25] Spatial and temporal feature vector
and support vector machine

96 % 0.083h−1 3.4 sec NA NA

Salam, et al. 2012 [19] Asynchronous front end detector 100 % 100 % 13.5 sec 51 µW NA

Yoo, et al. 2013 [33] Analog Front-End (AFE), Linear
support vector machine (LSVM)

84.4 % 96 % 2 sec 1.49 µJ/class (en-
ergy efficiency)

NA

Altaf, et al. 2015 [34] Dual detector architecture (D2A)
classification processor, two linear
support vector machines(LSVM)

95.7 % 98 % 1 sec 2.73 µJ/class (en-
ergy efficiency)

NA

Fan, et al. 2019 [27] Spectral graph theoretic features ex-
traction

95.7 % 98 % 6 sec NA NA

Our Proposed System Signal rejection Algorithm (SRA) 96.9 % 97.5 % 3.6 sec 39.5 µW Open data
platform
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Fig. 11. Transient analysis (a) Input EEG signal of 290-310 seconds (b)
Output of VLD at 290-310 seconds (c) Zoom 295-305 seconds of input signal
(d) SRA output after the (n − k)-th iteration (e) SRA output after the n-th
iteration.

TABLE IV
CHARACTERIZATION OF THE SEIZURE DETECTOR

Parameter Value
Sampling frequency 256 Hz
Seizure Frequency (Minimum) 3 Hz
Seizure Frequency (Maximum) 29 Hz
VLD (Average Maximum Voltage) 150 mV
VLD (Average Minimum Voltage) 450 mV
Sensitivity 96.9%
Specificity 97.5%
Latency 3.6 Sec
Power Consumption 39.5 µW

for the chosen EEG dataset. The sensitivity, and specificity
of the seizure detector are measured as 96.9%, and 97.5%,
respectively. The average latency of the proposed system is
found to be 3.6 seconds. A comparison with existing seizure
detectors is provided in Table III. The characterization of the
seizure detector is shown in Table IV.

VIII. CONCLUSIONS AND FUTURE RESEARCH

We have proposed an SRA-based automated seizure de-
tector in the IoMT framework. The proposed system was
implemented with a system level simulator in an open IoT
platform. The proposed signal rejection algorithm (SRA) is
useful in eliminating unwanted signals and extracting hyper-
synchronous activity from the EEG signals for the detection
of seizure, thus enhancing the performance of the seizure
detector. Simulation results also demonstrate that the pro-
posed system can potentially be implemented as a consumer
electronics product consuming low power, which makes it
a suitable candidate for low power wearable applications.
In future research, we will miniaturize the proposed system
using the latest integrated circuit technologies for wearable
biomedical applications and test this solution in an animal
model of epilepsy.
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