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Neuro-Detect: A Machine Learning Based Fast and
Accurate Seizure Detection System in the IoMT

Md Abu Sayeed, Student Member, IEEE, Saraju P. Mohanty, Senior Member, IEEE,
Elias Kougianos, Senior Member, IEEE, Hitten P. Zaveri

Abstract—Epilepsy, which is characterized by recurrent spon-
taneous seizures, has a considerably negative impact on both the
quality and the expectancy of life of the patient. Approximately
3.4 million individuals in the USA and up to 1% of the world
population are afflicted by epilepsy. This necessitates the real-
time detection of seizures which can be done by the use of
an IoT framework for smart healthcare. In this paper we
propose an EEG based seizure detection system in the IoT
framework which uses the discrete wavelet transform (DWT),
Hjorth parameters (HPs), statistical features, and a machine
learning classifier. Seizure detection is done in two stages. In
the first stage, EEG signals are decomposed by the DWT into
sub-bands and features (activity, signal complexity and standard
deviation) were extracted from each of these sub-bands. In
the second stage, a deep neural network (DNN) classifier is
used to classify the EEG data. The prototype of the proposed
Neuro-Detect was implemented using the hardware-in-the-loop
approach. The results demonstrate a significant difference in HP
values between interictal and ictal EEG with ictal EEG being
less complex than interictal EEG. In this approach, we report
an accuracy of 100% for a classification of normal vs. ictal EEG
and 98.6% for normal and interictal vs. ictal EEG.

Index Terms—Smart Homes, Ambient Intelligence, Smart
Healthcare, Internet-of-Medical-Things (IoMT), Deep Neural
Network (DNN), Electroencephalogram (EEG), Seizure Detection

I. INTRODUCTION

ONGOING technological advancements offer consider-
able opportunities for the improvement of health care

and reduction of cost, but also present a challenge for the
incorporation of new technologies into clinical care [1–3]. A
considerable amount of research effort is currently focused on
smart healthcare to overcome the shortcomings of traditional
healthcare and to meet the ever increasing demands for quality
healthcare. Smart healthcare can be conceptualized as a com-
bination of sensors, devices, applications, services and entities
including: traditional healthcare, biosensors, wearable devices,
information and communication technology (ICT), and smart
emergency response services. The backbone of smart health-
care is the Internet of Medical Things (IoMT) or the Internet of
Healthcare Things (IoHT), a collection of medical devices and
applications that connect through the Internet to healthcare IT
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systems [4, 5]. The automated detection of epileptic seizures
is one example of smart healthcare.

Epilepsy is a neurological disorder characterized by recur-
rent spontaneous seizures. A seizure is a sudden and transient
interruption of brain function which may also be marked by
convulsions and loss of consciousness [6]. Epilepsy has a
considerably negative impact on the quality of life of patients.
Epilepsy patients are more prone to sudden unexplained death
(SUDEP) compared to the general population [7], under-
scoring the pernicious nature of this condition. Antiepileptic
drugs (AEDs) can be used to control seizures, but 30% of
epilepsy patients are refractory to AEDs [8]. Epilepsy surgery
is useful for only a small fraction of refractory patients. Brain
implantable devices show considerable potential for the control
of seizure. The prediction and detection of seizures are of
considerable importance, as warning and early detection can
result in timely treatment [9–14].

This article presents technology for mass consumer elec-
tronics (CE) products in the form of wearable electronics for
smart healthcare. Specifically, this article proposes an EEG-
based seizure detection technology in the IoT framework,
which uses the discrete wavelet transform (DWT), Hjorth
parameters (HPs), statistical features, and a machine learning
classifier for accurate and fast detection of seizure. A spe-
cific example of a wearable CE product is a medical-grade
smartwatch for a neurological condition that alerts caregivers
when someone is having an epileptic seizure [20, 21]. The
smart healthcare market which is driven by CE in Internet-
of-Medical-Things (IoMT) will have a projected market value
of 57 Billion USD [22]. The scope of the research presented
in the current paper is depicted in Fig. 1. In effect, this article
advances the already existing CE research as summarized in
Table I. It should be noted that the CE proof of concept and
prototype with validation, using available medical databases in
collaboration with medical schools, is presented in this article.

The EEG contains important information about different
physiological states of the brain which is useful for under-
standing brain function and dysfunction. The identification
of seizure can be done by visual inspection, but it requires
considerable effort and time [23]. In epilepsy, the primary
focus is in two states: interictal (between seizures) and ictal
(seizure). Extracted features capture distinctive information
which is useful for distinguishing EEG dynamics and can be
central to the accuracy of classification [24, 25]. Hence, feature
extraction is crucial for classification.

The remainder of this paper is organized as follows: Section
II discusses the novel contributions of this work. Section III
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TABLE I: Existing Works on Smart Healthcare in the Consumer Electronics Literature.

Existing works System Details Contributions to the Smart Healthcare Features

Khan, et al. 2011 [15] Abnormal human activity detection
using R-transform and Linear
Discriminant Analysis (LDA)

Healthcare monitoring of elderly
people at home

Improved detection accuracy

Ivanov, et al. 2012 [16] Wireless body area network (WBAN)
and medium access control (MAC)

layer

ECG healthcare monitoring Low cost and low power consumption

Wang, et al. 2016 [17] Outdoor healthcare monitoring device
using GPS and Zigbee module

Remote monitoring of falling events
for the elderly people

Reduction in detection time and
improvement in detection accuracy

Dey, et al. 2017 [18] Wireless sensor network (WSN) and
Zigbee wireless unit

Continuous ECG healthcare
monitoring

Reduction in cost, improved
reliability and latency

Sundaravavidel, et al. 2018 [19] Nutrition monitoring system using
deep learning method

Balancing the nutrient intake for
healthy development

low cost and high accuracy

Proposed System Seizure detection using DWT and
DNN classifier

Remote EEG healthcare monitoring
and IoT implementation

High detection accuracy and low
power consumption

Proposed Neuro-Thing
(CE Mass Product)

Wifi

Cloud

IR/RF 
Conversion

Seizure
Detection

Bluetooth

Fig. 1: Neuro-Detect for automatic seizure detection for smart
healthcare.

describes current research on seizure detection. Section IV
presents a design and architecture overview of the proposed
solution. Section V discusses the implementation and CE
proof-of-concept of the proposed design. Experimental results
and validation procedures are discussed in Section VI. Section
VII presents conclusions and future directions for research.

II. NOVEL CONTRIBUTIONS OF THIS STUDY

The detection of abnormalities in biomedical signals is a
difficult task because of its complexity. Several algorithms
have been proposed for the detection of seizure and some of
them show promising results. Still, current smart healthcare
necessitates a smart detection system which can detect seizure
mores accurately and can provide ubiquitous connectivity
to the users for remote healthcare monitoring. The main
contributions of this paper are discussed below:

1) We propose a seizure detection system using the dis-
crete wavelet transform (DWT), Hjorth parameters (HP),
statistical features, and a deep neural network (DNN)
classifier. DWT provides the time frequency (TF) local-
ization which is useful for non-stationary EEG signal
processing. The quantification of the complexity of
the EEG is important as it helps to characterize the
signal. Statistical features and HPs are very effective
in capturing the complexity of the biomedical signals.
The use of HPs and statistical features leads to an

improved classification accuracy and makes the detec-
tion method more efficient. The mathematical modeling
of the seizure pattern is a challenging task. A DNN
provides a large set of functions to quantify seizure and
non-seizure patterns without any internal mathematical
modeling. This also allows a change in the weighting
given to the different bands to permit adjustment of
the classifier to possible changes in seizure and signal
characteristics.

2) The proposed “Neuro-Detect” system performs the anal-
ysis and detection of seizure at the user end and sends
EEG data and seizure state to the cloud.

III. RELATED PREVIOUS RESEARCH

It has been predicted that IoT-based smart healthcare will
have a market value of 350 Billion USD by 2025 [1]. CE
integrated in the IoT framework in the heatlhcare domain,
such as smart pills and smart RFID cabinets are receiving
significant attention. Different CE systems for elderly health-
care have been presented [15, 17, 26, 27]. A wireless body
area network (WBAN) has been proposed to transfer sensor
monitoring physiological parameters including ECG, blood
oxygen level, body temperature and pressure [16]. A method
has been proposed for transmission of Electrocardiogram
(ECG), Electroencephalography (EEG), and Electromyogra-
phy (EMG) data from respective sensors [28]. A wireless
sensor network (WSN) has been proposed for continuous
monitoring of elderly people [3]. However, there is a need
for CE products for automatic seizure detection in the IoT
framework to advance the state-of-art in smart healthcare.
The proposed system enriches CE by adding epileptic seizure
detection and remote health monitoring to smart healthcare.
Existing papers on CE applications to smart healthcare are
discussed in Table I.

Several methods have been proposed for epileptic seizure
detection. An approximate entropy (ApEn) based seizure de-
tection method [29] has been presented which found that
the ApEn value drops significantly during seizure activity. A
correlation dimension (CD) based method [30] reported that
CD values are low in the epileptegenic zone. Artificial neural
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network (ANN) based classifiers have been proposed [31],
[32] for the detection of seizure, with improved classification
accuracy. Multilayer perception neural network (MLPNN)
[33] based seizure detection has been shown to enhance the
detection performance. ANN and wavelet transform based
feature extraction [34] were used to classify seizure and non-
seizure patterns. In the short term Fourier transform (STFT)
based approach [35], feature extraction is performed using the
smoothed-pseudo Wigner-Ville distribution. The classification
of seizure using a radial basis function (RBF) network and
a multilayer perception network (MLP) has been investi-
gated [36]. Permutation entropy [37] based classification also
demonstrates a significant drop in permutation entropy during
seizure. A support-vector-machine (SVM) based method [38]
for seizure detection has been proposed, which provided better
accuracy. A signal rejection algorithm based seizure detector
[39] has been proposed, which improved detection accuracy
and reduced power consumption. Other classifiers have been
used including naive bias [40], decision tree [41], surrogate
data analysis [25], adaptive fuzzy logic [42], recurrent neural
network (RNN) [43], convolutional neural network (CNN)
[44], and Markov modeling [45]. Existing algorithms use
different features to enhance classification accuracy. In this
work, we investigate classification accuracy, sensitivity, and
specificity using DWT based HPs and statistical features.

In our previous work [46], a k-NN classifier based seizure
detection method has been proposed in which Hjorth param-
eters (HPs) are used as a feature. In the current extended
paper, both statistical parameters and Hjorth parameters are
considered as features to distinguish seizure and non-seizure
pattern; a deep neural network (DNN) was utilized as a classi-
fier. Hardware in the loop based simulations were performed
to validate the proposed system. The proposed DNN based
approach provides better detection performance compared to
the previous k-NN based approach and proved to be useful for
larger datasets. Overall, the current paper improves the prior
results significantly in terms of accuracy.

IV. THE PROPOSED SEIZURE DETECTION APPROACH

The architecture of the proposed Neuro-Detect is shown in
Fig. 2. EEG signals are initially processed and decomposed
to several sub-bands using the DWT. HP and statistical values
are extracted from different sub-bands which form a feature
vector. The feature vectors and class labels are applied by the
DNN classifier. The classifier is trained and validated using
the available training datasets. The class label in the testing
dataset is obtained using the estimated posterior probability
from the DNN. The IoMT module enables remote connectivity
by transferring data to the physician through the Internet. Fig.
3 shows the working algorithm of the proposed Neuro-Detect.

The training of Neuro-Detect is critical for accurate de-
tection of seizure. There are several alternatives for training
Neuro-Detect as follows:

1) Weekly Training: Data comes from the cloud server.
This training uses significant data but can be accurate
as historic information is included.

2) Daily Training: Data comes from the cloud server. This
training uses a medium amount of data but can be

moderately accurate as some historic information is
included.

3) Real-Time Training: Few times in an hour using a
window of data which is of the order of few hours. The
data comes from the on-chip memory. This is fast, but
can be less accurate.

A. Discrete Wavelet Transform based Preprocessing Unit

The Fourier transform is useful for the analysis of stationary
signals. EEG signals, however, are nonstationary in nature
[47]. The Fourier transform cannot resolve both time and
frequency aspects of signals. In the Fourier series, frequency
localization is compromised to achieve time domain localiza-
tion. On the contrary, a longer time window is required to
achieve frequency localization, compromising time localiza-
tion information. The analysis of nonstationary signals can be
performed through a TF decomposition of the signal [47].

The wavelet transform (WT) enables time frequency (TF)
decomposition by capturing both low frequency and high fre-
quency information. The WT has been broadly used in various
biomedical applications and proven to be a useful tool for
biomedical signal processing. There are two types of WTs: the
continuous wavelet transform (CWT) and the discrete wavelet
transform (DWT). The computation of CWT coefficients is
expensive. For the DWT, in contrast, the decomposition of
signals can be achieved through filters. The signal is decom-
posed into approximation and detail coefficients at a first level.
The approximation coefficients are then further decomposed
to subsequent approximation and detail coefficients through
a second application of the same decomposition step. The
decomposition is achieved by the following [48] equations:

HPF (S) = A1p =
∑
q

S(q)h(2p− q) (1)

LPF (S) = D1p =
∑
q

S(q)g(2p− q) (2)

Fig. 4 shows the decomposition of the EEG signal using
a filter bank. In the first stage, the EEG signal x[n] is
submitted to a low pass filter and a high pass filter. The
output of the filters is known as approximate coefficient and
detail coefficient. The decomposition is performed up to 4th
level using Daubechies wavelet. The subsequent detail and
approximate coefficients are known as D2, D3, D4, and A4,
respectively. The breakdown of sub-band frequencies is shown
in Table II.

TABLE II: Frequency characterization of the proposed system

Parameters Value

Detectable seizure frequency range 0-29 Hz
D1 43.4-86.8 Hz
D2 21.7- 43.4 Hz
D3 10.85-21.7 Hz
D4 5.43-10.85 Hz
A4 0-5.43 Hz
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Fig. 2: Block diagram of the proposed architecture.

Feature    
Extraction

EEG Signals 
(EEG Datasets)

Decomposition of EEG 
Using Discrete 

Transform (DWT) 

Feature Vector 
for Training 

Cloud : Data Storage 
and Analysis

Seizure 
Detection

Feature Vector 
for Testing 

EEG Data

Seizure

Statistical 
Feature 

Extraction

Hjorth 
Parameters
Extraction

Deep Neural Network 
(DNN) Classifier: 

Classification Phase

Fig. 3: The proposed algorithm for accurate seizure detection.
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B. Feature Extraction Unit

Hjorth parameters and statistical features are extracted from
the decomposed EEG signals, as discussed in this Section.

1) Hjorth Parameter Extraction: Hjorth parameters (activ-
ity and signal complexity) are useful in capturing complex
EEG dynamics [49]. The level of variations along a signal can
be quantified by signal complexity. Signal mobility captures

the first order variations while signal complexity addresses
second order variations along a signal.
Consider an EEG signal Xi, where i = 1, 2, 3, ..., N . The
vector of the first order variations in x is represented by a
signal mj , j = 1, 2, ...N − 1,

mj = xj+1 − xj . (3)

The vector of the second-order variations in x is defined by a
signal nk, where k = 1, 2.....N − 2,

nk = mk+1 −mk, (4)

Activity =

√∑N
i=1(xi − µ)2

N
, (5)

where µ is the mean. The first and second-order factors are
defined using x,m and n:

Z0 =

√∑N
i=1(xi)

2

N
, (6)

Z1 =

√∑N−1
j=2 (mj)2

N − 1
, (7)

Z2 =

√∑N−2
k=3 (nk)2

N − 2
. (8)

The signal mobility and complexity can be defined as follows:

Signal Mobility =
Z1

Z2
, (9)

Signal Complexity =

√
Z2
2

Z2
1

− Z2
1

Z2
0

. (10)

2) Statistical Feature Extraction: Standard deviation refers
to the amount of variation of a signal from its mean value,
which is represented by the following equation;

Standard deviation =
1

M − 1

M∑
j=1

(xj − µ)2, (11)

where xj denotes the jth sample of the decomposed EEG
segment, µ is the mean of the decomposed segment and M
indicates the length of the segment.
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C. Deep Neural Network (DNN) Classifier

A conventional multilayer perceptron neural network with
more than one hidden layer is considered as a deep neural
network (DNN) [33, 50]. MLPNN is chosen as it requires a
smaller training data set and provides faster operation with
simple implementation. Fig. 5 shows an example of a DNN
structure. Consider a deep neural network, where N denotes
the total number of hidden layers and vn represents the output
vector of the ith layer. The layers 0 and N+1 denote the input
and output layers. The output vector is calculated by:

vn = f(Wnvn − 1 + bn) 0 < n < N, (12)

where Wn is the weight matrix and bn is the bias vector. In
this work, a sigmoid transformation [51] has been used as an
activation function:

f(x) =
1

1 + e−x
. (13)

The selection of the activation function depends on the type of
classification. The normalization requirement can be fulfilled
by a softmax function. The weight matrix W and bias b
are calculated during the training phase. Consider a training
set S = (xq, yq) of P sample pairs, where xq denotes the
input vector, and yq represents the posterior probability vector
corresponding to xq . The network is trained by optimizing the
cost function [33] as follows:

J(W, b : S) =
1

P

P∑
q=1

JCE(W, b : xq, yq) + λ|W |2F , (14)

where JCE(W, b : xq, yq) represents the cross entropy,
λ|W |2F denotes the Frobenius norm of matrix W , and λ is a
scalar. The posterior probability of the DNN is optimized using
back propagation which is based on the gradient desecent
algorithm.

Hidden 
layer 1

Hidden 
layer 2

Hidden 
layer 3

Input
layer 

Output
layer 

1st

Feature

2nd

Feature

nth
Feature

Fig. 5: An example of a DNN structure.

V. PROOF OF CONCEPT OF THE PROPOSED
NEURO-DETECT DEVICE

Fig. 6 shows the prototype of the proposed system for a
single statistical feature: signal complexity. The DWT structure
was obtained via user defined functions. EEG signals were
applied to DWT for decomposition. Daubechies wavelets of
order 4 were used for the decomposition. Each decomposition
doubles the frequency resolution and halves the time resolu-
tion. The filtered signal halves the bandwidth of the original

signal which could be further down-sampled by two according
to the Nyquist rule. Hjorth parameters and statistical features
were obtained from the decomposed signals. The first and
second order variations of the signal were measured using
the DSP system toolbox and math operations library available
in the simulator software. The proposed system was validated
with both k-NN and DNN classifiers. The k-NN classifier was
constructed using another user-defined function available in
the simulator software. The HP and statistical values formed
the feature vectors. In the training phase, the classifier was
trained with feature vectors and class labels of different EEG
datasets. In the classification phase, when a unknown point
was given to the system, the algorithm computed nearness of
data using Euclidean distance metric and a label was assigned
to the query point based on voting among the neighbors. In
the later DNN based approach, the DNN structure was created
using a user defined function. The DNN classifier was trained
and validated with the training datasets. The classification of
the testing dataset was obtained using the posterior probability
from the DNN.

In general, power estimation is determined through pattern
dependent or pattern independent approaches. In the pattern
dependent approach, power estimation is done using sim-
ulation. In the pattern independent approach, a number of
simulations are performed to study the design for different
inputs. The average power dissipation is calculated from
the simulation results and used as the power estimate. We
employed a pattern-independent approach to calculate power
dissipation. The current and voltage values are computed using
the sensors and power blocks available in the simulator library,
and provide an estimation of the power dissipation [52]. The
characterization of the proposed system is shown in Table III.

TABLE III: Characterization of the proposed system

Parameters Value

Data sampling rate 173.61 Hz
Bandwidth of the acquisition system 0.53-40 Hz
Wavelet type Daubechies wavelet of order 4
k value for k-NN classifier 2
Average SC (normal EEG - set A) 0.71
Average SC (inter-ictal state - set D) 0.65
Average SC (ictal state - set E) 0.48
Power consumption 34.5 µW

The prototyping of the proposed Neuro-Detect was done
using a hardware-in-the-loop based simulation approach. The
simulator was configured using a hardware support package
provided by vendor. The actual board was constructed and then
the proposed Neuro-Detect was run on the board. The user’s
EEG data were continuously stored on the ‘Neuro-Detect’
channel in the IoT cloud storage. A buzzer was turned on and
the designated user was informed by a message for any seizure
activity. An LCD displayed the state of the seizure, where ’0’
denotes non-seizure activity and ’1’ represents seizure activity.
The IoT cloud storage permits medical professionals, stake
holders, and users to access the patient’s database using API
(Application Programming Interface) via IoT [53], [54]. The
prototyping of the proposed Neuro-Detect is shown in Fig. 7.
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VI. EXPERIMENTAL RESULTS

EEG datasets were taken from widely used open source
databases [55]. The database comprised of five datasets: A,
B, C, D, and E.In this work, dataset A, D, and E have
been used. Each dataset comprised of 100 EEG segments and
each segment contains 4097 data points of 23.6 sec duration.
Datasets A consists of scalp EEG which is recorded from
a healthy subject with eyes open (A), whereas dataset D is
recorded from the epileptegenic zone during interictal states.
Dataset E comprises of seizure activity. Datasets D and E
were obtained with icEEG. The data sampling rate and spectral
bandwidth of the acquisition system were 173.61 Hz and 0.53-
40 Hz, respectively. EEG epochs from different datasets are
shown in Fig. 8a. The approximation and detail coefficients
(D1, D2, D3, D4 and A4) for the decomposed sample EEG
epoch are shown in Fig. 8b. The Hjorth parameters and
statistical feature were calculated from the decomposed sub-
bands.

Tables IV, V, and VI show the activity (AC), signal com-
plexity (SC), and standard deviation (SD) of the different sub-
bands. The average signal complexity (SC) values for A, D,
and E were computed as 0.71, 0.65, and 0.48. It is evident
from the experimental results that the signal complexity drops
whenever a seizure occurs, which supports the findings re-
ported in [30]. However, the activity and standard deviation
value are lower in datasets A and D compared to dataset E.
Dataset A, which consists of normal scalp EEG, is almost
identical to dataset D (seizure free icEEG). Extracted features
from different sub-bands were applied to a k-NN and DNN
classifier. The following cases were tested in this work:

(1) Case 1: Set A versus Set E

(2) Case 2: Set A and Set D versus Set E.

TABLE IV: Extracted feature coefficients for dataset A

Coefficient Activity Signal Complexity Standard Deviation

D1 18.44 0.9371 4.29
D2 362.5 0.4688 19.03
D3 3.88e+03 0.7145 62.33
D4 7.33e+03 1.2315 85.66
A4 1.91e+04 1.4909 138.14

TABLE V: Extracted feature coefficients for dataset D

Coefficient Activity Signal Complexity Standard Deviation

D1 24.73 0.8951 4.97
D2 252.48 0.4432 15.88
D3 3.07e+03 0.7043 55.43
D4 1.41e+04 1.0251 118.75
A4 6.07e+04 1.3509 246.54

TABLE VI: Extracted feature coefficients for dataset E

Coefficient Activity Signal Complexity Standard Deviation

D1 1.42e+03 0.7797 37.75
D2 5.82e+04 0.3881 241.38
D3 5.45e+05 0.5904 738.63
D4 3.07e+05 0.6281 554.08
A4 6.33e+05 0.7126 796.08

The k-NN classifier was trained using a training dataset and
the accuracy of the classification was evaluated through the
testing data. For case 1, the classifier was trained on 80% (80
EEG epochs) of each set, and 20% (20 EEG epochs) of each
set was used for testing. For case 2, 85% (85 EEG epochs)
of the datasets was similarly used for training, whereas 15%
(15 EEG epochs) was used for testing. k =2 was used for the
classification. In the later approach, the DNN is trained and
validated using the training datasets and the performance of
the classification was measured using the testing data. In both
case 1 and case 2, 70% of each dataset was used for training,
whereas 15% was used for validation, and 15% was used for
testing. Case 1 (A-E) only considered seizure and normal EEG.
The comparison of A-E with existing algorithms provides an
idea on the effectiveness of the proposed algorithm. On the
other hand, case 2 (AD-E) considered normal, interictal, and
seizure activities which is more useful for practical applica-
tions. The distribution of EEG epochs is shown in Table VII.

The performance parameters were calculated for both the
individual and the combined features using the k-NN and
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Fig. 8: (a) Example scalp EEG and icEEG from datasets A, D, and E. (b) Decomposed EEG from set E (ictal icEEG).

TABLE VII: Distribution of EEG Epochs for Training and
Testing

Methods and cases Training Epoch Testing Epoch

k-NN training and testing for 80 Epoch (A) 20 Epoch (A)
Normal VS ictal (A-E) 80 Epoch (E) 20 Epoch (E)

DNN training and testing for 85 Epoch (A) 15 Epoch (A)
Normal and interictal VS ictal (AD-E) 85 Epoch (D) 15 Epoch (D)

85 Epoch (E) 15 Epoch (E)

DNN algorithm. Table VIII summarizes the results showing
the classification accuracy, precision, recall, and F1-score with
individual and combined features. The accuracy, precision,
recall, and F1-score of the classifier were evaluated as follows:

Accuracy =
True Positive + True Negative

Total Instances
(15)

Precision =
True Positive

True Positive + False Positive
(16)

Recall =
True Positive

True Positive + False Negative
(17)

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(18)

For both k-NN and DNN based approaches, in case 1
(dataset A versus E), the classification accuracy was measured
as 100% for combined and individual features. In case 2
(dataset A and D versus E), the k-NN classifier shows an
accuracy of 97.8% for AC. The classification accuracy dropped
to 95.3% for the individual feature SD and 95.1% for the com-
bined feature AC+SD. In case 2, the DNN reported a highest
accuracy of 98.6% for the combined feature AC+SC+SD. The
classification accuracy dropped to 94.3% for the individual
feature SD. A Network with sigmoid activation reports a
better and consistent accuracy for the varied features that have
been extracted from EEG dataset. The experimental results
show that the DNN classifier provides better performance for
two hidden layers (Hl) with 10 neurons in each layer. The

number of neurons on the hidden layers has been determined
by trial and error and it is seen that an excessive increase
in hidden neurons negatively affects the accuracy. A random
combination of hidden neurons also reported a reduction
in accuracy. Fig. 9 shows the variation of accuracy with
the change in the number of neurons in each hidden layer.
Table VIII shows the comparison between k-NN and DNN
classifiers and it is evident that DNN provides better accuracy
for normal and interictal vs. ictal EEG (case2). Figure 10
compares existing competitive methods and demonstrates the
suitability of the proposed system. The average latency of
the proposed system is negligible (a few milliseconds). The
estimated power consumption for the proposed system is 34.5
µW. A comparison with existing seizure detection algorithms
is shown in Table IX.
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Fig. 9: Variation of accuracy with number of hidden neurons:
Case 2: (Normal and interictal vs. ictal) AC+SC+SD
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Fig. 10: Comparison of accuracy (in %) with existing methods

TABLE VIII: Performance of DNN and k-NN classifier for different features.

Method Case Performance AC+SC+SD AC+SC AC+SD SC+SD AC SD

Accuracy (%) 100 100 100 100 100 100
A-E Precision (%) 100 100 100 100 100 100

Recall (%) 100 100 100 100 100 100
k-NN F1-score (%) 100 100 100 100 100 100

Accuracy (%) 96.4 96.6 95.1 96.7 97.89 95.3
Precision (%) 97.3 97.8 94.5 95.5 98.5 94.5

AD-E recall (%) 94.1 93.7 97 97 94.7 97
F1-score (%) 95.6 95.7 95.7 96.2 96.5 95.7

Accuracy (%) 100 100 100 100 100 100
Precision (%) 100 100 100 100 100 100

A-E Recall (%) 100 100 100 100 100 100
DNN (No. of Hidden Layer=2) F1-score (%) 100 100 100 100 100 100

Accuracy (%) 98.65 97.8 97.3 97.6 95.6 95.7
Precision (%) 99.1 96.9 97.2 98.4 94.1 97.8

AD-E Recall (%) 97.3 100 97 95.4 100 92
F1-score (%) 98.2 98.4 97.1 96.8 96.9 94.8

Accuracy (%) 100 100 100 100 100 100
A-E Precision (%) 100 100 100 100 100 100

Recall (%) 100 100 100 100 100 100
DNN (No. of Hidden Layer=3) F1-score (%) 100 100 100 100 100 100

Accuracy (%) 96.8 96.5 95.2 96.1 94.6 94.3
AD-E Recall (%) 95.6 98.3 96.1 94.4 96 93.5

Precision (%) 97.5 95.9 94.8 97.1 93.4 95.5
F1-score (%) 96.5 97.1 95.4 95.7 94.6 94.4

A-E: Normal VS Ictal, AD-E: Normal and Interictal VS Ictal, AC: Activity, SC: Signal Complexity, SD: Standard deviation

TABLE IX: Comparison with the Existing Seizure Detection
Methods.

Works Methods Cases CA (%)

Subasi, et al. 2010 [24] PCA, ICA and LDA A-E 98.75 (PCA)
A-E 99.50 (ICA)
A-E 100 (LDA)

Orhan, et al. 2011 [40] κ–means clustering - MLPNN A-E 99.56
ABCD-E 99.6

Nicolaou, et al. 2012 [37] Permutation entropy and SVM A-E 93.55
D-E 79.94

Kumar, et al. 2014 [56] Discrete wavelet transform and neural network classifier A-E 100
A, D-E 95

Tawfik, et al. 2016 [57] Weighted permutation entropy (WPE) and support vector machine (SVM) A-E 98.5
A, D-E 96.5

Yavuz, et al. 2018 [58] Cepstral analysis and generalized regression neural network A-E 99
A, D-E 97.25

Current Paper 2018 DWT based feature extraction and DNN classifier A-E 100
A, D - E 98.65

A-E: Normal VS Ictal, AD-E: Normal and Interictal VS Ictal
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VII. CONCLUSIONS

In this paper, a machine learning based automated seizure
detection method has been proposed in the IoT framework,
which utilizes Hjorth parameters as well as statistical features,
and DWT based feature extraction. The system was validated
using a hardware-in-loop based simulation approach. The
experimental results show that the proposed approach is highly
effective in understanding complex EEG dynamics, which
leads to an improved classification accuracy as compared to
existing algorithms. Future research includes prototyping the
architecture at a board level using to realize a high-speed
version which can be better integrated within an IoT and
smart healthcare framework. The proposed framework can be
expanded to include wireless icEEG sensors, biosensors, or
other wearable sensors such as limb worn accelerometers to
detect users’ abnormal activity including convulsive seizures
[59, 60]. The information from these sensors can be fused with
information from EEG sensors to provide a much richer and
more holistic capture of users’ activity and state.
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