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Abstract DNA computing has attracted the attention of many researchers in
recent years to solve NP-complete problems by over-performing conventional
computers with its inherent massively parallelism nature. On the other hand,
proper synthesis of reversible circuit is a well researched important problem
in terms of computing for present and future days with extremely low power
consumption (ideally zero) and inherent reversible nature of reversible logic.
Minimum synthesis of a reversible truth table means finding the reversible
circuit made up of reversible gates satisfying given truth table with minimum
cost. But none of the approaches running on conventional computers can per-
form minimum synthesis till date without using brute-force DFS tree search.
In other words, DFS tree-search approach can not be reasonably implemented
for larger circuits as searching a DFS tree is extremely costly on a conventional
computer. In this paper, first, a procedure to search a DFS tree in constant
time has been proposed to run on a DNA computer. Second, another proce-
dure has also been proposed to apply a reversible gate on a reversible truth
table in linear time that can be used to generate a DFS tree library. Finally,
the generated library can then be searched in constant time to get minimum
reversible circuit given a reversible truth table. An analytical feasibility study
has been done and a novel methodology has been developed that can extend
enormous scope of future research in this area. To the best of authors’ knowl-
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edge this is a pioneering approach to bridge Reversible Computing and DNA
Computing.

Keywords Minimal Reversible Circuit Synthesis · DNA Computing · Natural
Computing

1 Introduction

1.1 DNA Computing: Preliminaries

The DNA (Deoxyribonucleic acid) found in the living cells is composed of
four bases, viz. Adenine(A), Guanine(G), Thiamine(T), and Cytosine(C). The
order of these bases is unique in each individual and determines the unique
characteristics of that particular individual. Each base is attached to its neigh-
bour base in the sequence via phosphate bonding. The base, sugar, and the
phosphate are together called a nucleotide. Two DNA sequences bond with
each other via hydrogen bonding between each Watson-Crick complementary
base pairs (A with T, and C with G), forming DNA double helix. Each DNA
strand has two ends : 5’-end and 3’-end that determine the polarity of the
DNA strand. During the formation of DNA double strand two complementary
single strands bond with each other in anti-parallel fashion. Several molecular
biological operations can be performed on DNA, discussed in Section 4.

1.2 Power of DNA Computing

The problems are solved on a DNA computer by encoding the problems using
A, T, G and C, synthesizing corresponding DNA strands and performing sev-
eral operations on those strands by methods available in a molecular biology
laboratory. The main power of DNA computing over conventional ones are as
follows.

1. Massively parallel operation. A single test tube of DNA can contain trillions
of DNA strands and all strands respond to the biological operations in
parallel.

2. The information density of DNA is huge over silicon. Estimated storage
capacity of 2.2 petabytes per gram of DNA has been reported in [11].

1.3 Recent Trends and Challenges

These powers of DNA computer has attracted several researchers over the
years. Several problems have been solved on DNA computer with reasonable
time complexity, which are otherwise hard on conventional computer, as spec-
ified in section 3. In 2002, researchers from Weizmann Institute of Science,
Israel, have developed a programmable molecular computing machine com-
posed of enzymes and DNA molecules. A year later, the team advanced one
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step further, as in the new device, the single DNA molecule that provides the
computer with the input data also provides all the necessary fuel [2]. In 2004,
Benenson et. al. [5] described an autonomous bio-molecular computer that
logically analyses the levels of messenger RNA species, and in response pro-
duces a molecule capable of affecting levels of gene expression. This computer,
in theory, would be capable of diagnosing cancer, and producing anti-cancer
drug. In 2013, Goldman et. al. [11] encoded computer files totaling 739 kB of
hard disk storage and with an estimated Shannon information of 5.2×106 bits
into a DNA code, synthesized, sequenced and then reconstructed the original
data with 100% accuracy. In the same year, bio-engineers at Stanford Univer-
sity created the first biological transistors, named transcriptor, using DNA and
RNA [3]. On 26th October this year (2014), Israeli scientists, in collaboration
with researchers from around the world, have developed DNA strands capable
of carrying electrical charges for DNA-based electrical circuits [16] [1]. They
have reported reproducible charge transport in guanine-quadruplex(G4) DNA
molecules adsorbed on a mica substrate,and have measured currents of tens of
picoamperes to more than 100pA in the G4-DNA over distances ranging from
tens of nanometres to more than 100nm.

All these latest advancements in the field of DNA computing proves the ne-
cessity of more algorithms to get successfully implemented on DNA computer,
such that they can be executed in reasonable amount of time.

Another major contender for the replacement of conventional computing
is quantum computing, which requires synthesis of reversible logic circuits, as
quantum gates are, by default, reversible in nature. DFS searching is one of
the very few techniques that can perform exact synthesis of reversible logic
circuits [10]. Exact minimum synthesis of reversible circuit is not possible
to perform on a conventional computer within reasonable amount of time, as
these methods are computationally very expensive and applicable only on very
small functions [26] [15].

The proposed work applies the power of DNA computer to perform this
important operation. First, a procedure to apply a reversible gate on a truth
table in linear time has been proposed. Then, a DFS searching algorithm
in constant time has been given. Using the first procedure, a library can be
generated in the form of DFS tree searching input that can be stored in only
two test tubes. From that library, the minimum circuit can be found in constant
time.

1.4 Organization of the paper

Overall organization of rest of the paper is as follows. Section 2 summarizes
about the novel contributions of the present paper. Recent related research
works and thereby the motivation are discussed in section 3. Section 4 de-
scribes different Molecular Biological operations and their mathematical mod-
eling. Representations of reversible truth tables and gates in terms of those
fundamental operations are presented in section 5 followed by different types
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of reversible logic operations in section 6. Procedure to search a DFS tree in
constant time has been proposed in section 7. Section 8 describes the proposed
procedure of creating the reversible circuit library. An analytical note regard-
ing the experimental feasibility of the molecular biological operations described
throughout has been presented in section 9. Finally section 10 concludes the
paper.

2 Contributions of the paper

Synthesis of reversible logic circuits has drawn the attention of many re-
searchers due to its promising aspects in future lossless computing [8] [4] [31].
Several approaches till date have been proposed to synthesize a reversible truth
table on a conventional silicon computer [18] [12] [25] [23] [30]. InTransformation-
based method [18], at each step a gate is added to the circuit to bring the truth
table closer to the identity permutation. In Search-based method [12], PPRM
representation of truth table is used to search a tree to find good circuit.
In Cycle-based method [25] [23], a permutation is decomposed into disjoint
cycles and each cycle is synthesized individually. In BDD-based method [30],
a binary decision diagram is used to improve sharing between controls of re-
versible gates. Along with these promising approaches several others have been
proposed. But none of these algorithms can provide exact minimum circuits
except exhaustive DFS search. But this is inappropriate to apply on a conven-
tional computer for large circuits as searching a DFS tree exhaustively induces
larger time complexity issues on a conventional silicon computer. From this
perspective proposed approach of synthesizing the reversible circuit using a
DNA computer has several advantages as follows.

1. In this paper, an algorithm has been proposed to search a DFS tree in
constant time on a DNA computer and hence synthesizing a reversible truth
table that will result in proven minimal circuit in constant time. Though
the preparation for such search requires large time, but once prepared, it
can be kept in only two test tubes for long time with suitable preservatives.

2. A reversible gate on an n× n truth table cannot be applied in polynomial
time on a conventional computer as each of the 2n rows of the truth table
needs to be processed individually by the gate. In this work, an algorithm
has also been proposed to run on a DNA computer that can apply a gate
on a complete truth table in linear time.

3. Synthesizing a reversible truth table means finding the reversible circuit
made up of reversible gates satisfying given truth table. The target has
always been among the researchers to get the minimum cost circuit for
the reversible truth table given. Though there are few such exact synthe-
sis techniques but they are computationally too expensive to apply on a
large truth table as stated above. Though several approaches have been
proposed to simulate a reversible gate using DNA, however, to the best of
authors’ knowledge, no work has still been reported to perform synthesis of
a reversible truth table using DNA computing principles. This work may
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be considered to be the pioneering one to bridge the reversible computing
and DNA computing. Simulating some reversible gates has been the only
application of DNA computing techniques for reversible synthesis till now,
but an important application like finding minimum reversible synthesis
using DNA computer has still been untouched.

3 Related Works

In 1994, Adleman [17] has shown a new way of solving NP-complete prob-
lems using DNA by solving Travelling Salesman Problem. Since then, many
scientists all over the world have chosen this powerful tool to solve various
NP-complete problems. In the very next year (1995), Lipton [21] developed an
algorithm to solve the SAT problem on a DNA computer in linear time. In the
same year(1995), Boneh et.al. [6] broke DES, a famous encryption method,
using DNA. In 1997, Ouyang et. al. [19] solved maximal clique problem given
a six vertex graph. A huge achievement was made by Adleman and others
in 2002, when they solved 20-variable 3-SAT problem by performing an ex-
haustive search over 1 million possibilities [22]. Along with these experiments,
several other NP-complete problems e.g. Graph Coloring [33], Bin Packing [7]
etc. have been solved using DNA computing.

As an application of DNA computing in reversible logic, several implemen-
tations of reversible gates have been performed using DNA. Wood et.al. [13]
has constructed Fredkin gate using DNA, whose outputs can be used as inputs
in other Fredkin gates. Thapliyal et.al. [28] has performed reversible design of
complex sequential circuits, such as, reversible latches, flip-flops, registers etc.
using the Fredkin gate, hence opening the pathway to design complex re-
versible sequential circuits using DNA. Song et. al. [27], has simulated Fredkin
gate using two DNA models, namely, Sticking System and Enzyme System.
Sarker et. al. [24] has implemented Toffoli gate using DNA and has proposed
the design of conventional logic gates, such as AND, OR, EX-OR and NOT
gates using the DNA-based Toffoli gate.

4 Molecular Biological Operations and Symbolic Representation

Each molecular biological operation on DNA strand filled test tube is consid-
ered to be run in O(1) time. In this section, the possible operations on DNA
strands have been stated in symbolic forms as functions for the ease of rep-
resentation of algorithms. Laboratory procedures to perform these operations
have been described in section 9.

Single DNA strand G will be written as G and double strand of G and G is

represented as

(
G

G

)
, where G is the Watson-Crick complement of G. Possible

operations on DNA strands and corresponding notations used throughout the
paper are summarized as follows.
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1. Merge(T 1, T 2) - Pouring contents of test tube T2 in the test tube T1. T1
contains T 1 ∪ T 2.

2. Copy(T 1, T 2) - Copying contents of test tube T1 in an empty test tube
T2.

3. Anneal(T 1) - All possible complementary strands S1S2 and S1S2 in T1

gets joined together to form double strands

(
S1S2

S1S2

)
. This is performed

by cooling up the solution.

4. Denature(T 1) - Denatures all double strands

(
S1S2

S1S2

)
present in T1 in

single strands S1S2 and S1S2. This is performed by heating up the solution.

5. Cut(T 1, R1R2) - All double stranded DNA in T1 containing a string

(
S1R1R2S2

S1R1R2S2

)

are cut into two parts

(
S1R1

S1R1

)
and

(
R2S2

R2S2

)
. As not all DNA string can

act as restriction site, so some fixed strings R1R2, C1C2 or K1K2 can only
be used as restriction site.

6. Append(T 1, strand) - This will append the strand strand at the end of
each strand in T1.

7. Separate DS(T 1, ds, ss, T 2) - T1 is a test tube containing a solution of
double-strand and single-strand DNAs. This operation separates the double-
strands from T1 and keeps it into T2, while T1 is left with all single strands.

8. Separate Length(T 1, l, T 2) - This operation separates the strands of length
l from T1 and put them in T2.

9. Separate String(T 1, G, T 2) - This operation separates all strands contain-
ing G as substring and put them in T2.

5 Representation of reversible truth table and gates

Let us assume that we have n×n truth table. Let us take a language containing
strings as follows.

Σ = {#, 1, 0, A1, A2, ..., A2n , G1, G2, ...Gn, T, R1, R2,

C1, C2,K1,K2}
Each of the elements of the language is represented by unique DNA string

such that no DNA string is prefix of another. Among those R1R2, C1C2 and
K1K2 should be designed as a possible restriction site.

Sorting the rows of the truth table in increasing order of the input the bth

bit of the rth row is can be represented by a DNA strand ArR1R2GbC1C2V ,
where V is the value of the bit. All the DNA strands are then put into a test
tube. As an example, let us take the following truth table 1 of 3 17.

This can be represented by the test tube containing 24 DNA strands as
follows.

Tin = {A1R1R2G1C1C21, A1R1R2G2C1C21, A1R1R2G3C1C21,
A2R1R2G1C1C20, A2R1R2G2C1C20, A2R1R2G3C1C20, · · · ,
A8R1R2G1C1C21, A8R1R2G2C1C20, A8R1R2G3C1C21}.
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Table 1: Truth Table Of 3 17

a b c f1 f2 f3

0 0 0 1 1 1

0 0 1 0 0 0

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 0 1 0

1 1 0 1 1 0

1 1 1 1 0 1

ith bit of a Toffoli gate is represented as the DNA strand R1R2GiC1C2αi,
where

αi =

⎧⎪⎨
⎪⎩
1, if ith bit is a control bit

T, if ith bit is the target bit

0, otherwise

(1)

For example, the Toffoli gate T(b; a,c) may be represented by the test tube
as follows.

Tgate = {R1R2G1C1C21, R1R2G2C1C2T,R1R2G3C1C21}

Similarly, the Toffoli gate T(a; c) may be represented by the test tube as
follows.

Tgate = {R1R2G1C1C2T,R1R2G2C1C20, R1R2G3C1C21}

•

•

(a)
T(b;a,c)

•

(b)
T(a;c)

Fig. 1: Circuit notations of two reversible gates T (b; a, c) and T (a; c)

6 Reversible Logic Operations

Following sequence of operations is applied by the gate in test tube Tgate on the
input reversible truth table in test tube Tin and gives the output truth table
in the test tube Tout. An example of applying T(b; a, c) on 3 17 can also be
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given. To perform this operation, three test tubes Trc, Tcc and Tcseq containing
{R1R2}, {C1C2} and {A1R1, A2R1, · · · , A8R1} respectively are required.

(1) Copy(Tin, Tout) and Copy(Tgate, Tbackup)
Now Tout contains the same DNA solution as Tin and a new test tube

Tbackup is created by copying the contents of Tgate.

(2) Merge(Tin, Tgate) and Anneal(Tin)
After these operations, the gate control bits R1R2G1C1C21 andR1R2G3C1C21

anneal with the complementary strands of the truth table and form double
strands. So Tin now contains the double strands as follows. Rest of the solu-
tion contain single strands.(

A1R1R2G1C1C21
R1R2G1C1C21

)
,

(
A1R1R2G3C1C21
R1R2G3C1C21

)
,

(
A3R1R2G3C1C21
R1R2G3C1C21

)
,(

A4R1R2G3C1C21
R1R2G3C1C21

)
,

(
A5R1R2G1C1C21
R1R2G1C1C21

)
,

(
A7R1R2G1C1C21
R1R2G1C1C21

)
,(

A8R1R2G1C1C21
R1R2G1C1C21

)
,

(
A8R1R2G3C1C21
R1R2G3C1C21

)

(3) Separate DS(Tin, ds, ss, Ttemp1), Denature(Ttemp1) and Sepa-
rate String(Ttemp1, 1, Ttemp2)

All the above double strands are separated into Ttemp1, denatured and
the strands coming from the truth table are kept into Ttemp2. So, now Ttemp2

contains the followings.
{A1R1R2G1C1C21, A1R1R2G3C1C21, A3R1R2G3C1C21, A4R1R2G3C1C21,

A5R1R2G1C1C21, A7R1R2G1C1C21, A8R1R2G1C1C21, A8R1R2G3C1C21}.

All those bits of the truth table that resembles with one of the gate control
bits and whose value is 1.

(4) For each bit i do

(4a) Separate String(Ttemp2, Gi, TGi)
This will create 3 different test tubes,

TG1 = {A1R1R2G1C1C21, A5R1R2G1C1C21, A7R1R2G1C1C21, A8R1R2G1C1C21},
TG2 is empty,
TG3 = {A1R1R2G3C1C21, A3R1R2G3C1C21, A4R1R2G3C1C21, A8R1R2G3C1C21}

(4b) Merge(TGi, Trc), Anneal(TGi), Cut(TGi, R1R2) and Denature(TGi)
This will cut each strand in each tube between R1 and R2. That is,

now the test tube contents are like,
TG1 = {A1R1, A5R1, A7R1, A8R1, R2G1C1C21}
TG2 is empty,

TG1 = {A1R1, A3R1, A4R1, A8R1, R2G3C1C21}

(4c) Separate String(TGi, R1, TGi temp)
Create 3 test tubes,
TG1 temp = {A1R1, A5R1, A7R1, A8R1}
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TG2 temp is empty,

TG3 temp = {A1R1, A3R1, A4R1, A8R1}

(5) For each bit i do

(5a) If TGi temp is not empty

(5b) Merge(TGi temp, Tcseq), Anneal(TGi temp), Separate DS(TGi temp,
ds, ss, TGi ds), Denature(TGi ds), Empty(Tcseq) and Separate String(TGi ds,
R1, Tcseq)

During processing TG1 temp, after merging Tcseq and annealing, TG1 temp

contains the double strands(
A1R1

A1R1

)
,

(
A5R1

A5R1

)
,

(
A7R1

A7R1

)
and

(
A8R1

A8R1

)

Separating these double strands in TG1 ds, denaturing them and
separating the strings containing R1 remakes the test tube Tcseq as,

Tcseq = {A1R1, A5R1, A7R1, A8R1}

After performing the similar operation on TG3 temp using new Tcseq

outputs new Tcseq as,

Tcseq = {A1R1, A8R1}

The target of this step was to get the complements of all DNA strands in
the intersection of all TGi temps. After this step, Tcseq contains DNA strands
AiR1, where the input truth table has all the control bits set at ith row, and
hence the target bit needs to be modified.

(6) Separate String(Tbackup, T , Ttarget)

After this operation, Ttarget contains a single DNA strand from the gate
that corresponds to the target bit.

Ttarget = {R1R2G2C1C2T, }

(7) For each bit i do

(7a) Separate String(Ttarget, Gi, TGi)

After this operation, only one of TGi is non-empty and contains the
only strand of Ttarget. In this case, TG2 is non-empty.

(7b) If TGi is non-empty

(7c) Append(Tcseq, R2GiC1C2) and break

In this case, after this operation,

Tcseq = {A1R1R2G2C1C2, A8R1R2G2C1C2}

(8) Merge(Tout,Tcseq), Anneal(Tout), Separate DS(Tout, ds, ss, Tchange ds)

After merging and annealing, Tout contains the double strands as follows.(
A1R1R2G2C1C21

A1R1R2G2C1C2

)
and

(
A8R1R2G2C1C20

A8R1R2G2C1C2

)
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The double strands are being separated in Tchange ds and Tout contains the
remaining single strands.

(9) Denature(Tchange ds) and Separate String(Tchange ds, R1R2, Tchange)
Now Tchange = {A1R1R2G2C1C21, A8R1R2G2C1C20}

(10) Separate String(Tchange, 1, Ttarg 1) and Separate String(Tchange,
0, Ttarg 0)

Separate the contents of Tchange in two test tubes, one for which 1 needs
to be changed to 0, and for the other, 0 needs to be changed to 1.

Ttarg 1 = {A1R1R2G2C1C21}
Ttarg 0 = {A8R1R2G2C1C20}

(11) Merge(Ttarg 1, Tcc), Anneal(Ttarg 1), Cut(Ttarg 1, C1C2), Denature(Ttarg 1),
Separate String(Ttarg 1, C1, Ttarg 1 temp)

(12) Merge(Ttarg 0, Tcc), Anneal(Ttarg 0), Cut(Ttarg 0, C1C2), Denature(Ttarg 0),
Separate String(Ttarg 0, C1, Ttarg 0 temp)

In the above two operations, C1C2 are annealed with the contents of Ttarg 0

and Ttarg 1. The annealed strands may then be cut between C1 and C2. After
denaturing the contents are as follows.

Ttarg 1 = {A1R1R2G2C1, C21, C1, C2}
Ttarg 0 = {A8R1R2G2C1, C20, C1, C2}
Separating the strings containing C1 in Ttarg 1 temp and Ttarg 0 temp results

in the followings respectively.
Ttarg 1 temp = {A1R1R2G2C1}
Ttarg 0 temp = {A8R1R2G2C1}

(13) Append(Ttarg 1 temp, C20) and Append(Ttarg 0 temp, C21)
After these operations,
Ttarg 1 temp = {A1R1R2G2C1C20}
Ttarg 0 temp = {A8R1R2G2C1C21}
Aim of the operations (10), (11), (12) and (13) was to change the bit value

of the strands in Tchange.

(14) Merge(Tout, Ttarg 1 temp) and Merge(Tout, Ttarg 0 temp)
Mix the changed bits in Tout. Now Tout contains the output truth table.
Clearly, the above procedure is applying a gate on a complete n× n truth

table in O(n) laboratory experiments.

7 Searching a DFS tree in constant time

Let us assume the possible nodes of a DFS tree be V1, V2, · · · , Vm. For a re-
versible circuit synthesis DFS tree may be considered as all possible reversible
truth tables. For n× n reversible circuits, number of possible different nodes
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are 2n!. The possible paths of the DFS tree can be taken as I1, I2, · · · , Ik,
where they are all possible CNT gates for a reversible synthesis. For n × n

reversible circuits number of possible different paths are n2n−1.

V1

V2 V3 Vk

Vs Vt Vz

I1 I2 Ik

I1 I2 Ik

Fig. 2: Representation of an example DFS tree with root node V1, where an
edge with label Ij between nodes Vm and Vn represents that, Vn can be reached
from Vm using input Ij . Searching a DFS tree specifies the search of a path, a
sequence of inputs, to the desired destination node, say Vr from root V1

Now let us consider the starting node as V1 and we need to find the mini-
mum path to reach Vr . Let us prepare two test tubes P and Q as follows.

P = {I1, I2, · · · , Ik, ViViIj ,#V1, Vr# : 2 ≤ i ≤ m and i �= r, 1 ≤ j ≤
k, There is a path Ij from node Vi}

Q = {#, Vi1IjVi2 : Vi2 is reachable from Vi1 via path Ij}

Now let us perform the following operations.

(1) Merge(P , Q) and Denature(P )

All possible DNA strands are grown up in the following way.(
#V1

#

)
⇒

(
#V1

#V1Ip1Vq1

)
⇒

(
#V1Ip1

#V1Ip1Vq1

)
⇒

(
#V1Ip1Vq1Vq1Ip2

#V1Ip1Vq1

)
⇒(

#V1Ip1Vq1Vq1Ip2
#V1Ip1Vq1Vq1Ip2Vq2

)
⇒

(
#V1Ip1Vq1Vq1Ip2Vq2 · · ·VqmVqmIpm
#V1Ip1Vq1Vq1Ip2Vq2 · · ·VqmIpmVr

)

⇒

(
#V1Ip1Vq1Vq1Ip2Vq2 · · ·VqmVqmIpmVr#

#V1Ip1Vq1Vq1Ip2Vq2 · · ·VqmIpmVr

)
⇒

(
#V1Ip1Vq1Vq1Ip2Vq2 · · ·VqmVqmIpmVr#

#V1Ip1Vq1Vq1Ip2Vq2 · · ·VqmIpmVr#

)

There may be many other possible DNA double strands. After denaturation
all possible paths from V1 to Vr are in the solution along with many other
different DNA single strands. The paths from V1 to Vr starts with #V1 and
ends with Vr#.

(2) Separate String(P , #V1, T ) and Separate String(T , Vr#, Tsol)

After these operations, Tsol contains all and only all possible paths from
V1 to Vr.

(3) Separate Length(Tsol, < minimum >, Tmin)
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Start

Merge P and Q

Anneal P

Denature P

Separate P contain-
ing string ”# V1” in T

Separate T containing
string ”Vr#” in ”Tsol”

Find out minimum length DNA
from the solution in ”Tsol”

Output the minimum length DNA. Stop

Fig. 3: Flowchart for searching DFS tree

Perform Gel Electrophoresis to separate the band of DNA strand that has
the minimum length. Tmin contains the desired minimum path from V1 to Vr.

8 Creating Reversible Circuit Library

In the section 6 truth tables and gates are represented by combination of DNA
strands in separate solutions in separate test tubes. To generate a library, the
truth table can be represented by a single strand containing all DNA strands of
section 6 joined by some restriction site other than R1R2 and C1C2, sayK1K2.
So, the DNA strand representing the truth table 1 of 3 17 in the example of
the section 5 is as follows.

A1R1R2G1C1C21K1K2A1R1R2G2C1C21K1K2A1R1R2G3C1C21K1K2

A2R1R2G1C1C20K1K2A2R1R2G2C1C20K1K2A2R1R2G3C1C20K1K2

· · ·A8R1R2G1C1C21K1K2A8R1R2G2C1C20K1K2A8R1R2G3C1C21.
Similarly, a gate may be represented by a single strand containing all DNA

strands of section 6 representing the gate joined by K1K2. For example, the
DNA strand representing T(b; a, c) may be

R1R2G1C1C21K1K2R1R2G2C1C2TK1K2R1R2G3C1C21
This represents each truth table by some node Vi and each gate by some

path Ik in the DFS tree. Cut the truth table and gate after merging and
annealing with K1K2. After cutting, two separate solutions of truth table and
gate may be found like in section 6. Apply the linear operation to apply the
gate on the truth table. Merge the output truth table by K1K2 and let the
output truth table be Vj .
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Generate all such relationships of Vi and Ik as in the section 7. This will
be the reversible circuit library. The library is composed of two test tubes,

P = {I1, I2, · · · , Ik, ViViIj ,#V1 : 2 ≤ i ≤ m , 1 ≤ j ≤ k}
Q = {#, Vi1IjVi2 : Applying gate Ij on Vi1 results in Vi2}
Here V1 is the node representing the identity truth table (0, 1, 2, 3, · · · ).
This can be permanently kept as a database. This database can also be

built using a simulation of DNA computer on a conventional computer and the
output of such simulation can be fed to a DNA synthesizer to build the required
DNA molecules comprising the database. This reduces the manual work only
to feeding the required DNA sequences to the synthesizer. A simulator have
been implemented in Java. But though such simulators reduce the manual
work, as the implementations run on conventional machines, they cannot run
with the desired time complexity. As for example, separating a DNA solution
based on the presence of a particular string. Although the biological operation
is O(1) the simulation requires to search the set following some good string
searching algorithm that cannot be done in constant time on conventional
computers. As a result, the algorithm proposed to apply gate on reversible
truth table also runs in super-polynomial time on the simulator.

From the library, to get the circuit of some truth table T , denote Vr as the
DNA strand representing T . Perform the following operations,

(1) Separate String(P , VrVr, Ttemp) and Discard(Ttemp)

(2) Merge(P , Tr) where Tr contains only the strand Vr#.

These two operations convert P into the form as per the section 7, where
Vr is the desired node to reach. Then perform the constant time DFS tree
search to find the minimum path from V1 to Vr. Decode the path to result the
minimum circuit synthesizing the truth table T .

9 Experimental Feasibility

The molecular biological operations being used in the work are already proven
feasible operations on DNA solutions. A theoretical computational model
based on the RDNA model [20] have been assumed here with some addi-
tional operations, such as Append and Separate DS. Fujiwara et.al. [9] uses
the RDNA theoretical model to perform arithmetic and logic operations with
DNA strands. Xiao et.al. [32] has used this mathematical model to perform
DNA representation of elements in {0, 1}n. Tsai et.al. [29] has used this model
to construct parallel adder.

The operations comprising the theoretical model used in this work, can be
performed practically in a biomolecular laboratory as follows.

Merge : Two test tubes T1 and T2 containing DNA solutions can be
merged by simply pouring the contents of T2 in T1. This leaves T2 empty, so
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Test Tube ”Ttables”

containing all
truth tables

Test Tube ”Tgates”

containing all
possible gates

Start

Is ”Ttables”

empty ?”

Finish

Separate a truth table from

”Ttables” in ”Ttable” using corre-
sponding string. Keep a copy of

”Ttable”. Refill ”Tgates” if empty

Is ”Tgates”

empty ?”

Separate a gate from ”Tgates”

in ”Tgate” using corresponding
string. Keep a copy of ”Tgate”

Add K1K2 in ”Ttable”,

Anneal and Cut at K1K2

Denature ”Ttable”, and separate

strings containing C1C2. Solu-
tion of truth table DNA strands

obtained as required in section 6

Add K1K2 in ”Tgate”, An-

neal and Cut at K1K2

Denature ”Tgate”, and separate strings

containing C1C2. Solution of gate DNA
strands obtained as required in section 6

Apply gate DNA strands on truth

table DNA strands using the
procedure described in section 6

Add K1K2 in output truth table

solution, anneal and denature. Out-
put truth table DNA strands will

be joined at locations of K1K2

Append copy of Tgate after

copy of Ttable and append out-
put truth table after that. The

strand Vi1IjVi2 will be created

Create complement of Vi1IjVi2 using

primers and add to test tube Q

no

yes

no

yes

Fig. 4: Flowchart representing detailed step-by-step procedure for the creation
of test tube Q
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a backup of T2 can be made by copying, before merging and after merge, the
backup can be poured back in T2.

Copy : The copy of DNA solution residing in a test tube T2 can be made
in a previously empty test tube T1 using Polymerase Chain Reaction.

Anneal : If a test tube containing DNA strands is cooled down, in the
course of the normal, random molecular motion, the complementary strands
come closer to each other and stick tightly to form DNA double strands.

Denature : A tube of DNA strands dissolved into water, when heated
up at a suitably high temperature, the hydrogen bonds between the strands
are broken to separate the double strands into two single strands.

Cut (Cleavage) : DNA double strands can be cut at or near specific nu-
cleotide sequence using restriction enzyme found in bacteria. Such nucleotide
sequence is called recognition site. Each restriction enzyme can identify dif-
ferent recognition site in DNA, and hence not all nucleotide sequence can be
used as recognition site. As for example, cutting using EcoRI, BamHI etc.
enzymes produce sticky ends, whereas, SmaI, PvuII etc. produce blunt ends.

Append : Appending a DNA strand at the end of another DNA strand is
a trivial operation, that can be performed by a specific enzyme, DNA ligase,
that joins two DNA strands by catalysing the formation of phosphodiester
bond.

Separate DS : Double strands can be separated from the single strands
in a DNA solution by the procedure proposed in [14]. Graphene oxide (GO)
adsorbs single stranded DNA more quickly than the double-stranded ones.
This property along with the centrifugation operation can be used to separate
the double stranded and single stranded molecules.

Separate Length : DNA strands in a solution can be separated by length
using Gel Electrophoresis. DNA strands of different lengths move through the
gel in different speeds, and hence can be separated by separating the band of
the desired length DNA strands.

Separate String : DNA strands in a solution can be separated, based
on the presence of a particular string, by magnetic bead separation procedure,
where a magnetic bead containing the Watson-Crick complement of of the
string, is hold into the solution and DNA strands containing the string are
attracted towards the bead.
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10 Conclusion

On a conventional computer, it is not possible to apply a reversible gate on
a reversible truth table in polynomial time. In this paper, a procedure has
been proposed that can be used to do the same on a DNA computer in linear
time. A procedure also has been proposed to search a DFS tree in constant
time provided that the required relationships between the nodes and the paths
are ready at hand. Based on the two approaches, the minimum synthesis of
a reversible circuit is being performed. Though the generation of the library
is a long manual process, but once designed, can be kept in only two test
tubes as a database. This library can be used at any time to get the min-
imum reversible circuit of any truth table at constant time. To the best of
authors’ knowledge this is the pioneering approach of it’s kind to bridge the
gap between Reversible and DNA Computing and thus generates an avenue
of future research directions for succesful application of DNA Computing to
design future generations of Reversible Circuits in the post CMOS era.
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