
1

Low Cost Security Aware High Level

Synthesis Methodology
Anirban Sengupta

Computer Science and Engineering

Indian Institute of Technology Indore, India.

Email: asengupt@iiti.ac.in

S. Bhadauria

Computer Science and Engineering

Indian Institute of Technology Indore, India.

Saraju P. Mohanty

Computer Science and Engineering

University of North Texas, USA.

Email: saraju.mohanty@unt.edu

Abstract

Owing to massive complexity of modern digital integrated circuits (ICs) disabling complete in-

house development, globalization of the design process establishes itself as an inevitable solution for

faster and efficient design. However, globalization incurs importing intellectual property (IP) cores from

various third party (3P) vendors, rendering an IP susceptible to hardware threats. To provide trust and

security in digital integrated circuits within user constraints, design of a low cost optimized Dual Modular

Redundant (DMR), through Trojan secured high level synthesis (HLS) methodology, is crucial. This

paper presents exploration of a low cost optimized HLS solution capable of handling hardware Trojan

(providing security) that alters computational output. The key contributions of the paper are as: (1) novel

low cost security aware HLS approach, (2) novel encoding for representing bacterium in the design space

(comprising of candidate datapath resource configuration and vendor allocation information for Trojan

secured solution), (3) novel exploration process of an efficient vendor allocation procedure that assists

in yielding a low cost Trojan secured schedule. Experimental results indicate significant reduction in

the cost of security aware HLS solution (82.4 %) through the proposed approach compared to a recent

approach.

2

Index terms— High level synthesis, Hardware Security, Third party IP, Bacterial Foraging Optimiza-

tion

I. INTRODUCTION

Digital integrated circuits which are main workhorses of applications in military, aerospace, biomedical

etc. have security and trust as primary challenges. A paradigm shift in design cycle of digital ICs is

needed to incorporate trust and security besides issues like power, area, and energy, as shown in Fig. 1a.

Hardware Trojan’s are malicious logic embedded in an IP core of a digital IC by an adversary in order to

induce malfunctioning. With the globalization in the design process of ICs, there have been key concerns

on the security and trustworthiness of 3PIPs [1], [2]. This is because companies worldwide participate

in the development of ICs which makes the design process vulnerable due to increase in possibility of

untrustworthy vendors. Designs at each levels of abstraction are outsourced to companies worldwide. Fig.

1b shows the hardware treats in a typical IC development cycle. During the design process an adversary

may corrupt an IP by inserting hardware Trojan by either external activation (such as antennas or sensors)

or internal activation (such as internal states of finite state machine (FSM) or counters) [3].

Threat Model: The paper targets Trojan in 3PIPs that only change computational output value (and

produces no other impact). This work does not address Trojan in control and interconnect fabric of the

IPs. This paper doesn’t target any other class of Trojans including those that steal information/data. In

other words, following threat model is considered: a malicious third party IP used as module is present

in HLS library in inactive state. The insertion of Trojan is possible in the following way: A malicious

IP/module present in the library of a HLS tool is designed either by a rogue in the 3PIP design house or

by a rogue in the in-house design team. Since the adversary may not provide Trojan-related information,

hence detection by the validation team is difficult.

The novel contributions of the current paper include following:

1) Presents a novel low cost security aware HLS methodology for optimized hardware Trojan secured

schedule based on user constraints.

2) Presents a novel problem encoding using bacterial foraging that explores an efficient vendor allo-

cation procedure besides datapath resource configuration.

3) Provides lower cost Trojan secured solutions that are of better quality than solution obtained through

recent approach [4].

The notations used for the proposed approach and its explanations are presented in Table I. The rest

of the paper is organized as follows: Section II presents related prior research. Section III provides

broad perspective on security aware HLS. Section IV presents our formulation and models for security

3

(a)

In house System

designer/ Design integratorIP Vendor

UNTRUSTED

TRUSTED

R1

R2
R3

Manufacturer

(b)

Fig. 1: Development phase of an IC with likelihood of untrustworthy vendor involving security as design

objective

aware HLS. Section V presents our novel security aware HLS methodology. Section VI presents the

experimental result and finally Section VII concludes the paper.

II. RELATED WORK

A. Security Aware Approaches at Behavioural/Lower levels

The hardware Trojan issue so far have mainly been dealt at the lower levels of chip designing [5],

[6], except in [4], [7]. Researchers in [8] used multi supply transient current integration methodology to

detect hardware Trojans. In [9], Trojan detection based on path delay and power of the manufactured

chips is used to identify Trojan’s in manufactured chips. But such techniques are not effective in HLS

since there are no golden solutions available to compare with. However, none of the previous approaches

above considers Trojan security during HLS except in [4], [7]. In [4], [7], Concurrent Error Detection

(CED) technique is adopted where distinct 3PIP vendors are used to identify the Trojan’s. However, [4],

4

TABLE I: Notations used in the Current Paper.

p
Bacterium population size indicating the number of initial design solutions

participating in DSE
D

Total available resource types in

solutions during HLS

xi A bacterium position denoting a candidate design solution in HLS Vj

Number of vendors used during

hardware allocation in HLS

xLast
i indicating the last visited design solution of ith bacterium LDMR

T

Total delay of a dual modular redundant

(DMR) schedule during HLS

xNew
i indicatig the new design solution of ith bacterium N(Rd)

Number of instances of a resource type
′d′ of a design solution

C(i) step size taken by a bacterium indication exploration drift during DSE N(Rd)New
i

New value of the dth resource type of

ith bacterium (design solution)

N(Rd)Min
i

Minimum value of dth resource type

of ith bacterium (design solution)
N(Rd)Max

i

Maximum value of dth resource type

of ith bacterium (design solution)

Nc

Maximum number of chemotactic steps

i.e. the terminating criteria of DSE in

HLS

ADMR
max

DMR solution with maximum area in

the design space during HLS

Ri
x

Candidate design solution indicating

resource configuration and vendor

dimension

Lcons

User specified execution time constraint

i.e. the constraint specified by the user

as upper limit to latency during fitness

evaluation of design solution

Acons

User specified area constraint i.e. the

constraint specified by the user as

upper limit to latency during fitness

evaluation of design solution

LDMR
max

DMR solution with maximum time

/delay in the design space during HLS

ADMR
T

Total area utilized by a DMR schedule

during HLS
Cf (Ri

x)
Cost of a candidate design solution (Ri

x)

participating in DSE process

Av

Vendor allocation Procedure i.e. how

hardware from different vendors are

internally allocated in a DMR schedule

A(R
Vj

d)
Area of a resource type (Rd)

corresponding to vendor (Vj)

R
Vj

d

Number of instances utilized from

vendor Vj for a n and n′ resource

type Rd

n and n′ Size of original and duplicate DFG

used during scheduling in HLS

D(op
Vj
z)

Delay of operation z, assigned to

vendor Vj

cs Control steps of a schedule in HLS

m
Maximum number of instances of

resource type Rd for vendor Vj

[7] does not provide a low cost economical security aware HLS solution. It may be noted noted that

“low cost” in this paper refers to low design implementation cost in terms of hardware area and latency

of a Trojan secured design solution. The details of this hybrid design cost function is described later in

eqn. 3. Further, approach [7] does not investigate into exploration of efficient distinct vendor allocation

procedure of similar operations as it affects final delay and area of the schedule. Moreover, in [10] authors

developed an ATPG scheme for detection of Hardware Trojan Horses (HTHs) at the logic level, which

depends on rare input triggering conditions. The detection scheme is based on both GA and Boolean

satisfiability approach. The approach models the effect of each Trojan instance as stuck-at fault. However,

the approach presented in [10] does not deal with third party IP cores used at higher abstraction levels

such as during HLS. Further, the approach does not perform any optimization of hardware overheads

associated with Trojan detection.

In [11], authors have inspected class of hardware Trojan that causes set-up time violation at clock input

of flip-flops. The assumption used in their attack model considers a collusion (nexus) between the third

5

party designer of the IP core and the person-in-charge of deployment (i.e. system integrator of the IP

core). However, the proposed approach handles another type of Trojan that changes computational output

value. Further, we assume that in the IC design flow, the system integrator is trustworthy (therefore with

no chance of collusion or malicious nexus with the third party IP designer).

Authors in [12] explored class of hardware Trojans referred as ”Malicious Off-chip Leakage Enabled

by Side-channels” (MOLES), which may intentionally leak secret information through side-channels. The

Trojan considered is capable to leak multi-bit information/secret keys under different noise power levels

of the host IC to evade detections. However, the proposed approach handles another type of Trojan that

changes computational output value (and does not aim to leak confidential information). Further, the

proposed approach considers malicious logic in the component library of a HLS process, unlike [12].

B. Non Security aware approaches at Behavioural level

Authors in [13] have used clustering based technique for a simulated annealer explorer for performing

area-delay trade-off between exploration speed and quality of solution. Further in [14] an integrated

DSE methodology considering compiler and architectural level transformations for performing area-delay

trade-off in SPARK-HLS tool [15] is presented. Moreover, in [16] an approach on spectral techniques and

resource surface models for area-delay trade-off is presented. Besides above, in [17] and [18] exploration

problem is solved by machine learning algorithms, ‘random forest’ and ‘genetic algorithm predictive

model’. DSE process runs by predictive models without running synthesis for each new configurations

during area-delay trade-off. However, the proposed approach is driven through bacterial foraging and

uses Trojan security, area and delay as design objectives. Moreover, the proposed approach uses bacterial

foraging which is a more simplified model that produces high quality solutions using tumble vector as

well as considers Trojan security, area and delay as design objective.

III. SECURITY AWARE HLS: A BROAD PERSPECTIVE

HLS involves translation from an algorithmic/behavioral description of an application to its equivalent

register transfer level (RTL) structure which implements behavioral description represented in the form of

a directed graph, referred as control data flow graph (CDFG) [19], [20]. It involves exploring alternative

design solutions by analyzing its scheduling and allocation details through corresponding area and delay

evaluation [21]–[29]. In recent years, there is a paradigm shift from traditional area/performance aware

HLS methodology towards security aware HLS methodology.

6

Fig. 2: Trojan logic inserted by an adversary in a sample IP. Note : When select (S) = 1, then, Trojan

blocks get activated and the adder module starts performing subtraction / (A + B + 1).

A. Motivational example: Hardware Security/Trust at Behavioral Level

Let us consider an example during HLS through a case of Trojan as shown in Fig. 2. It shows an

adder IP designed by an untrusted third party vendor and included in HLS tool library. In this design, a

possible scenario, where insertion of Trojan is made by malevolent alteration of the hardware/logic of the

adder IP by an untrusted vendor is shown in figure (dotted blocks marked in red). This Trojan remains

dormant until adversary triggers the select (S) of the circuit at the moment of its choice through external

or internal activation(as discussed before), when the adder IP maliciously starts behaving as a subtractor

without the knowledge of HLS designer. However, during design verification such as RTL simulation the

adder IP continues to function as an adder, owing to inactive state/dormancy of the Trojan. Thus despite

carrying Trojan logic in the IP, it provides an impression to the HLS designer that the IP is functionally

correct. When integrated in the design, the adder IP starts behaving maliciously, due to rare triggering

by an adversary. Therefore, during HLS design it should be ensured through proper allocation rules the

design is Trojan secured.

B. Motivation of proposed work

In case of HLS, the 3PIPs are the IPs/modules present in the HLS module library, which may have

been imported from an outside (third party) vendor and may contain malicious logic inserted by a rogue

in the third party design house. Typically, the RTL files of the modules/IPs of the library are provided by

the HLS company which it may have imported from third party (untrusted) vendors as RTL files. These

are highly likely to contain dormant/untriggered Trojan logic. The proposed approach deals with Trojan

7

in the modules/IP that affects the computational output value of HLS designs. However the key is that

Trojan only becomes visible at runtime (after external triggering), thereby remaining completely obscured

before that, thus difficult to be detected during RTL simulation. Thus during functional verification steps

the Trojan remains unnoticed in most cases either because it remains dormant (not triggered) or some

of the outputs reflect no change in functionality. Therefore, detection from the high level description (in

C/HDL code) of the IP design is difficult. Further, for the case when the Trojan is ‘always on’ in an

IP, it may be possible that most of the outputs reflect no change during RTL simulation (except a few).

Therefore, without careful examination, the Trojan may sometimes go unnoticed. Thus during rare input

triggering conditions, the Trojan from dormant state gets activated causing wrong computational output

for a specific hardware unit. This erroneous computed value of the specific FU results in erroneous value

of the primary output as well. However as the other unit of the DMR utilizes FUs from a distinct vendor

therefore it remains Trojan free or produces a different Trojan logic, thereby producing a different value

at the primary output of this unit. Comparison of the two primary outputs from the two units results in

difference in magnitude thus yielding detection of Trojan.

One of the possible ways for successful detection of Trojan in HLS is using atleast two vendors in

a DMR design. However so far in the literature, low cost Trojan security aware HLS based on user

provided constraints has not been done. This normally results in area and delay overhead. The cost

increase due to involvement of two vendors is also minimized in our proposed approach through the

following techniques: a) Exploration of optimal vendor allocation procedure b) Exploration of optimal

datapath resource configuration.

IV. LOW COST SECURITY AWARE HLS: FORMULATION AND MODELS

The goal of proposed approach is to explore a low cost security aware HLS solution based on user

constraints. As an example, area and delay have been considered as constraints in the current paper.

A. Problem Definition

Determine an optimal solution, Ri
x = {xi, Av} = {N(R1), N(R2),..N(RD), Av}, while exploring the

design space of an input CDFG and conflicting constraints. The problem can be formulated as: Find:

Optimal (Ri
x), with minimum, Cost(ADMR

T , LDMR
T) subjected to: ADMR

T ≤ Acons and LDMR
T ≤ Lcons

and Trojan security, where the variables have been explained in Table. I. ‘Av’ is the vendor allocation

procedure (where Av = ‘1’ or ‘0’), ‘i’ indicates bacterium number in the search space, Ri
x indicate

a candidate design solution corresponding to bacterium ‘i’. Vendor allocation procedure in this paper

indicates the process of assigning hardwares from distinct vendor in a DMR schedule.

8

A Trojan secured solution is defined as a DMR schedule that has the ability to produce either a correct

output or signal the presence/detection of a Trojan (due to unidentical outputs generated from original

and duplicate units of a DMR).

B. Evaluation Models

In the proposed work, bacterium foraging optimization algorithm is used as exploration backbone for

yielding a low cost security aware HLS solution (motivation of using BFOA is provided in subsequent

sections). Each bacterium position represents a Trojan secured design solution in the design space.

1) Proposed area model: Total silicon area consumed
(
ADMR

T

)
by a Trojan secured design solution

is given by the following model:

ADMR
T =

2∑
j=1

m∑
d=1

(
A
(
R

Vj

d

)
×RVj

d

)
+ (A(mux) ∗N(mux)) + (A(demux) ∗N(demux))+ (1)

A(errordet) + (A(buffers) ∗N(buffers)),

‘m’ is the maximum number of instances of resource type ‘Rd’ belonging to vendor Vj . Total area utilized

by a DMR schedule during HLS, where DMR schedule comprises of original CDFG unit and duplicate

CDFG unit scheduled concurrently based on candidate design solution (Ri
x). It may be noted that the

area comprises of components due to hardware resources (16-bit carry look ahead (CLA) adder, 32-bit

asynchronous multiplier and 16-bit subtractor), interconnect units (16-bit/32-bit mux and 16-bit/32-bit

demux), error detection unit such as 16-bit/32-bit comparator and 16-bit storage units due to overhead

incurred from buffering during storage of operation output in DMR scheduling. The area evaluated is

with respect to module library generated with CMOS 90nm technology node [30], [31], [32]. The area

model therefore accurately captures the most important portions of a datapath including steering logic

such as multiplexers and demultiplexers, storage hardware such as buffers, error detection block such as

comparator and FUs hardware described in the form of transistors. In this paper the area model does not

consider the impact of flip flops and interconnects.

2) Proposed Delay Model: For given ‘D’ functional resources the delay of a Trojan secured design

solution is given as follows:

LDMR
T =

n∑
cs=1

Max
(
D(opVj

z), ..D(opVj
n), D(op

Vj

z′), ..D(op
Vj

n′)
)
, (2)

where 1 ≤ j ≤ 2, 1 ≤ z ≤ n and 1′ ≤ z′ ≤ n′. (z and z′ = indicate operations in original unit and

duplicate unit of a DMR). ’cs’ indicates total control steps of a DMR schedule. The delay model is based

on the latency values of each functional hardware described at 90nm technology scale [30].

9

3) Fitness Function: The fitness function considers delay and area of a design solution, formulated

as follows [24]:

Cf (Ri
x) = W1

(
ADMR

T −Acons

ADMR
max

)
+W2

(
LDMR

T −Lcons

LDMR
max

)
. (3)

In the above expression, user defined weights W1 and W2 are assigned values of 0.5 during exploration

to offer equivalent priority. Further, it considers the maximum values of area and delay during evaluation

to yield a normalized value of cost (between 0 and 1). Since the objective of the proposed exploration

approach is to satisfy the user constraints as well as minimize the hybrid cost, as presented in Section

IV.A, hence a higher negative value is better.

C. Motivation on using BFOA

A regular exploration process with area/power - delay as design objective is considered intractable

[33]. Inclusion of Trojan security as additional design objective intricates the mechanism and requires

advanced search algorithm capable to combat the intricacy and find an optimal low cost design solution.

BFOA would be considered suitable for such problems over Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO) because of the following advantages:

• unique feature of chemotaxis that enables usage of tumble vector for change in direction of search

path in a design space, if needed.

• simplified framework than GA and PSO as it does not heavily depend on pre-tuning of stochastic

parameters.

• unique feature of elimination dispersal that allows killing a certain design solution if found unpro-

ductive i.e. higher in cost (while simultaneously injecting a fresh low cost candidate design solution)

[24].

V. PROPOSED NOVEL LOW COST OPTIMIZED TROJAN SECURED HLS METHODOLOGY

This section presents a novel low-cost secured HLS flow based on DMR logic. DMR typically results in

duplication of operations, which in turn may lead to more steering logic and internal buffering compared

to a normal (non- DMR) design. However, proposed low cost Trojan secured DMR scheduling does not

lead to functional resource overhead as it is designed based on datapath resource constraints (which is

iteratively obtained through BFOA process). Further, the hardware/power overhead of proposed Trojan

secured DMR (i.e. steering logic and internal buffers) is also optimized in our approach. Therefore, all

the associated DMR overheads are minimized in our proposed methodology through integration with an

advanced design space exploration framework.

10

A. Proposed Low Cost Security aware HLS

The block diagram of the proposed methodology is shown in Fig. 3a. In our design flow DMR

scheduling is performed using list scheduling which is a resource constrained scheduler. The operations of

the original unit is given higher priority than operations of duplicate during concurrent scheduling. After

scheduling, allocation is performed through exploration of vendor assignment process that enables low

cost hardware allocation to operations. Details are provided in section V-C and V-D respectively. Once

scheduling and allocation are over, binding of functional units (FU) is performed to estimate the details

of steering logic (such as size of multiplexers and demultiplexers). The details of steering logic derived

after binding is fed as a component to our area model that enables fitness evaluation of potential design

solutions (bacteria) in proposed exploration process. The flow diagram of the proposed methodology for

low cost Trojan secured HLS solution based on area-delay constraint is shown in Fig. 4. Fig. 4 is divded

into two portions: the blue boxes indicate the Trojan secured design steps while the red boxes indicate

the steps for BFOA-DSE framework. The inputs to the proposed approach include library details, CDFG,

‘Nc’, ‘p’ and user constraints (example: area and delay). The proposed approach terminates on either of

the condition:

• s1: Designer specified ‘Nc’

• s2: No improvement is observed in global best in last 10 chemotactic steps.

A novel encoding is presented in the proposed approach for bacterium that includes a datapath resource

configuration for bacterium position and vendor allocation procedure ‘Av’ indicated as Ri
x:

Ri
x = (xi, Av), (4)

where xi has been defined in Table. I. Motivation of adding dimension ’Av’ is discussed in next sections.

A simple demonstrative example is shown in Fig.3b where a infected adder in HLS library is acting as

a subtractor (as shown in Fig. 2); y is the primary input. Let us consider a scenario: Adder of vendor V1

is malicious: In such case assuming the adder maliciously performs subtraction. The subsequent output

from original unit is −y, however, the duplicate output is 3y, indicating Trojan security that is detection

(due to difference in computation value). As discussed in [4], it is highly unlikely that different Trojans

in different 3PIPs will produce identical wrong outputs. In other words, chance of IP from both third

party vendors being Trojan infected or carrying same Trojan logic is very rare. In terms of security of

the design as explained above, the proposed approach is capable of detecting any malicious infection

in a 3PIP that results in change in computational value at the output. In the proposed approach both

11

HLS Library

Vendor
Details

Adder IP, Sub
IP, Comparator

IP, etc.

DSE Steps

FU Binding

Vendor Allocation

DMRscheduling using list Scheduling

User
Constraints

Fitness
Evaluation

Hardware Trojan
Detection Rules

Encoding
R

x
i = (x

i
, A

v
)

INPUT BLOCK

DFG

Possibly Trojan
Infected

HLS Flow

Datapath resource configuration

Vendor Information

DSE
METHODOLOGY

Final Low Cost
Trojan secured

Datapath

a) exploration of
datpath (xi)

b) efficient vendor

(a) The Proposed novel low cost security aware HLS methodology.

2

O1
OG

+

+

+
V1

+

1 3

V1

V2

4 V1

UOG

UDP

+

+

+‘1 ‘3

‘2

+
‘4

V2 V1

V2

V2

y
y

y y

y
y

y
yy

y

O1
DP

(b) Simple motivational example

Fig. 3

the distinct vendor allocation procedure (Av = 0 and Av =1) are able to provide comprehensive security

against malicious Trojan in an IP (that results change in computational value).

B. Initialization of Bacterium

The position of bacterium represents a Trojan secured HLS solution. The bacterium position ‘xi’ of

an ‘ith’ bacterium is given as follows:

xi = (N(R1), N(R2), ...N(Rd), ...N(RD)) , (5)

In the above expression the rests of the bacteriums (x4...xn) are initialized by the following:

xn = (
min(R1) +max(R1)

2
± α, min(R2) +max(R2)

2
± α, ...

min(Rd) +max(Rd)

2
± α), (6)

12

9.

8. 14.

11. 16.

17.

18. and 19.

10.

12.

13.

15.

7.

6.

5.

4.

3.

2.

1.

Clamp res., if
violation occurs

Trojan detection

INPUTS

HLS Library, Control parameters, DFG, User constraints

Initialize all the bacteria with last dimension being assigned to both 0 and 1

Filter the best bacterium’s

Randomly assign the last dimension of a bacterium to AV with
0 alternate vendor assignments in a unit ,

 1 same vendor assignment in a unit

Cx
i
 = Compute Cost

Present each selected bacterium’s for the chemotaxis

Perform chemotaxis for Selected bacterium

Tumble

Resource configuration for first two dimensions

Generate R x
i = (, AV)

Build DMR (SDFGDMR)

Assign hardware on basis of proposed rules

Cy
i = Evaluate Cost

 int i=1

Is Cy
i > Cx

i?

Accept/Store the Rx
i

i++

Change the last dimension (AV) of Rx
i

Is i≥ p? Temp = Temp + ∆t

j++

Build DMR (SDFGDMR)

Allocate hardware using detection rules

 Cy
i = Compute Cost

Is Cy
i > Cx

i?

Tumble

Yes

No

No

Cx
i
 (Last) = Cy

i
Rx

i (Last) = Rx
i (new)

Yes

Yes

Goto Algorithm
For checking Nc

No

Fig. 4: Flowchart of the Proposed Low Cost Security-Aware HLS Methodology.

where, α is a random integer between min and max of particular resource type. For example, as seen

in Fig. 5, the benchmark shown has two types of resources (i.e. D=2). Therefore, a bacterium position

for the given CDFG can be given as: xi = (N(add), N(mul)).

C. Movement using Chemotaxis

In BFOA-DSE, locomotion of a bacterium (design solution) from one point to other is symbolized as

chemotaxis [24], [34], [35]:

• Tumble : This variable regulates the step size, C(i) using , ∆ a random vector whose elements lie

in [-1, 1].

13

• Stepsize, C(i) : This variable regulates the step of a movement and is taken in any random direction:

C(i) = C(i) + 2.

• Move :

xNew
i = xLasti + C(i) ∆(i)√

∆T (i)∆(i)
. (7)

In the above expression, new and old hardware resource array of ith bacterium solution is represented

as xNew
i and xLasti ; the step size and tumble vector is denoted by C(i) and ∆(i). A Trojan secured

DMR schedule (SDFGDMR) with distinct vendor assignment rule is generated based on each bacterium

position.

Each Trojan secured/security aware solution obtained is assessed on objectives of area and delay to

determine the cost of the solution. This process of assessing design solutions evolves through the proposed

exploration using chemotaxis to yield an optimal low cost security aware HLS solution based on Acons

and Lcons.

D. Designing a Trojan Secured DMR schedule for a design solution

In the proposed approach for yielding a low cost Trojan secured HLS solution, DMR logic with

specific vendor allocation rule is employed. In order to obtain a Trojan secured solution, its corresponding

DMR schedule first needs to be obtained. In proposed DMR logic, complete duplication is done for

all the operations of the CDFG. This is because, comparison of final output cannot be performed if

completely duplicated unit is not available. It is possible that any subsequent operation assigned to

hardware modules after the intermediate stage is the activation point of Trojan. Hence comparison of

final output from original and intermediate stage output from duplicate unit may not provide Trojan

detection for all cases. However, comparison of final outputs of original and duplicate comprehensively

covers all Trojan detection possibilities. Operations of original unit and duplicate unit in a DMR design

are concurrently scheduled using list scheduling based on the information of the datapath architecture

(N(R1), N(R2), ..N(Rd), ..N(RD)) in the candidate design solution (xi). Employing DMR scheduling

concept for Trojan security results in overheads in the form of hardware area and delay. This is because,

due to concurrent scheduling of operations in duplicate unit, additional latency is incurred. Further,

due to duplication of all operations, additional steering logic (mux and demux) and buffering (storage

hardware) is required. All these factors contribute to the area overhead. It therefore becomes mandatory

to generate a low cost Trojan secured solution that optimizes the delay and area overhead incurred due

to DMR scheduling. We resolve this by two factors: a) Exploring optimal vendor allocation (discussed

next paragraph); b) exploring optimal datapath resource combination.

14

The vendor allocation rule states that two distinct vendors are required for operation assignment in

DMR such that the similar operations v of original unit (UOG) and v′ of duplicate unit (UDP) are

assigned to distinct vendor [4]. This enables Trojan security as it is highly unlikely that both third

party vendors are simultaneously untrusted (i.e. having same Trojan embedded). Checking through error

detection block/comparator is not performed between operations scheduled in different clock cycles or

in the same cycle on different operator type. Rather checking or comparison is only performed at the

final/primary output of both original and duplicate units of DMR schedule. If a DMR schedule comprising

of original and duplicate units has multiple final outputs, then each of the final output of original and

duplicate units needs comparison. If a difference in magnitude of final output values between both values

are observed, then it indicates Trojan detected (as one of the vendors is certainly malicious), else, the

final similar output is passed to the next stage. However it is important to note that distinct vendor

assignment rule for Trojan security can be implemented in more than one ways, therefore, the most

optimal distinct vendor allocation to similar operations (in original and duplicate) is explored through

our proposed scheme. Therefore, how the two distinct vendors are allocated inside the DMR scheduling

dictates the final delay and area of the design. This is due to the fact same IP from two distinct vendors

can never have exactly same area and delay.

It is assumed in this paper that the IP characteristics from vendors (V1 and V2) are as follows: multiplier

and adder provided by vendor V1 has area = ‘2468au’ and ‘2034au’, delay = ‘10000ns’ and ‘265ns’,

while multiplier and adder provided by vendor V2 has area = ‘2464au’ and ‘2032au’, delay = ‘11000ns’

and ‘270ns’ respectively. The values of area and delay of modules assumed is with respect to 90nm

technology scale adopted from [30], [31], [32]. Therefore, only using distinct vendor assignment for

detection without investigating into the procedure of distinct vendor assignment in DMR may lead to

missing a low cost security aware HLS solution. Let us now discuss the two different ways (denoted by

‘Av’ = 1 and ‘Av’ = 0) how distinct vendor allocation can be made inside a DMR scheduling in order

to provide Trojan security. The binary value of ‘Av’ as 0 or 1 is inferred as follows:

1) Technique 1: Vendor allocation procedure (Type 0): ’Av’ = 0:

• In a control step of a unit, alternate vendor allocation to operations is made. (For instance, in Fig.

5, operation 3 and 6 are allocated alternatively to hardware units of vendor ‘V1’ and ‘V2’).

• Different vendors are allocated to similar operations of both (UOG) and (UDP).

2) Technique 2: Vendor allocation procedure (Type 1): ‘Av’ = 1:

• Strict assignment of vendor ‘V1’ for all operations of UOG and assignment to vendor ‘V2’ for all

operations of UDP . Fig. 6 shows an example of this vendor assignment.

• Similar operations of both UOG and UDP are allocated to different vendors.

15

In both above techniques, priority is provided to the operation of UOG at any time there is a conflict

of operation during scheduling between operation of UOG and UDP . For example, as shown in both

Fig. 5 and 6, there is a conflict between operations 1’, 2’ and 8 at 3rd control step during scheduling.

Since, in our approach operations of original is given priority over operations of duplicate hence opn 8

is scheduled first. One more multiplier resource is still free, hence opn 1’ is given priority over 2’ as in

the input CDFG file, 1’ comes before 2’ in sequence. We note that scheduling 2’ before 1’ would have

resulted in same latency. However since 3’ is only useful when 4’ is complete, (which is dependent on

1’) hence 3’ is scheduled after 1’ in fourth control step.

As shown in Fig. 5 and 6, comparison of final outputs from both UOG and UDP is performed through

an error detection block/comparator. This enables to indicate presence of malicious (Trojan) logic if

difference in magnitude is found or absence of any Trojan if no difference is observed.

As seen in Fig. 5 and 6, for a hardware resource array, xi = 2(+), 2(*), two potential security aware

DMR schedules exists for IIR filter benchmark on the basis of vendor allocation technique ‘Av’ = 0 and

1. In other words, for Ri
x = (2(*), 2(+), ‘Av’ =0), the delay is: 55, 810 nano-seconds (ns) and area is:

9880 area unit (au); while, for Ri
x = (2(*), 2(+), ‘Av’ =1), the delay is: 53, 810 ns and area is: 14812

au. Undoubtedly, a difference in magnitude is visible in the delay and area of the two possible security

aware DMR scheduling solutions both preserving the Trojan security rule. The solutions generated in

Fig. 5 and 6 are both security aware, but, one is better than the other in a specific objective.

=

Fig. 5: DMR schedule of IIR for Av=0; xi = 2(+), 2(*) assignment of two vendor types.

16

=

Fig. 6: IIR filter for Av = 1; xi = 2(+), 2(*) indicating each entire unit strictly assigned to same vendor

type (UOG to ‘V1’ and UDP to ‘V2’).

VI. EXPERIMENTAL RESULTS

A. Experimental Setup and Benchmarks

The experimental set up comprises of Intel Core-i5-3210M CPU with 3MB L3 cache memory, 4GB

DDR3 primary memory and 2.5GHz frequency. Java has been used for implementation of proposed

approach and [4]. As evident from experiments executed, the proposed approach is scalable and found

capable to handle problems of any size (for instance, benchmarks higher than 100 nodes were tested

which yielded low cost optimal solution with reasonable runtime of ≈ 91 s). For experimental results,

we designed a HLS tool comprising of BFOA driven exploration module. This is because most of the

available tools perform GA based exploration which incurs lot of runtime overhead. We note here that

since our HLS tool comprises of BFOA driven exploration module as an independent package, hence it

is possible for its integration with open source or commercial HLS tool (providing Trojan security and

area-delay optimization). Note: The module library considered is adopted from [30], [31], [32]. Further,

the values of area and delay of final HLS solution reported in this section are through model proposed

earlier.

B. Analysis of Quality of Results

The exploration parameters considered in our proposed approach during experimentation are the

following: number of chemotaxis steps (Nc), swarm size/population (p), terminating criterion (s) and step

size (C(i)). To evaluate the effectiveness of our multi objective optimization algorithm, the following

17

TABLE II: Results Of Proposed Approach

Note: Nc = 120, p = 3, terminating criteria s1 or s2, C(i)=2 ∆ = [-1, 1]
Benchmark [36], [37], [38] Lcons (ns) LDMR

T (ns) Acons (a.u) ADMR
T (a.u) Cost

IIR Butterworth (2nd order) 39845 23080 19744 19744 -0.150

MPEG Motion Vectors 88307 36240 49188 34900 -0.245

ARF 132810 89890 23747 16198 -0.235

FFT 99390 66270 30627 29152 -0.135

FIR (6-tap) 50000 45890 26000 23322 -0.034

MESA Interpolate 237600 99350 117972 60254 -0.292

IDCT 119160 77080 42858 31582 -0.224

WDF 115600 111695 16547 13064 -0.090

DCT 170810 88810 32836 16610 -0.218

GLRT 170000 109800 50000 24962 -0.230

goals are considered: (1) discover solutions close enough to the Pareto front(P ∗) and (2) explore solutions

as diverse as possible in the non-dominated set (Q). The GD metric measures convergence of obtained

solutions. Further, metrics which quantify the diversity among obtained non-dominated solutions are

spacing (S) and spreading (∆). In addition, Wm provides a combined qualitative measure of both closeness

and diversity of the solutions (lower Wm is better) [39].

Table II indicates that for all benchmarks, the proposed approach is able to attain solutions which lie

within the user provided constraints of area and delay (while simultaneously minimizing the cost in Eqn.

3). The possibility of false negative outcome which indicates an existing Trojan being undetected does

not arise. This is because the allocation step meets the sufficient condition of detection by allocation to

hardware from distinct vendors for every similar operation of original and duplicate unit. Moreover it

has been assumed that the designed security aware DMR schedule solution is only susceptible to those

Trojans which have potential of upsetting the computational output. This indicates that the security aware

solution is assumed free of any other faults affecting final output. Therefore false positive outcome does

not exist for proposed approach.

Table III highlights the impact of population size p on the runtime of proposed approach. It indicates

that for all benchmarks with the growth in population size, the runtime of the proposed approach to find

the non-dominated solutions escalates due to increase in computational complexity per iteration.

Additionally, Table IV, V and VI present the results of proposed approach on quality metrics for

various population sizes. As seen, for IIR Butterworth, MPEG MV, ARF, WDF, IDCT and FFT, the

GD and S for p = 3, 5 and 7 are same, however, the ∆ at p = 3 is better compared to p = 5 and 7.

This indicates that with p =3, the non-dominated solutions found through proposed approach not only

18

TABLE III: Comparison of Exploration Time For Finding a Low Cost Trojan Secured Datapath Solution

with respect to Bacterium size p for Proposed Approach

Benchmark [36], [37], [38]
Bacterium

Size

Convergence

Time

(ms)

Exploration

Time

(ms)

IIR Butterworth (2nd order)

3 304 688

5 498 719

7 837 1609

MPEG Motion Vectors

3 5018 9175

5 8917 10003

7 10981 16889

ARF

3 235 594

5 675 828

7 892 1844

WDF

3 1809 2453

5 3568 5175

7 5687 7344

IDCT

3 3112 8679

5 11110 14719

7 15628 20680

FFT

3 5261 7306

5 7589 9160

7 8978 12025

MESA Interpolate

3 21128 32522

5 34560 57550

7 56318 91818

FIR (6-tap)

3 1672 2509

5 2491 3611

7 1913 5335

DCT

3 3586 7375

5 5234 8670

7 7819 10235

GLRT

3 5634 8045

5 8754 12415

7 10327 17933

lies on true pareto front with better S but also nearly reaches (or reaches) the extremes of true pareto

front curve. Fig. 7 shows the pareto optimal set of non dominated solutions obtained through proposed

approach which is found to be exactly converging on true pareto front curve (thereby indicating that

generational distance (GD) = 0). More explicitly as shown in Table IV, V and VI, GD has been found to

be zero, which indicates that solution found by the proposed approach accurately converges on the true

pareto front.

Therefore, the Wm value (combination of GD and ∆) is better for p = 3 than p = 5 or 7 for the

aforesaid benchmarks. Hence the Wm value for p = 3 is underlined. On the other hand for large size

19

0

20000

40000

60000

80000

100000

120000

22062 26128

Latency (ns)

Area (# of transistors)

FFT

(a)

0

20000

40000

60000

80000

100000

120000

22062 22062 28592

Latency (ns)

Area (# of transistors)

IDCT

(b)

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

Latency (ns)

Area (# of transistors)

MPEG Motion Vector

(c)

0

50000

100000

150000

200000

250000

Latency(ns)

Area (# of transistors)

MESA Interpolate

(d)

Fig. 7: Obtained Pareto optimal set of non dominated solutions through proposed approach

benchmarks such as MESA interpolation, the GD is found to be same for all population sizes, p =3, 5

or 7. However, the S and ∆ is found to be lower for p = 7 than for p = 3 or 5. This indicates that at p

= 7 the Wm has lowest values compared to p = 3 and 5. Since a lower value is considered better, hence

a lower value of Wm at p = 7 is an indication of the fact that the quality of final solution found by the

proposed approach at this bacterium population is better than solutions found at p = 3 or 5.

C. Validation of the Methodology

The proposed DSE framework generates solution for Trojan secured DMR datapath. A DMR datapath

is generated for every explored solution (before fitness evaluation) which needs validation in its ability to

detect Trojan present in the 3PIP. In case of HLS, the 3PIPs are the IPs/modules present in the HLS module

library, which may have been imported from an outside (third party) vendor and may contain malicious

logic inserted by a rogue in the third party design house. Typically, the RTL files of the modules/IPs

of the library are provided by the HLS Company which it may have imported from third party vendors

20

TABLE IV: Quality Of Solution Explored Through Proposed Approach For p= 3.

Benchmark [36], [37], [38] GD
Spacing

(S)

Spread

(∆)

Weighted

Metric (Wm)

IIR Butterworth (2nd order) 0.00 0.00 0.00 0.00

MPEG Motion Vectors 0.00 0.05 0.88 0.44

ARF 0.00 0.04 0.28 0.14

WDF 0.00 0.00 0.00 0.00

IDCT 0.00 0.11 0.84 0.42

FFT 0.00 0.00 0.00 0.00

MESA Interpolate 0.00 0.08 0.93 0.46

FIR (6-tap) 0.00 0.00 0.00 0.00

DCT 0.00 0.09 0.84 0.42

GLRT 0.00 0.03 0.74 0.40

TABLE V: Quality Of Solution Explored Through Proposed Approach For p= 5

Benchmark [36], [37], [38] GD
Spacing

(S)

Spread

(∆)

Weighted

Metric (Wm)

IIR Butterworth (2nd order) 0.00 0.00 0.66 0.33

MPEG Motion Vectors 0.00 0.00 0.81 0.40

ARF 0.00 0.12 0.37 0.18

WDF 0.00 0.00 0.00 0.00

IDCT 0.00 0.10 0.87 0.43

FFT 0.00 0.00 0.66 0.33

MESA Interpolate 0.00 0.05 0.98 0.49

FIR (6-tap) 0.00 0.00 0.00 0.00

DCT 0.00 0.14 0.96 0.42

GLRT 0.00 0.05 0.34 0.42

as RTL files that may contain malicious/Trojan logic. The proposed approach deals with Trojan in the

modules/IP that affects the computational output value. However the key is that Trojan only becomes

visible at runtime (after external triggering by an adversary), thereby remaining completely obscured

before that, thus impossible to be detected during RTL simulation. For the checking the detection ability

of the solution generated, the presence of Trojan in module of HLS library was emulated by inserting

malicious logic in the module (such as adder/ subtractor etc) of the HLS library. Trojan logic is such that

only on external activation, functional alteration of the module occurs. Large set of random test sequences

for the inputs were fed into the DMR datapath to identify the status (Trojan Detected/ undetected). Results

indicate that in the explored solution whenever a Trojan was inserted (in any module provided a vendor);

21

TABLE VI: Quality Of Solution Explored Through Proposed Approach For p= 7

Benchmark [36], [37], [38] GD
Spacing

(S)

Spread

(∆)

Weighted

Metric (Wm)

IIR Butterworth (2nd order) 0.00 0.00 0.66 0.33

MPEG Motion Vectors 0.00 0.05 0.82 0.41

ARF 0.00 0.03 0.36 0.18

WDF 0.00 0.00 0.00 0.00

IDCT 0.00 0.17 1.04 0.52

FFT 0.00 0.00 0.66 0.33

MESA Interpolate 0.00 0.03 0.86 0.43

FIR (6-tap) 0.00 0.00 0.00 0.00

DCT 0.00 0.14 0.96 0.48

GLRT 0.00 0.03 0.86 0.52

TABLE VII: Comparison of Proposed DSE Approach with [4].

Note: W1 and W2 = 0.5

Benchmark [36], [37], [38]
Solution

[4]

Proposed

Solution

Latency

[4] (ns)

Latency

(proposed) (ns)

Exploration

Time

(in ms)

[4]

Proposed

Exploration

Time

(in ms)

Cost

of

final

solution

[4]

Cost

of

final

solution

(proposed)

IIR Butterworth (2nd order) 2(+), 3(*), 1 2(+), 5(*), 0 44540 23080 15 688 -0.04 -0.15

FIR (6-tap) 5(+), 5(*), 1 6(+), 4(*), 0 45350 45890 108 2509 0.00 -0.03

MPEG Motion Vectors 3(+), 8(*), 1 2(+), 10(*), 0 45890 36240 15 9175 -0.22 -0.24

ARF 5(+), 3(*), 1 2(+), 4(*), 0 121540 152540 31 594 -0.06 -0.23

DCT 5(+), 3(*), 1 4(+), 2(*), 0 121810 88810 32 7375 -0.12 -0.21

FFT 5(+), 3(*), 1 8(+), 4(*), 0 89080 66270 31 7306 -0.07 -0.13

MESA Interpolate 10(+), 17(*), 1 3(+), 16(*), 0 74330 99350 109 32522 -0.29 -0.29

IDCT 5(+), 3(*), 1 6(+), 4(*), 0 98890 77080 31 8679 -0.09 -0.22

WDF 3(+), 3(*), 1 3(+), 2(*), 0 100970 111695 32 2453 -0.01 -0.09

GLRT 4(+), 10(*), 1 4(+), 6(*), 0 78080 109800 110 8045 -0.22 -0.23

difference in output was noticed from original and duplicate unit, indicating 100 % Trojan detection.

Hence full coverage of Trojan detection was obtained through the proposed DMR allocation rules for

both ‘Av’ = 0, ’Av’ = 1.

D. Comparison with Related Prior Research

As seen from Table VII, the proposed approach generates substantially better quality (lower cost)

results in comparison to [4]. This is because, in [4], there is no optimization performed during deter-

mination of security aware HLS solution (based on user area-delay constraint). Further, in [4] there is

no supplementary option for exploration of an efficient hardware allocation procedure of vendors ‘(Av)’.

Furthermore, the latency of the final solution obtained through the proposed approach is lesser in most of

22

TABLE VIII: Comparison of Proposed DSE approach with baseline approach

Benchmark [36], [37], [38]

Area

baseline

approach

Area

proposed

approach

Latency

baseline

approach (ns)

Latency

proposed

approach

Area overhead

of proposed

approach

compared to

baseline

(a.u)

Latency overhead

of proposed

approach

compared to

baseline

(ns)

Cost

of

final

solution

(baseline)

Cost

of

final

solution

(proposed)

IIR Butterworth (2nd order) 11472 19744 40795 23080 8272 0 -0.13 -0.15

FIR (6-tap) 22510 23322 41590 45890 812 4300 -0.05 -0.03

MPEG Motion Vectors 25846 34900 41855 36240 9054 0 -0.28 -0.24

ARF 13506 16198 120530 89890 2692 0 -0.19 -0.23

DCT 17574 16610 120530 153540 0 33010 -0.26 -0.21

FFT 17574 29152 90530 66270 11578 0 -0.15 -0.13

MESA Interpolate 62296 60254 81590 99350 0 17760 -0.31 -0.29

IDCT 17574 31582 100795 77080 14008 0 -0.29 -0.22

WDF 11038 13064 102650 111695 2026 9045 -0.17 -0.09

GLRT 32816 24962 91060 109800 0 18740 -0.22 -0.23

the cases compared to [4] because of datapath and vendor allocation optimization, except in case of WDF

and MESA where the final solution in [4] has been scheduled with higher resource count. However, the

runtime consumed by [4] is lower than proposed as we perform multi-dimensional (datapath resources

and vendor allocation) exploration within HLS to find optimal final solution, which [4] is unable to due

to lack of multi-dimensional optimization feature. Further, Table VIII shows the comparative results of

the proposed approach with the baseline approach, in terms of cost, hardware area, delay and respective

overheads. The proposed approach generates solution with minimal overhead (with no overhead in some

cases also) besides being Trojan secured (due to allocation of two distinct vendor in the DMR design).

However, the baseline DMR occupies lower area as it does not impose any security allocation rules and

uses only one type of vendor (thereby incapable of providing Trojan detection/security) unlike proposed

approach.

VII. CONCLUSIONS AND FUTURE DIRECTIONS OF RESEARCH

This paper presented a novel low cost Trojan security aware HLS methodology. The proposed DSE

approach provides a significant reduction in the cost of security aware HLS solution in comparison to

similar prior work [4]. Our future research aims to extend the proposed work by developing methodology

that can explore optimized Trojan secured solution for multi-loop based applications. Several intricacies

requires to be addressed such as optimization of high level transformation along with optimization of

DMR structure.

23

ACKNOWLEDGMENTS

This archival journal paper is based on our preliminary conference presentation of this research [40].

REFERENCES

[1] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy Hardware: Identifying and Classifying Hardware

Trojans,” Computer, vol. 43(10), pp. 39–46, 2010.

[2] M. Banga and M. Hsiao, “A Novel Sustained Vector Technique for the Detection of Hardware Trojans,” in Proceedings

of the 22nd VLSI Design Conference, 2009, pp. 327–332.

[3] X. Zhang and M. Tehranipoor, “Case Study: Detecting Hardware Trojans in third-party Digital IP Cores,” in Proceedings

of the IEEE Symposium on Hardware-Oriented Security and Trust (HOST), 2011, pp. 67–70.

[4] J. Rajendran, H. Zhang, O. Sinanoglu, and R. Karri, “High-level synthesis for security and trust,” in Proceedings of the

IEEE 19th International On-Line Testing Symposium (IOLTS), 2013, pp. 232–233.

[5] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay fingerprint,” in Proceedings of the IEEE Symposium

on Hardware-Oriented Security and Trust, 2008, pp. 51–57.

[6] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan Detection using IC Fingerprinting,” in Proceedings

of the IEEE Symposium on Security and Privacy, 2007, pp. 296–310.

[7] X. Cui, K. Ma, L. Shi, and K. Wu, “High-level synthesis for run-time hardware Trojan detection and recovery,” in

Proceedings of the 51st ACM/IEEE on Design Automation Conference (DAC), 2014, pp. 1–6.

[8] X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic, “Hardware Trojan Detection and Isolation Using Current

Integration and Localized Current Analysis,” in Proceedings of the IEEE International Symposium on Defect and Fault

Tolerance of VLSI Systems (DFTVS), 2008, pp. 87–95.

[9] S. Narasimhan, D. Du, R. Chakraborty, S. Paul, F. Wolff, C. Papachristou, K. Roy, and S. Bhunia, “Multiple-parameter

side-channel analysis: A non-invasive hardware Trojan detection approach,” in Proceedings of the IEEE Symposium on

HOST, 2010, pp. 13–18.

[10] S. Saha, R. S. Chakraborty, S. S. Nuthakki, Anshul, and D. Mukhopadhyay, Cryptographic Hardware and Embedded

Systems – CHES 2015: 17th International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2015, ch. Improved Test Pattern Generation for Hardware Trojan Detection Using

Genetic Algorithm and Boolean Satisfiability, pp. 577–596.

[11] S. S. Ali, R. S. Chakraborty, D. Mukhopadhyay, and S. Bhunia, “Multi-level attacks: An emerging security concern for

cryptographic hardware,” in Design, Automation Test in Europe, March 2011, pp. 1–4.

[12] L. Lin, W. Burleson, and C. Paar, “MOLES: Malicious off-chip leakage enabled by side-channels,” in IEEE/ACM

International Conference on Computer-Aided Design - Digest of Technical Papers, Nov 2009, pp. 117–122.

[13] B. Schafer and K. Wakabayashi, “Design Space Exploration Acceleration Through Operation Clustering,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29(1), pp. 153–157, Jan 2010.

[14] S. Xydis, K. Pekmestzi, D. Soudris, and G. Economakos, “Compiler-in-the-loop Exploration During Datapath Synthesis

for Higher Quality Delay-area Trade-offs,” ACM Trans. Des. Autom. Electron. Syst., vol. 18(1), pp. 11:1–11:35, 2013.

[15] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau, “Using global code motions to improve the quality of results for

high-level synthesis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23(2), pp.

302–312, 2004.

24

[16] S. Xydis, G. Palermo, V. Zaccaria, and C. Silvano, “SPIRIT: Spectral-Aware Pareto Iterative Refinement Optimization for

Supervised High-Level Synthesis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

34(1), pp. 155–159, 2015.

[17] H.-Y. Liu and L. Carloni, “On learning-based methods for design-space exploration with High-Level Synthesis,” in

Proceedings of the 50th ACM/IEEE DAC, 2013, pp. 1–7.

[18] B. Schafer, “Hierarchical High-Level Synthesis Design Space Exploration with Incremental Exploration Support,” IEEE

Embedded Systems Letters, vol. 7(2), pp. 51–54, 2015.

[19] V. Krishnan and S. Katkoori, “A Genetic Algorithm for The Design Space Exploration of Datapaths During High-Level

Synthesis,” IEEE Transactions on Evolutionary Computation, vol. 10(3), pp. 213–229, 2006.

[20] S. P. Mohanty, N. Ranganathan, and V. Krishna, “Datapath Scheduling Using Dynamic Frequency Clocking,” in Proceedings

of the IEEE Computer Society Annual Symposium on VLSI, 2002, pp. 58–63.

[21] P. Coussy, D. Gajski, M. Meredith, and A. Takach, “An Introduction to High-Level Synthesis,” IEEE Design Test of

Computers, vol. 26(4), pp. 8–17, 2009.

[22] S. P. Mohanty, Nanoelectronic Mixed-Signal System Design. McGraw-Hill Education, 2015.

[23] S. P. Mohanty, N. Ranganathan, and S. K. Chappidi, “Peak Power Minimization Through Datapath Scheduling,” in

Proceedings of the IEEE Computer Society Annual Symposium on VLSI, 2003, pp. 121–126.

[24] S. Bhadauria and A. Sengupta, “Adaptive bacterial foraging driven datapath optimization: Exploring power-performance

tradeoff in high level synthesis,” Applied Mathematics and Computation, vol. 269, pp. 265 – 278, 2015.

[25] G. D. Micheli, Synthesis and Optimization of Digital Circuits, 1st ed. McGraw-Hill Higher Education, 1994.

[26] F. Ferrandi, P. L. Lanzi, D. Loiacono, C. Pilato, and D. Sciuto, “A multi-objective genetic algorithm for design space

exploration in high-level synthesis,” in Proceedings on IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

IEEE, 2008, pp. 417–422.

[27] Z. Zeng, R. Sedaghat, and A. Sengupta, “A framework for fast design space exploration using fuzzy search for VLSI

computing architectures,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), 2010,

pp. 3176–3179.

[28] D. S. H. Ram, M. C. Bhuvaneswari, and S. S. Prabhu, “A Novel Framework for Applying Multiobjective GA and PSO

Based Approaches for Simultaneous Area, Delay, and Power Optimization in High Level Synthesis of Datapaths,” VLSI

Des., vol. 2012, 2012.

[29] J. Gallagher, S. Vigraham, and G. Kramer, “A family of compact genetic algorithms for intrinsic evolvable hardware,”

IEEE Transactions on Evolutionary Computation, vol. 8(2), pp. 111–126, 2004.

[30] N. Reynders and W. Dehaene, “A 190mV supply, 10MHz, 90nm CMOS, pipelined sub-threshold adder using variation-

resilient circuit techniques,” in Proceedings of the IEEE Asian Solid State Circuits Conference (A-SSCC), 2011, pp. 113–116.

[31] J. Crop, S. Fairbanks, R. Pawlowski, and P. Chiang, “150mV sub-threshold Asynchronous multiplier for low-power sensor

applications,” in Proceedings of the International Symposium on VLSI Design Automation and Test (VLSI-DAT), 2010, pp.

254–257.

[32] A. K. Kumar, D. Somasundareswari, V. Duraisamy, and M. Pradeepkumar, “Low power multiplier design using

complementary pass-transistor asynchronous adiabatic logic,” International Journal on Computer Science and Engineering,

vol. 2(7), pp. 2291–2297, 2010.

[33] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-level Synthesis: Introduction to Chip and System Design.

USA: Kluwer Academic Publishers, 1992.

25

[34] K. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE Control Systems, vol. 22(3),

pp. 52–67, 2002.

[35] Y. Liu and K. Passino, “Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent

behaviors,” Journal of Optimization Theory and Applications, vol. 115(3), pp. 603–628, 2002.

[36] S. P. Mohanty, N. Ranganathan, E. Kougianos, and P. Patra, Low-power high-level synthesis for nanoscale CMOS circuits.

Springer Science & Business Media, 2008.

[37] A. Sengupta, R. Sedaghat, and Z. Zeng, “A high level synthesis design flow with a novel approach for efficient design

space exploration in case of multi-parametric optimization objective,” Microelectronics Reliability, vol. 50(3), pp. 424 –

437, 2010.

[38] [Online]. Available: http://express.ece.ucsb.edu/benchmark/

[39] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. USA: John Wiley & Sons, Inc., 2001.

[40] A. Sengupta and S. Bhadauria, “Untrusted Third Party Digital IP Cores: Power-Delay Trade-off Driven Exploration of

Hardware Trojan Secured Datapath During High Level Synthesis,” in Proceedings of the 25th Great Lakes Symposium on

VLSI, 2015, pp. 167–172.

