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Abstract—Since its inception, DNA computing has advanced to
offer an extremely powerful, energy-efficient emerging technol-
ogy for solving hard computational problems with its inherent
massive parallelism and extremely high data density. This would
be much more powerful and general purpose when combined
with other existing well known algorithmic solutions that exist for
conventional computing architectures using a suitable ALU. Thus,
a specifically designed DNA ALU that can address operations
suitable for both domains can mitigate the gap between these
two. A complete ALU (Arithmetic and Logic Unit) must be
able to perform all possible logic operations including NOT, OR,
AND, XOR, NOR, NAND and XNOR; compare, shift etc., integer
and floating point arithmetic operations (Addition, Subtraction,
Multiplication and Division). In this paper, design of a complete
ALU has been proposed using Sticker-based DNA Model with
experimental feasibility analysis. Novelties of this work may be in
manifold. First, the integer arithmetic operations performed here
are 2’s complement arithmetic, and the floating point operations
follow IEEE 754 floating point format, resembling closely to a
conventional ALU. Also, the output of each operation can be
reused for any next operation. So any algorithm or program
logic that users can think of can be implemented directly on
the DNA computer without any modification. Second, once
the basic operations of sticker model can be automated, the
implementations proposed in this work become highly suitable
to design a fully automated complete ALU. Third, proposed
approaches are easy to implement. Finally, these approaches can
work on sufficiently large binary numbers.

Index Terms—DNA Computing, DNA ALU, Sticker Model.

I. INTRODUCTION

IN recent years, computing using DNA molecules, namely,
DNA computing, has been proved to be a powerful emerg-

ing technology to solve hard computational problem. In 1994,
Adleman [1] has shown the use of this powerful tool in solving
Travelling Salesman problem, a difficult combinatorial search
problem. In 1995, Lipton [2], in a very similar way, solved
the SAT problem, by representing all possible combination of
values in a graph. Lipton’s DNA algorithm for solving the
SAT problem was a linear one, which is impossible for a
conventional computer at this stage. In the same year, Boneh
et.al. [3] broke DES, a famous encryption method, using DNA.
In 1997, Ouyang et. al. [4] solved maximal clique problem
given a six vertex graph. A huge achievement was made by
Adleman and others in 2002, when they solved 20-variable

3-SAT problem by performing an exhaustive search over 1
million possibilities [5]. Along with these experiments, several
other NP-complete problems, such as Graph Coloring [6], Bin
Packing [7] etc. have been solved using DNA computing.
All these experiments have shown that, inherently massive
parallelism and high data storage density have made DNA
computing a powerful technique to solve such problems over
conventional computer. Though these works used massive
amounts of data to be encoded on huge number of distinct
DNA strands and each bio-molecular operation applied on
a DNA solution affects all strands simultaneously leading to
possibility of massive parallelism, but the proposed work in
this paper looks at a different problem other than searching
over a large search space. In fact, the problem targeted in the
proposed work is to perform arithmetic and logic operations so
that output of one operation can be used in later operations and
this requires two numbers to be encoded by two different DNA
strands in two separate test tubes. Hence power of massive
parallelism is not visible in this work, as the target of this
work is not to utilize existing power of DNA computer to
solve another computationally hard problem. Rather it is to
increase the power of the computing technique by showing
that DNA computer can also be used effectively in arithmetic
and logic operations and hence solving general problems that
do not require search over large search spaces.

A. Basics of DNA

The DNA (Deoxyribonucleic acid), naturally found in living
cells, is composed of four bases, namely Adenine(A), Gua-
nine(G), Thymine(T) and Cytosine(C). Each base is attached
to its neighbour base in the sequence via phosphate bonding.
Base, sugar and the phosphate are together called a nucleotide.
Two DNA sequences bond with each other via hydrogen bond-
ing between each Watson-Crick complementary base pairs (A
with T, and C with G), forming DNA double helix. Each DNA
strand has two ends : 5’-end and 3’-end, that determine the
polarity of the DNA strand. During the formation of DNA
double strand, two complementary single strands bond with
each other in anti-parallel fashion.
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B. Recent Trends and Challenges

In 2002, a programmable molecular computing machine
composed of enzymes and DNA molecules, have been de-
veloped by a group of researchers from Weizmann Institute
of Science, Israel. A year later, the team advanced one step
further. In the new device, the single DNA molecule, that
provides the computer with the input data also provides all
the necessary fuel [8]. In 2004, Benenson et. al. [9] described
an autonomous bio-molecular computer that logically analyses
the levels of messenger RNA species, and in response produces
a molecule capable of affecting levels of gene expression.
This computer, in theory, would be capable of diagnosing
cancer, and producing anti-cancer drug. In 2013, Goldman
et. al. [10] encoded computer files totaling 739 kB of hard
disk storage and with an estimated Shannon information of
5.2 × 106 bits into a DNA code, synthesized, sequenced and
then reconstructed the original data with 100% accuracy. In
the same year, bio-engineers at Stanford University created
the first biological transistors, named transcriptor, using DNA
and RNA [11].

C. Necessity of a DNA ALU

To make DNA computing applicable on wider range of
problems, simple logic and arithmetic operations available on
a conventional computers, are necessary to be implemented.
These operations include logic operations including NOT, OR,
AND, XOR, NOR, NAND, and XNOR; compare, shift etc.,
integer and floating point arithmetic operations (Addition,
Subtraction, Multiplication and Division). Proper and efficient
implementations of these operations will allow the users to
implement their algorithms and program logic directly on a
DNA computer without any modification, thus making the
applicability of the DNA computing technique in a much wider
range.

D. Organization of the paper

Rest of the paper is organized as follows. In section II,
advantages of the proposed work are described with an expla-
nation over how the proposed work fits into the automation
of a future DNA computer. Section III reports the works that
have been done in the field of arithmetic and logic operation
implementations using DNA molecules, and the problems
they pose. Section IV describes the background information
necessary to understand the proposed work viz. the Sticker-
based model, biomolecular operations available on the sticker-
based DNA model, and their functional formulation. Seven
primary logic operations viz. AND, OR, XOR, NAND, NOR,
XNOR and NOT, are described in section V with an example
demonstrating step-by-step execution of AND operation. Sec-
tion VI describes the possible integer arithmetic operations
viz. comparator, left and right shifters (logical, arithmetic
and circular), addition / subtraction, multiplication, and di-
vision. Representation of IEEE 754 floating point format and
arithmetic operations possible on the floating point numbers
viz. addition / subtraction, multiplication, and division are
presented in section VII. Following section VIII addresses the

possibility of the implementations of the proposed work, com-
plexity analysis, and implementation issues. Finally, section IX
concludes the paper with possible future directions.

II. NOVEL CONTRIBUTIONS OF THIS PAPER

DNA Computing is already proven powerful for computa-
tionally “hard” problems. Inherent parallelism nature of bio-
molecular operations gives this power to DNA computing.
This would be much more powerful and general purpose when
combined with other existing well known algorithmic solutions
that exist for conventional computing architectures using a
suitable ALU. Thus, a specifically designed DNA ALU that
can address operations suitable for both domains can mitigate
the gap between these two.

The novelties of the proposed method as well as the logic
and arithmetic operations for this DNA ALU proposed in this
work may be summarized as follows.
• Ease of number representation: Implementations are

based on sticker based DNA model, and hence can
explore the power of the binary number representation.

• Ease of implementations: Operations applicable on
sticker-based DNA model are simple to implement, ex-
cept the clear operation. Proposed operations avoid the
clear operation of sticker model, and are using the simple
operations, and hence physical implementation is easier.

• Input and output of the operations are of similar
structure: The input operands are being taken as
separate strands in separate test tubes, and output is
also provided in separate test tube. Hence, the output
of one operation can be used ready-made for any next
operation, without any modification. Also, the uniform
representation can be used, i.e., the way an user needs
to represent the input, the output can be decoded in the
user-readable format in the similar manner without any
modification.

• Possibility of automation of DNA computer: If the
basic operations of sticker model, i.e. combine, separate
and set can be automated, the proposed implementations
are highly suitable for the design of a fully automated
complete ALU.

• Design of a complete DNA ALU: All logic oper-
ations, integer, and floating point arithmetic operations
have been implemented. Also all representations follow
conventional ideology, such as floating point operations
follow IEEE 754 floating point format and so on. So any
algorithm or program logic that users can perform can be
implemented directly on the DNA computer without any
modification.

III. RELATED PRIOR RESEARCH

The earliest attempt to perform arithmetic operations (ad-
dition of two binary numbers) using DNA was made by
Guarneiri et.al. [12], but the output strands are vastly different
from the input ones, and hence, cannot be reused for any next
operation.

Later, Gupta et. al. [13] performed logic and arithmetic
operations using fixed bit encoding scheme, but requires
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manual encoding and addition of intermediate results one by
one during processing of arithmetic operations. This is time
consuming task, and cannot be used in an automated DNA
computer.

Santis et. al. [14] proposed floating-point arithmetic and
logic operations using DNA strands, but it requires long DNA
strand to represent a single bit, and representation of single
binary number requires multiple test tubes. Bits toward LSB
in long numbers requires much longer strands to represent.

Several other approaches for implementing arithmetic and
logic operations have been proposed, such as Ogihara-Ray
method of boolean circuit simulation [15], Amos-Dunne
method [16], Barua-Misra method [17], Qiu-Lu method [18]
etc.. But none of them are based on sticker based DNA model.

Ignatova et. al. [19] have considered many sticker algo-
rithms, including some simple arithmetic. Guo et. al. [20]
proposed an implementation of arithmetic operations using
sticker-based DNA model, but they did not propose logic
operations and floating point operations. The two numbers
under operation, along with the carry are being represented
on same memory strand, and output of operation are found as
a substring of the output strand. So, the output of one operation
can not be reused for next one, until and unless, the remaining
parts of the output strand is cleared, and next operand is set
at that position. Also, they have used clear operation, but as
Roweis et. al. [21] have specified in the base paper of Sticker-
based DNA Model , “In terms of physical implementation
prospects, clear seems to be the most problematic of our
operations”.

Arnold [22], [23] proposed a more efficient sticker addition
algorithm, known as tube-encoded carry; however, this oper-
ates in a similar context of [19] and [20] where both operands
are represented on the same strand. The major advantage of
[22] is that carries are not recorded on DNA strands, rather
represented by the tube the strands are placed in. This algo-
rithm is adapted here to make an efficient addition/subtraction
algorithm in the different context where two numbers on two
distinct strands of DNA produce a sum on a third strand that
may be reused in later operations.

Therefore, it remains a challenging task to have all the
logic and arithmetic operations implemented with same input
and output DNA format, practically possible and easy to
implement.

IV. BACKGROUND OF DNA COMPUTER

A. Sticker-based Model

A binary number can be represented in the DNA sticker
model by employing two groups of single-stranded DNA
molecules. One is memory strand, which is a long DNA
molecule, subdivided into several non-overlapping region.
The other group is a set of stickers, which are short DNA
molecules, each having length equal to the length of each
region of memory strand. Each sticker is complementary to
one and only one of the non-overlapping regions. Each non-
overlapping region represents a bit. If a sticker is annealed to
its matching region on the memory strand, that region then
represents 1 bit, otherwise a 0 bit.

For example, to represent a 8-bit number, if we take the
memory strand and the corresponding stickers as in Figure 1,
where each sticker is complementary to each of the 8 non-
overlapping regions respectively. As an example, the numbers
10101110 and 11011001 can be represented using the above
sticker model as in Figure 2.

Stickers

CGAT GTAA CCGGCAGA GTGA TTCG AAAG TGTA

GCTA CATT GGCC GTCT CACT AAGC TTTC ACAT

Fig. 1: An example memory strand with corresponding stickers

CGAT GTAA CCGG CAGA GTGA TTCG AAAG TGTA

GCTA CATT

GGCC

GTCT CACT

AAGC TTTC

ACAT

CGAT GTAA CCGG CAGA GTGA TTCG AAAG TGTA

CACTGCTA

 1        0        1        0        1        1        1        0

 1        1        0        1        1        0        0        1

Fig. 2: An example memory strand with corresponding stickers

Any set of bit strings can be represented by identical
memory strands, each memory strand having stickers annealed
only at the required 1 bit positions.

B. Operations on Sticker based DNA

The operations available on sticker-based DNA strands are
as follows.

1) Combine : In this operation, two sets of bit strings
in two test tubes in combined in one test tube. This
corresponds to obtaining a different tube containing
all the memory complexes from both input tubes. The
combine operation is not the same as a conventional
assignment statement: combine moves DNA strands
to a different physical location whereas conventional
assignment makes a copy.

2) Separate : In this operation, a set of strings is separated
into two sets based on a particular bit. This creates two
different tubes, where one tube contains strings having
that particular bit on, and the other tube containing the
strings having the bit off.

3) Set : In this operation, a particular bit in every string
of the DNA solution is set (turned on). The sticker

Combine
ACAT GCAGTTGC . . .

. . .TGTA

ACAT GCAGTTGC . . .
. . .

T    out

CGTC

ACAT GCAGTTGC . . .
. . .TGTA AACG

T   1

ACAT GCAGTTGC . . .
. . .AACG

T   2

CGTC

AACG

AACG

Fig. 3: Combine operation
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ACAT GCAGTTGC . . .
. . .TGTA AACG

ACAT GCAGTTGC . . .
. . .AACG

ACAT GCAGTTGC . . .
. . .TGTA AACG

ACAT GCAGTTGC . . .
. . .AACG

T    on

T      off

T   in

Separate
on bit 1

Fig. 4: Separate operation

ACAT GCAGTTGC . . .
. . .TGTA AACG

ACAT GCAGTTGC . . .
. . .AACG

T   in

Set
the last bit

ACAT GCAGTTGC . . .
. . .TGTA AACG

ACAT GCAGTTGC . . .
. . .AACG

T   out

CGTC

CGTC

Fig. 5: Set operation

for that bit is annealed to the appropriate region on
every complex in the set’s tube. Setting is performed
by annealing the particular sticker to the bit that needs
to be set in the memory strand. Setting multiple bits
can be done in parallel by pouring all the stickers
corresponding to the targeted bits, and annealing. All
the poured stickers will anneal with the memory strand
at the same time. Excess stickers need to be filtered out
of the tube before proceeding to the next operation.

4) Clear : In this operation, a particular bit in every string
of a DNA solution, is removed by removing the sticker
(if present) for that bit from every memory complexes
in the test tube. Implementation of this operation is
difficult, and hence avoided in the proposed algorithms.

5) Discard : In this operation, contents of a non-empty test
tube is discarded and the test tube becomes empty after
this operation.

C. Functional formulation of the operations available on
Sticker-based DNA model

For the ease of representation, functional formulations of
the operations described in the previous subsection IV-B will
be used as follows.

1) Combine(Tdest;T
1
src, T

2
src, · · · , Tn

src) - Pour the con-
tents of Tsrcs in Tdest. After this operation, Tdest will

Clear
the bit 2

ACAT GCAGTTGC . . .
. . .TGTA

ACAT GCAGTTGC . . .
. . .

T    out

CGTC

ACAT GCAGTTGC . . .
. . .TGTA AACG

ACAT GCAGTTGC . . .
. . .AACG

T   in

CGTC

Fig. 6: Clear operation

contain the union of the contents of Tdest and all the
Tsrcs, and Tsrcs will become empty.

2) Separate(T1, i, bon, boff ) - Separate the contents of T1

based on the value of ith bit in two test tubes bon,
containing DNA strands having ith bit on, and boff ,
containing DNA strands having ith bit off.

3) Set(T1, i) - Set the ith bit bi of all DNA strand in test
tube T1.

4) Discard(T ) - Discard the contents of test tube T .

V. PROPOSED APPROACHES FOR LOGIC OPERATIONS
USING DNA

All possible logic operations, viz., AND, OR, XOR,
NAND, NOR, XNOR, NOT are being proposed in this section.
But before describing the operations to be performed in the
proposed ALU, a helper operation Substring needs to be
discussed, that will help in making backup of input test tubes
and will allow the input test tubes to stay intact, so that
they can be used in other operations without recreating the
numbers.

A. Substring

Substring operation takes a n-bit input string in a test tube
Tin, a start index start and an end index end, such that 0 ≤
start ≤ end < n. The operation will output the required
DNA strand in test tube Tout that will represent the substring
of the input string from start index to end index, taking end
index inclusive. This operation itself may not be used as a
part of main ALU operations, but will be proved helpful in
several of next operations. The value of n will be specified in
later algorithms that use substring and is global for all routines
that use Algorithm 1. Typical choices for n are 16, 32 and 64
for integers and 22, 46 and 108 for floating point (twice the
mantissa size).

Algorithm 1 Sub string

1: procedure SUBSTRING(in : Tin, start, end; out : Tout)
2: length← end− start+ 1;
3: Pour blank memory strands of length bits, 00 . . . 00︸ ︷︷ ︸

length bits

, in Tout;

4: for i← 0 to length− 1 do
5: Separate(Tin, start+ i, bon, boff );
6: if bon is not empty then
7: Set(Tout, i);
8: end if
9: Combine(Tin; bon, boff );

10: end for
11: end procedure

Now, the logic operations can be discussed. Let two test
tubes T1 and T2 be containing the DNA strands corresponding
to the two n-bit binary numbers under operation, respectively.
The test tube Tout will contain the output after the corre-
sponding operation. At the beginning of each operation, Tout

is considered to contain blank memory strands, i.e., the string
00 . . . 00︸ ︷︷ ︸

n bits

.

The implementations of the logic operations as follows,



SARKAR M. AND GHOSAL P. AND MOHANTY S. 5

CGAT GTAA CCGG CAGA

GCTA CATT

 1        1        0        0

CGAT GTAA CCGG CAGA

GCTA GTCT

 1        0        0        1

Fig. 7: DNA molecules for the example of AND operation

B. AND Operation

Algorithm 2 performs AND operation between two n-bit
numbers represented using sticker model, and kept in two test
tubes T1 and T2 respectively. The output of the operation is
available in test tube Tout, also in sticker model representation.
This algorithm checks whether both numbers have value of 1
at each bit, and runs in O(n) time.

Algorithm 2 AND Logic

1: procedure AND(in : T1, T2, n; out : Tout)
2: TC

1 ← Substring(T1, 0, n− 1);
3: TC

2 ← Substring(T2, 0, n− 1);
4: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

5: Combine(TC ;TC
1 , TC

2 );
6: for all bit i do
7: Separate(TC , i, bon, boff );
8: if boff is empty then

. ith bits of both numbers are 1
9: Set(Tout, i);

10: end if
11: Combine(TC ; bon, boff );
12: end for
13: end procedure

As an example, assume two 4-bit numbers, 1001 and 1100
be kept in two test tubes T1 and T2 respectively. Let the
memory strand be CGAT |GTAA|CCGG|CAGA. Hence,
the two numbers will be represented as in Figure 7.

Now, the algorithm runs as follows.
1) The contents of T1 and T2 are first taken as a backup

into TC
1 and TC

2 respectively and combined into TC .
Hence, TC now contains {1001, 1100}. Blank memory
strands are taken into test tube Tout.

2) TC is separated based on bit 1, bon contains both 1001
and 1100, and boff is empty. So, the sticker for bit 1,
GTTA is taken into test tube Tout, and annealed to set
bit 1 of output.

3) TC is separated based on bit 2, bon contains 1100, and
boff contains 1001. As boff is not empty, nothing to
do. Combine bon and boff back into TC .

4) TC is separated based on bit 3, bon is empty, and boff
contains both 1001 and 1100. As boff is not empty,
nothing to do. Combine bon and boff back into TC .

5) TC is separated based on bit 4, bon contains 1001, and
boff contains 1100. As boff is not empty, nothing to
do. Combine bon and boff back into TC .

6) Tout now contains the DNA strand as in Figure 8,
representing the value 1000.

CGAT GTAA CCGG CAGA

GCTA

 1        0        0        0

Fig. 8: DNA molecule representing output of AND operation

C. OR Operation

Algorithm 3 performs OR operation between two n-bit
numbers kept in two test tubes T1 and T2 respectively. The
output of the operation is available in test tube Tout. Following
the similar logic of AND operation, as it checks for each bit
whether atleast one of them is 1, this algorithm also takes
O(n) number of steps to perform.

Algorithm 3 OR Logic

1: procedure OR(in : T1, T2, n; out : Tout)
2: TC

1 ← Substring(T1, 0, n− 1);
3: TC

2 ← Substring(T2, 0, n− 1);
4: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

5: Combine(TC ;TC
1 , TC

2 );
6: for all bit i do
7: Separate(TC , i, bon, boff );
8: if bon is not empty then

. ith bit of atleast one number is 1
9: Set(Tout, i);

10: end if
11: Combine(TC ; bon, boff );
12: end for
13: end procedure

D. XOR Operation

Algorithm 4 performs XOR operation between two n-bit
numbers kept in two test tubes T1 and T2 respectively. The
output of the operation is available in test tube Tout. This
algorithm is also O(n), as it is checking whether the bits of
the two input numbers are different for each bit.

Algorithm 4 XOR Logic

1: procedure XOR(in : T1, T2, n; out : Tout)
2: TC

1 ← Substring(T1, 0, n− 1);
3: TC

2 ← Substring(T2, 0, n− 1);
4: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

5: Combine(TC ;TC
1 , TC

2 );
6: for all bit i do
7: Separate(TC , i, bon, boff );
8: if neither bon nor boff is empty then

. ith bits of two numbers are different
9: Set(Tout, i);

10: end if
11: Combine(TC ; bon, boff );
12: end for
13: end procedure

E. NAND Operation

Algorithm 5 performs NAND operation between two n-bit
numbers kept in two test tubes T1 and T2 respectively. The
output of the operation is available in test tube Tout. This
algorithm runs in O(n) number of steps.
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Algorithm 5 NAND Logic

1: procedure NAND(in : T1, T2, n; out : Tout)
2: TC

1 ← Substring(T1, 0, n− 1);
3: TC

2 ← Substring(T2, 0, n− 1);
4: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

5: Combine(TC ;TC
1 , TC

2 );
6: for all bit i do
7: Separate(TC , i, bon, boff );
8: if boff is not empty then

. ith bit of atleast one number is 0
9: Set(Tout, i);

10: end if
11: Combine(TC ; bon, boff );
12: end for
13: end procedure

F. NOR Operation

Algorithm 6 performs NOR operation between two n-bit
numbers kept in two test tubes T1 and T2 respectively. The
output of the operation is available in test tube Tout. Similar
to other logic operations, this is O(n) time.

Algorithm 6 NOR Logic

1: procedure NOR(in : T1, T2, n; out : Tout)
2: TC

1 ← Substring(T1, 0, n− 1);
3: TC

2 ← Substring(T2, 0, n− 1);
4: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

5: Combine(TC ;TC
1 , TC

2 );
6: for all bit i do
7: Separate(TC , i, bon, boff );
8: if bon is empty then

. ith bits of both numbers are 0
9: Set(Tout, i);

10: end if
11: Combine(TC ; bon, boff );
12: end for
13: end procedure

G. XNOR Operation

Algorithm 7 performs XNOR operation between two n-bit
numbers kept in two test tubes T1 and T2 respectively. The
output of the operation is available in test tube Tout. This
algorithm also has O(n) number of steps.

Algorithm 7 XNOR Logic

1: procedure XNOR(in : T1, T2, n; out : Tout)
2: TC

1 ← Substring(T1, 0, n− 1);
3: TC

2 ← Substring(T2, 0, n− 1);
4: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

5: Combine(TC ;TC
1 , TC

2 );
6: for all bit i do
7: Separate(TC , i, bon, boff );
8: if either bon or boff is empty then

. ith bits of two numbers are same
9: Set(Tout, i);

10: end if
11: Combine(TC ; bon, boff );
12: end for
13: end procedure

H. NOT Operation

Algorithm 8 performs NOT of a n-bit number kept in the
test tube T1. The output of the operation is available in test
tube Tout. This algorithm checks for the value of each bit, ine
by one, of the input number too and hence has O(n) number
of steps.

Algorithm 8 NOT Logic

1: procedure NOT(in : Tin, n; out : Tout)
2: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

3: for all bit i do
4: Separate(Tin, i, bon, boff );
5: if bon is empty then

. ith bit is 0
6: Set(Tout, i);
7: end if
8: Combine(Tin; bon, boff );
9: end for

10: end procedure

VI. PROPOSED APPROACHES FOR INTEGER ARITHMETIC
OPERATIONS USING DNA

In the following operations, two numbers under operation
will be considered of n bits each, and will be kept in two
separate test tubes initially. Assume, test tube T1 containing
the number a0a1 · · · an−2an−1, and test tube T2 containing the
number c0c1 · · · cn−2cn−1. If the two numbers are of unequal
bit count, smaller number will be appended with 0 bits on the
left side to make them equal length. For both of the numbers,
index 0 will represent the MSB, and index n−1 will represent
the LSB. This is often called Big-Endian Order.

A. Comparator

The comparator operation 9 will compare two n-bit numbers
in T1 and T2, and store the result in three test tubes Tg , Tl

and Te, initially empty. If unequal, Tg will contain the greater
number, Tl will contain the smaller number, and Te will remain
empty. If the two numbers are equal, Te will contain both of
the numbers, and the rest of the two test tubes will remain
empty. This algorithm runs in O(n) number of steps.

Algorithm 9 Comparator

1: procedure COMPARATOR(in : T1, T2, n; out : Tg , Tl, Te)
2: TC

1 ← Substring(T1, 0, n− 1);
3: TC

2 ← Substring(T2, 0, n− 1);
4: Combine(TC ;TC

1 , TC
2 );

5: for all bit i from MSB to LSB do
6: Separate(TC , i, bon, boff );
7: if bon or boff is empty then
8: Combine(TC ; bon, boff );
9: else

10: Combine(Tg ; bon);
11: Combine(Tl; boff );
12: break . Exit from for loop
13: end if
14: end for
15: if both Tg and Tl are empty then

. TC contains both strands
16: Combine(Te;TC );
17: end if
18: end procedure
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B. Left Shifter and Right Shifter

The Left Shifter (Right Shifter) operations will take a single
n-bit number in Tin test tube as input, left shift (right shift)
the number by one bit, and output the shifted number in test
tube Tout. Tout initially contains blank memory strands, i.e.,
the number 0000...0, no stickers are annealed to the memory
strands. All types of shifters (Logical, Arithmetic and Circular)
in both directions, except arithmetic left shift, are presented
below, as arithmetic left shift and logical left shift are similar
in nature. All of these shifters will complete in O(n) time.

1) Logical Left Shift: In logical left shift, all the bits except
the left most bit (MSB) is shifted to the left, and the MSB is
discarded. Algorithm 10 performs the logical left shift of n-bit
number kept in test tube Tin and outputs the result in test tube
Tout.

Algorithm 10 Logical Left Shifter

1: procedure LOGICALLEFTSHIFT(in : Tin, n; out : Tout)
2: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

3: for all bit i except MSB do . Leave 0th bit
4: Separate(Tin, i, bon, boff );
5: if bon is not empty then . ith bit of the number is 1
6: Set(Tout, i− 1);
7: end if
8: Combine(Tin; bon, boff );
9: end for

10: end procedure

2) Logical Right Shift: In logical right shift, all the bits
except the right most bit (LSB) is shifted to the right, and
the LSB is discarded. Algorithm 11 performs the logical right
shift of n-bit number kept in test tube Tin and outputs the
result in test tube Tout.

Algorithm 11 Logical Right Shifter

1: procedure LOGICALRIGHTSHIFT(in : Tin, n; out : Tout)
2: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

3: for all bit i except LSB do . Leave n− 1th bit
4: Separate(Tin, i, bon, boff );
5: if bon is not empty then . ith bit of the number is 1
6: Set(Tout, i+ 1);
7: end if
8: Combine(Tin; bon, boff );
9: end for

10: end procedure

3) Arithmetic Right Shift: In arithmetic right shift, all the
bits except the right most bit (LSB) is shifted to the right,
the LSB is discarded, and the sign bit (MSB) is preserved.
Algorithm 12 performs the arithmetic right shift of n-bit
number kept in test tube Tin and outputs the result in test
tube Tout.

Algorithm 12 Arithmetic Right Shifter

1: procedure ARITHMETICRIGHTSHIFT(in : Tin, n; out : Tout)
2: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

3: for all bit i except LSB do . Leave n− 1th bit
4: Separate(Tin, i, bon, boff );
5: if bon is not empty then . ith of the number is 1
6: if i = 0 then . MSB is 1, preserve the MSB
7: Set(Tout, 0);
8: end if
9: Set(Tout, i+ 1);

10: end if
11: Combine(Tin; bon, boff );
12: end for
13: end procedure

4) Circular Left Shift: In circular left shift, all the bits
except the left most bit (MSB) is shifted to the left, and the
MSB is circulated to LSB. Algorithm 13 performs the circular
left shift of n-bit number kept in test tube Tin and outputs the
result in test tube Tout.

Algorithm 13 Circular Left Shifter

1: procedure CIRCULARLEFTSHIFT(in : Tin, n; out : Tout)
2: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

3: for all bit i do
4: Separate(Tin, i, bon, boff );
5: if bon is not empty then . ith bit of the number is 1
6: if i = 0 then . MSB is 1, circulate to LSB
7: Set(Tout, n− 1);
8: else
9: Set(Tout, i− 1);

10: end if
11: end if
12: Combine(Tin; bon, boff );
13: end for
14: end procedure

5) Circular Right Shift: In circular right shift, all the bits
except the right most bit (LSB) is shifted to the right, and the
LSB is circulated to MSB. Algorithm 14 performs the circular
right shift of n-bit number kept in test tube Tin and outputs
the result in test tube Tout.

Algorithm 14 Circular Right Shifter

1: procedure CIRCULARRIGHTSHIFT(in : Tin, n; out : Tout)
2: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

3: for all bit i do
4: Separate(Tin, i, bon, boff );
5: if bon is not empty then . ith bit of the number is 1
6: if i = n− 1 then . LSB is 1, circulate to MSB
7: Set(Tout, 0);
8: else
9: Set(Tout, i+ 1);

10: end if
11: end if
12: Combine(Tin; bon, boff );
13: end for
14: end procedure

C. Adder / Subtracter

Addition and subtraction are two basic operations of an
ALU and have been performed by several authors till date [19],
[22], [23] running in O(n) time. The most interesting among
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them is the approach proposed in [22]. As has been specified
in section III, addition/subtraction algorithm proposed here is
being adapted from this work [22] and modified to include
it into current context, such as, different numbers being
implemented on different strands in two different tubes etc..
In this algorithm, two n-bit numbers are being represented
by two different DNA strands in test tubes T1 and T2 and
result of addition will be available in test tube Tout in the
same format. The overflow of addition will be detected by
the presence of a particular DNA strand in a test tube. Let us
represent the overflow detecting DNA strand as some single
strand < DNA >Overflow. If after addition, overflow test tube
is empty, no overflow has happened, and if that particular DNA
strand is present, it signals that, an overflow has happened.

In this algorithm, two globally available test tubes Tc and
Tnc are used. If the numbers are present in Tc, it represents
there is a carry, otherwise it represents absence of carry. Along
with input numbers T1 and T2, another test tube Tinit is being
taken as input, which acts as the starting test tube containing
the numbers. In practice, the formal Tinit will always be either
the global Tc or the global Tnc. Choosing Tinit as Tnc means
there is no carry input; choosing Tinit as Tc means there is a
carry input.

Algorithm 15 Adder with carry in

1: procedure ADDER(in : T1, T2, n, Tinit; out : Tout, Toverflow)
2: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in Tout;

3: Combine(Tinit;T1, T2);
4: for all bit i from LSB to MSB do
5: if Tnc is not empty then
6: Separate(Tnc, i, bon, boff );
7: if neither bon nor boff is empty then

. ith bits of two numbers are different
8: Set(Tout, i);
9: Combine(Tnc; bon, boff );

10: else if boff is empty then
. ith bits of two numbers are 1

11: Combine(Tc; bon, boff );
12: else

. ith bits of two numbers are 0
13: Combine(Tnc; bon, boff );
14: end if
15: else
16: Separate(Tc, i, bon, boff );
17: if neither bon nor boff is empty then

. ith bits of two numbers are different
18: Combine(Tc; bon, boff );
19: else if boff is empty then

. ith bits of two numbers are 1
20: Set(Tout, i);
21: Combine(Tc; bon, boff );
22: else

. ith bits of two numbers are 0
23: Set(Tout, i);
24: Combine(Tnc; bon, boff );
25: end if
26: end if
27: end for
28: if Tc is not empty then

. There is a carry after end of addition. An overflow occurred
29: Pour < DNA >Overflow in Toverflow;
30: end if
31: end procedure

Now, to perform addition, as the initial carry bit needs to be
0, the two inputs need to be placed in Tnc. The addition of two

n bit numbers residing in T1 and T2 can now be performed
as follows.

Algorithm 16 Addition

1: procedure ADD(in : T1, T2, n; out : Tout, Toverflow)
2: TC

1 ← Substring(T1, 0, n− 1);
3: TC

2 ← Substring(T2, 0, n− 1);
4: {Tout, Toverflow} ← Adder(TC

1 , TC
2 , n, Tnc);

5: end procedure

Similarly 2′s Complement subtraction can be performed by
first performing NOT of second number and placing them in
Tc, as follows.

Algorithm 17 Subtraction

1: procedure SUBTRACT(in : T1, T2, n; out : Tout, Toverflow)
2: TC

1 ← Substring(T1, 0, n− 1);
3: TC

2 ← NOT (T2, n);
4: {Tout, Toverflow} ← Adder(TC

1 , TC
2 , n, Tc);

5: end procedure

As an example, let us consider the addition of two 4-bit
numbers 1101 and 1001. Now the addition will be performed
as follows.

1) Take 0000 in Tout.
2) Take backup of both test tubes T1 and T2 in TC

1 and
TC
2 respectively.

3) Pour both numbers from TC
1 and TC

2 into Tnc.
4) Now for bit 3, as Tnc is not empty, perform following

steps as follows.
a) Separate Tnc in two test tubes based on bit 3

in bon and boff respectively, thus giving bon =
{1101, 1001} and boff is empty.

b) So according to line 11 of algorithm 15, pour bon
back in Tc.

5) For bit 2, as Tnc is empty,
a) Separate Tc in two test tubes based on bit 2 in

bon and boff respectively, thus giving boff =
{1101, 1001} and bon is empty.

b) According to lines 23 and 24 of the algorithm
respectively, set bit 2 in Tout and pour boff back
in Tnc.

6) For bit 1, as Tnc is not empty,
a) Separate Tnc in two test tubes based on bit 1 in bon

and boff respectively, thus giving bon = {1101}
and boff = {1001}.

b) So according to lines 8 and 9 of the algorithm
respectively, set bit 1 in Tout and pour bon and
boff back in Tnc.

7) For MSB (b0), as Tnc is not empty,
a) Separate Tnc in two test tubes based on bit 0

in bon and boff respectively, thus giving bon =
{1101, 1001} and boff is empty.

b) So according to line 11 of the algorithm, pour bon
back in Tc.

8) As Tc is not empty, it detects overflow and pour <
DNA >Overflow in Toverflow.

So, the result of the addition is 0110 with an overflow.
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As it can be observed, to add two n bit numbers, for
each bit, emptiness of either Tc or Tnc is being checked
and depending on that, particular constant time operations
are being performed. As in the given example, to add 1101
and 1001, total number of bio-molecular operations being
performed after taking backup of the two test tubes are 12
(1 as pouring both test tubes in Tnc, 2 for bit 3, 3 for
bit 2 and 1, and 2 operation for MSB, and finally pouring
< DNA >Overflow in Toverflow to signal overflow). So, in
worst condition, after combining both in TC , 3 bio-molecular
operations will be performed for each bit and overflow will be
signalled, giving 3n+2 operations. So, the addition/subtraction
algorithm executes in O(n), since substring and NOT also
execute in O(n) time.

D. Multiplication

Booth’s algorithm is an well known algorithm to perform
2’s complement multiplication on conventional circuits. This
algorithm works as follows.

1) Take the two binary numbers x and y to be multiplied.
If negative, take the number in 2’s complement format.

2) Set two registers u and v initially to 0. These two regis-
ters will hold the multiplication result after completion.

3) Set a single-bit register x’ initially to 0. This register
will hold the LSB of x.

4) Continue the following operations for the number of bits
present in x,

a) Look at the LSB of x, and the value of x’. Let us
represent it as xLSB [x− 1].

b) If xLSB [x − 1] = 10, subtract y from u. Discard
the overflow.

c) If xLSB [x − 1] = 01, add y to u. Discard the
overflow.

d) Perform Arithmetic Right Shift on u and v.
e) Copy LSB of x in x’.
f) Perform Circular Right Shift on x.

To perform multiplication operation, the output will be
provided as two separate strands, corresponding to u and v,
in two separate test tubes TU and TV respectively. The two n-
bit operands x and y are being taken as inputs in two separate
test tubes TX and TY respectively. Another test tube TX1 will
contain single strand DNA < DNA >X1, if x’ is 1, otherwise
it will be empty. The algorithm will be as follows.

Algorithm 18 Multiplier

1: procedure MULTIPLY(in : TX , TY , n; out : TU , TV )
2: Discard(TX1), if not already empty;
3: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸

n bits

, in TU ;

4: Pour blank memory strands of n bits, 00 . . . 00︸ ︷︷ ︸
n bits

, in TV ;

5: for number of bits in x do
6: Separate(TX , n− 1, bon, boff ); . Identify xLSB

7: if bon is not empty and TX1 is empty then
. xLSB [x− 1] = 10. Perform Subtraction (u− y)

8: {Tout, Toverflow} ← Subtract(TU , TY , n);
9: Discard(Toverflow);

10: Discard(TU );
11: Combine(TU ;Tout);

12: else
13: if boff is not empty and TX1 is not empty then

. xLSB [x− 1] = 01. Perform Addition (u+ y)
14: {Tout, Toverflow} ← Add(TU , TY , n);
15: Discard(Toverflow);
16: Discard(TU );
17: Combine(TU ;Tout);
18: end if
19: end if
20: Combine(TX ; bon, boff );

. Arithmetic Right Shift of u and v
21: T 1

V ← LogicalRightShift(TV , n);
22: Discard(TV );
23: Combine(TV ;T 1

V );
24: Separate(TU , n− 1, bon, boff );
25: if bon is not empty then
26: Set(TV , 0); . Set MSB of v = LSB of u
27: end if
28: Combine(TU ; bon, boff );
29: T 1

U ← ArithmeticRightShift(TU , n);
30: Discard(TU );
31: Combine(TU ;T 1

U );
32: Separate(TX , n− 1, bon, boff ); . Set (x− 1) = xLSB

33: if bon is not empty then
34: Pour DNA strand < DNA >X1 in TX1;
35: else
36: Discard(TX1);
37: end if
38: Combine(TX ; bon, boff );
39: T temp

X ← CircularRightShift(TX , n); . Circular Right
Shift of x

40: Discard(TX );
41: Combine(TX ;T temp

X );
42: end for
43: end procedure

E. Division

In an integer division operation, a 2n bit number is divided
by an n bit number, and the result is obtained as two n bit
numbers, one is quotient and the other one is remainder. Let
us assume, the 2n bit dividend is being represented by two test
tubes T 1

DD and T 2
DD, containing the upper half and lower half

respectively, and the divisor is being represented by a single
test tube TDR. As an example, if the dividend is 9421, divisor
is 117 and 8 bit calculation is considered, the dividend will be
represented by 16 bit binary number (00100100 11001101),
the upper half 00100100 will be stored in T 1

DD, the lower
half 11001101 will be stored in T 2

DD, and the 8 bit binary
representation of the divisor (01110101) will be stored in TDR.

The general division algorithm works as follows.

1) Store upper half of dividend in R and lower half in Q.
2) For number of bits (which in this case is 8), repeat the

following steps.
3) Left Shift RQ pair.
4) Subtract the divisor from R, and keep the result in R.
5) If R is positive, set right most bit in Q to 1.
6) Else Restore R by adding back the divisor.

At the end of the above procedure, Q will contain the
quotient and R will contain the remainder.
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Algorithm 19 Divider

1: procedure DIVISION(in : T 1
DD, T 2

DD, TDR, n; out : TQ, TR)
2: TR ← Substring(T 1

DD, 0, n− 1);
3: TQ ← Substring(T 2

DD, 0, n− 1);
4: for number of bits n do

. Left Shift RQ pair
5: Ttemp ← LogicalLeftShift(TR, n);
6: Discard(TR);
7: Combine(TR;Ttemp);
8: Separate(TQ, 0, bon, boff );
9: if bon is not empty then

10: Set(TR, n− 1); . Set RLSB = QMSB

11: end if
12: Combine(TQ; bon, boff );
13: Ttemp ← LogicalLeftShift(TQ, n);
14: Discard(TQ);
15: Combine(TQ;Ttemp);
16: {Tout, Toverflow} ← Subtract(TR, TDR, n); . Subtract

divisor from R
17: Discard Toverflow;
18: Discard(TR);
19: Combine(TR;Tout);
20: Separate(TR, 0, bon, boff ); . Check MSB of R
21: if bon is empty then . R is positive, set Q[LSB] = 1
22: Set(TQ, n− 1);
23: Combine(TR; bon, boff );
24: else . R is negative, add divisor back to restore
25: Combine(TR; bon, boff );
26: {Tout, Toverflow} ← Add(TR, TDR, n);
27: Discard(Toverflow);
28: Discard(TR);
29: Combine(TR;Tout);
30: end if
31: end for
32: end procedure

VII. PROPOSED APPROACHES FOR FLOATING POINT
ARITHMETIC OPERATIONS USING DNA

In IEEE 754 format [24], half-precision floating point
numbers are represented by 16 bits, single-precision floating
point numbers are represented by 32 bits, and double-precision
floating point numbers are represented by 64 bits. The opera-
tions performed in this work are for double-precision floating
point numbers, but they can be modified to work for half or
single precision too, by just changing the exponent field length
(nexp) and mantissa field length (nmant), and the bias.

In IEEE 754 floating point format, the MSB (leftmost bit)
represents the sign of the number, 0 for negative number
and 1 for the positive number. Next is the exponent (11 bits
for double-precision, 8 bits for single-precision or 5 bits for
half-precision). Finally, is the mantissa (52 bits for double-
precision, 23 bits for single-precision or 10 bits for half-
precision). The mantissa is normalized to have a 1 before
the decimal point, and is excluded in the representation. The
actual exponent is added with the bias (1023 for double-
precision, 127 for single-precision or 15 for half-precision) to
get the stored exponent. Full compliance with the IEEE-754
standard requires adherence to rules that deal with exceptional
cases outside the range of normalized values: subnormals
(including zero) when underflow occurs, signed infinity when
overflow occurs, NaN (Not a Number) when a result cannot
be represented. The proposed algorithms ignore these issues.
Full compliance also requires implementing several rounding
modes, of which only truncation is considered here. The

standard describes both binary and decimal floating-point
arithmetic, of which only binary is considered here.

As an example of 32-bit single precision format, the
binary number 11000000101100110000000000000000 can
be separated into 3 parts, first bit 1 specifies that
the number is negative. Next 8 bits 10000001 rep-
resents the biased exponent with decimal value 129.
The next 23 bits 01100110000000000000000 represents
the normalized mantissa, with original mantissa being
1.01100110000000000000000. So the decimal equivalent is
thus as follows.

(11000000101100110000000000000000)2

= (−1)× 2129−127 × {1 + 2−2 + 2−3 + 2−6 + 2−7}
= −(1 + 0.25 + 0.125 + 0.015625 + 0.0078125)× 4

= −(1.3984375× 4) = (−5.59375)10

Similarly to get the binary equivalent of a decimal real
number, let the number to be converted is 0.765. As the
number is positive, the sign bit should be 0. To get the
exponent, the number needs to be multiplied by 2 until the
number gets represented in the form (1 + fraction). We
get, 0.765 × 2 = 1.53, and hence, the number can be
represented as 1.53×2−1. So, the power used is −1 and as the
bias for single precision format is 127, the exponent becomes
−1 + 127 = 126 = (01111110)2. To get the mantissa, the
1 needs to be removed from the front. Then 0.53 is converted
into equivalent binary by repetitively multiplying by 2 until
23-bit binary equivalent found. The mantissa thus obtained is
10000111101011100001010. So the binary equivalent of 0.765
is 00111111010000111101011100001010.

A floating point number will be represented as b0b1 . . . bn−1,
where n is the length of the bit string (16 bits for half-
precision, 32 bits for single-precision, and 64 bits for double-
precision format). So, for all formats bit b0 will be the sign
bit; along with this, for half-precision format b1 to b5 will be
the exponent, and b6 to b15 will be the mantissa; for single-
precision format b1 to b8 will be the exponent, and b9 to b31
will be the mantissa; and for double-precision format b1 to b11
will be the exponent, and b12 to b63 will be the mantissa.

Before starting the arithmetic operations, we need some
more operations to implement.

The first operation among them is FPComparator, that
will compare the exponents of two numbers num1 and num2,
kept in two test tubes T1exp and T2exp respectively, and
will output two test tubes T1hiexp and T eq

exp. The presence of
some particular single DNA strand < DNA >E will be used
as event. After the operation, the comparison result can be
determined from the emptiness of the two output test tubes as
follows.
• If T1hiexp is non-empty and T eq

exp is empty, exponent of
num1 is higher.

• If both test tubes are empty, exponent of num2 is higher.
• If T1hiexp is empty and T eq

exp is non-empty, both exponents
are equal.

• Both test tubes cannot be non-empty simultaneously.
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Algorithm 20 Floating Point Exponent Comparator

1: procedure FPCOMPARATOR(in : T1exp, T2exp; out : T1hiexp, T
eq
exp)

2: Pour < DNA >E in T eq
exp;

3: for all bit i from MSB to LSB in exponents do
4: Separate(T1exp, i, bT1

on , bT1
off );

5: Separate(T2exp, i, bT2
on , bT2

off );
6: if both of bT1

on and bT2
on are empty then

7: Combine(T1exp; bT1
on , bT1

off );
8: Combine(T2exp; bT2

on , bT2
off );

9: end if
10: if neither bT1

on nor bT2
on is empty then

11: Combine(T1exp; bT1
on , bT1

off );
12: Combine(T2exp; bT2

on , bT2
off );

13: end if
14: if bT1

on is not empty and bT2
on is empty then . T1exp larger

15: Combine(T1exp; bT1
on , bT1

off );
16: Combine(T2exp; bT2

on , bT2
off );

17: Pour < DNA >E in T1hiexp;
18: Discard(T eq

exp);
19: break;
20: end if
21: if bT1

on is empty and bT2
on is not empty then . T2exp larger

22: Combine(T1exp; bT1
on , bT1

off );
23: Combine(T2exp; bT2

on , bT2
off );

24: Discard(Thi
exp);

25: Discard(T eq
exp);

26: break;
27: end if
28: end for
29: end procedure

The next operation that will be needed is
Append Bit At Head, that will take an input string
of n bits in a test tube Tin, and a bit head to set at the head,
and will output a test tube Tout. Tout will contain the string
that is longer than the string in Tin by 1 bit.

Algorithm 21 Append Bit At Head

1: procedure Append Bit At Head(in : Tin, n, head; out : Tout)
2: Pour blank memory strands of (n+ 1) bits, 00 . . . 00︸ ︷︷ ︸

(n + 1) bits

, in Tout;

3: if head is 1 then
4: Set(Tout, 0);
5: end if
6: for all bit i do
7: Separate(Tin, i, bon, boff );
8: if bon is not empty then
9: Set(Tout, i+ 1);

10: end if
11: Combine(Tin; bon, boff );
12: end for
13: end procedure

Another operation that will be required is Setbits. This
algorithm takes the input string of n bits in test tube Tin, two
indices of source number start and end and an offset index
of the output number. It copies the bits between indices start
and end of the source number in Tin to the indices starting at
offset of n-bit output number already kept in Tout.

Algorithm 22 Set Bits

1: procedure SETBITS(in : Tin, start, end, offset; out : Tout)
2: length← end− start+ 1;
3: for i← 0 to length do
4: Separate(Tin, start+ i, bon, boff );
5: if bon is not empty then
6: Set(Tout, offset+ i);
7: end if
8: Combine(Tin; bon, boff );
9: end for

10: end procedure

A. Add / Subtract

Addition of two floating point numbers is performed in the
following steps.

1) Add 1 bit at the head of the two mantissas. This will
give us the real mantissas, as during storing, the 1 before
the decimal point is excluded.

2) Equalize two exponents by continually adding 1 to the
smaller number exponent and shifting the corresponding
mantissa to the right, until the two exponents are equal.

3) If the sign bits of the two numbers are equal, add the
mantissas. Set the sign bit of the result according to the
sign bits of the operands. If overflow occurs, right shift
the result by one bit, and increment the exponent by 1
to make the result normalized.

4) If the sign bits of the two numbers are different, append
0 bit at the head of the mantissas. Perform 2’s comple-
ment subtraction on the two mantissas.

a) If the result of the subtraction is negative, take the
2’s complement of the mantissa, and set the sign
bit of the output as negative.

b) Continually left shift the mantissa, and subtract 1
from the exponent, until the output is normalized.

To perform subtraction of two numbers, just invert the sign
bit of the number to be subtracted, and perform the above
operation.

The DNA implementation of the floating point
adder/subtracter is as follows. This implementation takes two
floating point numbers num1 and num2 in two test tubes T1

and T2 respectively, and outputs the result in test tube Tout.

Algorithm 23 Floating Point Adder

1: procedure FPADD(in : T1, T2, nexp, nmant; out : Tout)
2: Pour blank memory strands of (nexp + nmant + 1) bits in Tout;

. Get exponents and mantissas separated from the two numbers
3: T1exp ← Substring(T1, 1, nexp);
4: T1mant ← Substring(T1, nexp + 1, nexp + nmant);
5: T2exp ← Substring(T2, 1, nexp);
6: T2mant ← Substring(T2, nexp + 1, nexp + nmant);

. Make an increment / decrement operand ready.
7: Pour 00 . . . 01︸ ︷︷ ︸

nexpbits

in T incr
exp ;

8: T1original
mant ← Append Bit At Head(T1mant, nmant, 1);

9: T2original
mant ← Append Bit At Head(T2mant, nmant, 1);

. Append 1 bit at the head of the mantissas
10: {T1higherexp , T equal

exp } ← FPComparator(T1exp, T2exp);
11: if T equal

exp is empty then . Exponents are not equal
12: if T1higherexp is not empty then . T1exp higher
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13: while T1exp and T2exp are not equal do
. Equality can be checked by calling

Comparator(T1exp, T2exp) and checking emptiness of Tequal

. Right shift T2original
mant and increment T2exp

14: T2shiftedmant ← LogicalRightShift(T2original
mant ,

nmant + 1);
15: Discard(T2original

mant );
16: Combine(T2original

mant ;T2shiftedmant );
17: {TADD, TOverflow} ← Add(T2exp, T incr

exp , nexp);
18: Discard(TOverflow);
19: Discard(T2exp);
20: Combine (T2exp;TADD);
21: end while
22: else . T2exp higher
23: while T1exp and T2exp are not equal do

. Right shift T1original
mant and increment T1exp

24: T1shiftedmant ← LogicalRightShift(T1original
mant ,

nmant + 1);
25: Discard(T1original

mant );
26: Combine(T1original

mant ;T1shiftedmant );
27: {TADD, TOverflow} ← Add(T1exp, T incr

exp , nexp);
28: Discard(TOverflow);
29: Discard(T1exp);
30: Combine (T1exp;TADD);
31: end while
32: end if
33: end if
34: Separate(T1, 0, bT1

on , bT1
off ); . Separate on sign bit

35: Separate(T2, 0, bT2
on , bT2

off );
36: Take a blank test tube Top and a DNA Strand < DNA >A;

. Empty Top determines subtract operation, else addition
37: if both bT1

on and bT2
on are empty then . Both numbers positive

38: Pour < DNA >A in Top;
39: {Tadd, Toverflow} ← Add(T1original

mant , T2original
mant ,

nmant + 1);
40: end if
41: if neither bT1

on nor bT2
on are empty then . Both numbers negative

42: Pour < DNA > A in Top;
43: Set(Tout, 0); . Result negative. Set MSB
44: {Tadd, Toverflow} ← Add(T1original

mant , T2original
mant ,

nmant + 1);
45: end if
46: if bT1

on is empty and bT2
on is not empty then

. T1 positive, T2 negative
47: T1subtractmant ← Append Bit At Head(T1original

mant , nmant+
1, 0);

48: T2subtractmant ← Append Bit At Head(T2original
mant , nmant+

1, 0);
49: {Tadd, Toverflow} ← Subtract(T1subtractmant , T2subtractmant ,

nmant + 2);
50: Discard(Toverflow);
51: end if
52: if bT1

on is not empty and bT2
on is empty then

. T1 negative, T2 positive
53: T1subtractmant ← Append Bit At Head(T1original

mant , nmant+
1, 0);

54: T2subtractmant ← Append Bit At Head(T2original
mant , nmant+

1, 0);
55: {Tadd, Toverflow} ← Subtract(T2subtractmant , T1subtractmant ,

nmant + 2);
56: Discard(Toverflow);
57: end if
58: if Top is not empty then . Addition performed
59: if Toverflow is not empty then

. Overflow occurred. Normalize mantissa by right shift
60: Tnormalized

matissa ← LogicalRightShift(Tadd, nmant +
1);

61: {Tnormalized
exp , Toverflow} ←

Add(T1exp, T incr
exp , nexp);

62: Discard(Toverflow);
63: Tout ← Setbits(Tnormalized

exp , 0, nexp − 1, 1);
64: Tout ← Setbits(Tnormalized

mantissa , 1, nmant, nexp + 1);
65: else
66: Tout ← Setbits(T1exp, 0, nexp − 1, 1);
67: Tout ← Setbits(Tadd, 1, nmant, nexp + 1);
68: end if

69: else . Subtraction performed
70: Separate(Tadd, 0, bon, boff );
71: if bon is not empty then . negative result of subtraction
72: Set(Tout, 0); . Set MSB of output
73: Combine(Tadd; bon, boff );

. Perform 2’s complement of the result
74: Tnegated

add ← NOT (Tadd, nmant + 2);
75: Pour 00 . . . 01︸ ︷︷ ︸

(nmant+2) bits

in T incr
mant;

76: {T2c, Ttemp} ← Add(Tnegated
add , T incr

mant, nmant + 2);
77: Discard(Ttemp);
78: Discard(Tadd);
79: Combine(Tadd;T2c);
80: end if
81: Combine(Tadd; bon, boff );

. Normalize result, if necessary, by left shifting mantissa. b1 is
the digit before decimal point

82: Separate(Tadd, 1, bon, boff );
83: while bon is empty do . while 1st index is not 1
84: Combine(Tadd; bon, boff );
85: Tnormalized

mantissa ← LogicalLeftShift(Tadd, nmant + 2);
86: Discard(Tadd);
87: Combine(Tadd;T

normalized
mantissa );

88: Tnormalized
exp ← Subtract(T1exp, T incr

exp , nmant + 2);
89: Discard(T1exp);
90: Combine(T1exp;Tnormalized

exp );
91: Separate(Tadd, 1, bon, boff );
92: end while
93: Combine(Tadd; bon, boff );
94: Tout ← Setbits(T1exp, 0, nexp − 1, 1);
95: Tout ← Setbits(Tadd, 2, nmant + 1, nexp + 1);
96: end if
97: Combine(T1; bT1

on , bT1
off );

98: Combine(T2; bT2
on , bT2

off );
99: end procedure

Next, subtraction algorithm for two floating-point numbers
is as follows.

Algorithm 24 Floating Point Subtracter

1: procedure FPSUBTRACT(in : T1, T2, nexp, nmant; out : Tout)
. Invert sign bit of T2

2: Pour blank memory strands of (nexp + nmant + 1) bits in
Tnegated
2 ;

3: Separate(T2, 0, bon, boff );
4: if bon is empty then . sign bit of T2 is 0
5: Set(Tnegated

2 , 0);
6: end if
7: Combine bon and boff in T2;

. Copy rest of the bits of T2

8: Tnegated
2 ← Setbits(T2, 1, nexp + nmant, 1);

9: Tout ← FPAdd(T1, T
negated
2 );

10: end procedure

B. Multiplication

Multiplication of two floating point numbers can be per-
formed following the steps as.

1) Add two exponents. This addition must be performed
on real exponents. So this step is performed by first
subtracting bias from the two exponents, then adding the
real exponents, and finally adding bias to the addition
result.

2) Multiply the two mantissas.
3) Normalize mantissa by right shifting and incrementing

exponent, if necessary.

The multiplication can be implemented using Sticker based
DNA as follows.
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Algorithm 25 Floating Point Multiplication

1: procedure FPMULTIPLY(in : T1, T2, nexp, nmant; out : Tout)
2: Pour blank memory strands of (nexp + nmant + 1) bits in Tout;

. Get exponents and mantissas separated from the two numbers
3: T1exp ← Substring(T1, 1, nexp);
4: T1mant ← Substring(T1, nexp + 1, nexp + nmant);
5: T2exp ← Substring(T2, 1, nexp);
6: T2mant ← Substring(T2, nexp + 1, nexp + nmant);

. Make bias ready in test tube Tbias

7: Pour nexp bit binary equivalent of 2nexp−1 − 1 in Tbias;
8: {T1unbiased

exp , Toverflow} ← Subtract(T1exp, Tbias, nexp);
9: Discard(Toverflow);

10: {T2unbiased
exp , Toverflow} ← Subtract(T2exp, Tbias, nexp);

11: Discard(Toverflow);
12: {Tunbiased

exp , Toverflow} ← Add(T1unbiased
exp , T2unbiased

exp ,
nexp);

13: Discard(Toverflow);
14: {Texp, Toverflow} ← Add(Tunbiased

exp , Tbias, nexp);
15: Discard(Toverflow); . We have Booth’s algorithm ready at hand.

To make use of that, append 01 before mantissas
16: Append “01” at the head of T1mant by calling

Append Bit At Head twice; Let the output be T1multiply
mant ;

17: Append “01” at the head of T2mant by calling
Append Bit At Head twice; Let the output be T2multiply

mant ;
18: {Tmultiply

1 , Tmultiply
2 } ←Multiply(T1multiply

mant , T2multiply
mant ,

nmant + 2);
. Get multiplication result in single DNA strand

19: Pour blank memory strands of 2 ∗ (nmant +2) bits in Tmultiply ;
20: Tmultiply ← Setbits(Tmultiply

1 , 0, nmant + 1, 0);
21: Tmultiply ← Setbits(Tmultiply

2 , 0, nmant + 1, nmant + 2);
22: Separate(Tmultiply , 3, bon, boff );
23: if bon is empty then . Not normalized. Right shift to normalize
24: Combine(Tmultiply ; bon, boff );
25: T shifted

multiply ← LogicalRightShift(Tmultiply , 2 ∗ (nmant +

2));
26: Discard(Tmultiply);
27: Combine(Tmultiply ;T

shifted
multiply);

28: Pour 00 . . . 01︸ ︷︷ ︸
11 bits

in T incr
exp ;

29: {TADD, TOverflow} ← Add(Texp, T incr
exp , nexp);

30: Discard(TOverflow);
31: Discard(Texp);
32: Combine(Texp;TADD);
33: end if
34: Combine(Tmultiply ; bon, boff );
35: Separate(T1, 0, bT1

on , bT1
off );

36: Separate(T2, 0, bT2
on , bT2

off );
37: if One of bT1

on and bT2
on is non-empty, and the other one is empty

then
. T1 and T2 have different sign bits

38: Set(Tout, 0);
39: end if
40: Combine(T1; bT1

on , bT1
off );

41: Combine(T2; bT2
on , bT2

off );
42: Tout ← Setbits(Texp, 0, nexp − 1, 1);
43: Tout ← Setbits(Tmultiply , 4, nmant + 3, nexp + 1);
44: end procedure

C. Division

The division of two floating point numbers is implemented
by convergence technique. Before implementing the division
operation, let us implement reciprocal operation. In the con-
vergence technique, the numerator and denominator is multi-
plied by same number R0R1 · · ·Rm−1, so that denominator
converges to 1.

N

D
=

NR0R1 · · ·Rm−1

DR0R1 · · ·Rm−1
=

NR0R1 · · ·Rm−1

1

= NR0R1 · · ·Rm−1 (1)

The convergence technique is implemented as follows.

1) Normalize D to be within 0.5 and 1. To do that, divide
D by 2e+1, where e is the exponent of D.

2) Consider D0 ← D and N0 ← N . To find reciprocal, N
is 1.

3) For number of steps m, do the following,

a) Select Ri−1 ← 2−Di−1.
b) Select Ni ← Ni−1Ri−1.
c) Select Di ← Di−1Ri−1

where i starts from 1.
4) Output Nm

2e+1 .

The number of steps m for an n bit number is log2n. For
64 bit double precision floating point division, m is 6.

To perform division, we need another algorithm
Absolute Divide By Power Of 2, which inputs a
floating point number in test tube Tin and a biased integer
exp in test tube Texp, and will output a test tube Tout, that
will contain the floating point result of dividing the content of
Tin by 2exp+1. This algorithm will return absolute value of
result of division, sign to be assigned by the next Reciprocal
algorithm itself. The division by 2 can be performed by
simply decrementing the exponent. So, to divide by 2exp+1,
the exponent needs to be decremented (exp+ 1) times. Note
that, the biased exponent exp must be compared relative to
the bias (1023 for double-precision, 127 for single-precision
or 15 for half-precision).

Algorithm 26 Absolute Divide By Power of 2

1: procedure ABSOLUTE DIVIDE BY POWER OF 2(in : Tin, Texp,
nexp, nmant; out : Tout)

2: Pour blank memory strands of (nexp + nmant + 1) bits in Tout;
. Get exponent and mantissa separated from the number

3: T1exp ← Substring(Tin, 1, nexp);
4: T1mantissa ← Substring(Tin, nexp + 1, nexp + nmant);

. Make bias ready in test tube Tbias

5: Pour nexp bit binary equivalent of 2nexp−1 − 1 in Tbias;
6: Pour 00 . . . 01︸ ︷︷ ︸

nexp bits

in T decr
exp ;

. Compare biased exp with bias
7: {Tgreater, Tlesser, Tequal} ←

Comparator(Texp, Tbias, nexp);
8: if Tequal is empty then . exp is different than bias
9: {Tg1, Tl1, Te1} ← Comparator(Texp, Tgreater, nexp);

10: if Te1 is not empty then . exp is greater than bias
11: while contents of Texp and Tbias are not equal do

. Decrement both Texp and T1exp
12: {TADD, TOverflow} ←

Subtract(T1exp, T decr
exp , nexp);

13: Discard(TOverflow);
14: Discard(T1exp);
15: Combine(T1exp;TADD);
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16: {TADD, TOverflow} ←
Subtract(Texp, T decr

exp , nexp);
17: Discard(TOverflow);
18: Discard(Texp);
19: Combine(T1exp;TADD);
20: end while

. Exponent of Tin decremented (exp− bias) times. Decrement
once more

21: {TADD, TOverflow} ←
Subtract(T1exp, T decr

exp , nexp);
22: Discard(TOverflow);
23: Discard(T1exp);
24: Combine(T1exp;TADD);
25: end if
26: end if
27: Tout ← Setbits(T1exp, 0, nexp − 1, 1);
28: Tout ← Setbits(T1mantissa, 0, nmant − 1, nexp + 1);
29: end procedure

Now the reciprocal operation may be written as follows.

Algorithm 27 Reciprocal

1: procedure RECIPROCAL(in : Tin, nexp, nmant; out : Tout)
2: Texp ← Substring(Tin, 1, nexp);
3: Texp2 ← Substring(Tin, 1, nexp);
4: Pour floating point representation of 2.0 in Tnum2;

. Normalize D to be within 0.5 and 1
5: TD0 ← Absolute Divide By Power Of 2(Tin, Texp,

nexp, nmant);
. R0 = 2−D0, D1 = R0 ∗D0, N1 = R0

6: TR0 ← FPSubtract(Tnum2, TD0, nexp, nmant);
7: TD1 ← FPMultiply(TR0, TD0, nexp, nmant);

. R1 = 2−D1, D2 = R1 ∗D1, N2 = R0 ∗R1

8: TR1 ← FPSubtract(Tnum2, TD1, nexp, nmant);
9: TD2 ← FPMultiply(TR1, TD1, nexp, nmant);

10: TN2 ← FPMultiply(TR0, TR1, nexp, nmant);
. R2 = 2−D2, D3 = R2 ∗D2, N3 = N2 ∗R2

11: TR2 ← FPSubtract(Tnum2, TD2, nexp, nmant);
12: TD3 ← FPMultiply(TR2, TD2, nexp, nmant);
13: TN3 ← FPMultiply(TN2, TR2, nexp, nmant);

. R3 = 2−D3, D4 = R3 ∗D3, N4 = N3 ∗R3

14: TR3 ← FPSubtract(Tnum2, TD3, nexp, nmant);
15: TD4 ← FPMultiply(TR3, TD3, nexp, nmant);
16: TN4 ← FPMultiply(TN3, TR3, nexp, nmant);

. R4 = 2−D4, D5 = R4 ∗D4, N5 = N4 ∗R4

17: TR4 ← FPSubtract(Tnum2, TD4, nexp, nmant);
18: TD5 ← FPMultiply(TR4, TD4, nexp, nmant);
19: TN5 ← FPMultiply(TN4, TR4, nexp, nmant);

. R5 = 2−D5, N6 = N5 ∗R5, No need to calculate last D
20: TR5 ← FPSubtract(Tnum2, TD5, nexp, nmant);
21: TN6 ← FPMultiply(TN5, TR5, nexp, nmant);

22: Tout ← Absolute Divide By Power Of 2(TN6, Texp2,
nexp, nmant);

23: Tout ← Setbits(Tin, 0, 0, 0); . Set sign bit as same as input
24: end procedure

Finally the division operation can be written as follows.

Algorithm 28 Floating Point Division

procedure FPDIVISION(in : T1, T2, nexp, nmant; out : Tout)
Treciprocal ← Reciprocal(T2, nexp, nmant);
Tout ← FPMultiply(T1, Treciprocal, nexp, nmant);

end procedure

For brevity, this paper did not consider IEEE-754 sub-
normals, infinities, NaN and rounding modes. The general-
purpose routines provided here make implementing these
details straightforward (although too cumbersome for presen-
tation in this paper).

VIII. EXPERIMENTAL VALIDATION

A. Feasibility Analysis

As already has been specified, physical implementations of
the proposed algorithms are not difficult, as the basic opera-
tions used are easily implementable. To implement separate
operation suitably, it is better to design the memory strand as a
DNA molecule, but the stickers need to be designed of some
alternate backbone material, such as PNA (Peptide Nucleic
Acid).
Combine is the easiest of all operations, and can be

implemented by simply pouring all the contents of source test
tube in destination test tube.
Separate on a particular bit b can be implemented by

designing probe out of DNA molecule for that particular bit,
and affixing it to a solid support. The nucleotide sequence
of the probe will be same as that of the corresponding
PNA sticker. During separation, strands having b off, will
be captured on the probes, while the strands having b on,
will remain in solution, as that region is already covered
by corresponding PNA sticker. The solid support can then
be washed in zero salt solution, which will detach the DNA
probe, but will keep the PNA stickers intact, as decrease in
salt concentration strengthens PNA-DNA binding, but weakens
DNA-DNA binding.
Set operation can also be implemented easily by taking

corresponding PNA sticker of the bit needed to be set in the
memory strand solution, and annealing.

Details of the physical implementations of these basic
operations can be found in [21].

B. Complexity Analysis

As has already been specified in corresponding sections,
logic operations, comparator and all shifters execute in O(n)
time. Addition/Subtraction operation also executes in O(n).
Multiplication and division algorithm executes in O(n2)
time. As for example, to perform multiplication, for each
bit, 4 O(n) operations (one of Add or Subtract, one
LogicalRightShift, one ArithmeticRightShift and one
CircularRightShift) and several constant time operations
need to be perfomed. Similarly floating point operations follow
similar execution complexity as on a conventional computer.
As an example, at first, both of the comparison of exponents
takes linear time in the size of exponent and appending bit at
head of mantissa takes linear time in the size of mantissa. In
addition algorithm, after appending 1 at head of mantissas
and comparing exponents, if the two exponents are found
out unequal, needs two more linear integer operations, viz.,
LogicalRightShift and Add to make the two exponents
equal. After that, depending on the sign bit of two numbers,
appropriate linear operations are performed on the mantissas
and at the end, resultant mantissa is normalized. So, overall the
floating point addition is also linear as well as floating point
subtraction. Similar logic goes for floating point multiplica-
tion, reciprocal and division, which execute in O(n2) time,
but with much higher constant factor than integer operations.
So, even though proposed algorithms are no way better than
conventional algorithms, but this work have been designed
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keeping in mind that, to make DNA Computer generally
applicable to solve general problems, where it falls short of
conventional computer, a complete ALU is necessary, so that
any problem can be solved by not altering the main algorithm
much. Where DNA computing is already proven powerful to
solve “hard” computational problems requiring searching over
large search-space, giving this technology the power of solving
general problems will make this computing technique almost
complete.

C. Implementation Issues

How much complete a proposed model of ALU is, needs
to be measured on the basis of availability of arithmetic and
logic operations, the ease of their physical implementations
and the range of binary number representable without breaking
the stability of DNA molecules. The work presented here has
implemented all possible logic, integer and floating point op-
erations. Moreover, the integer operations follow 2’s comple-
ment arithmetic, and floating point operations follow IEEE 754
floating point format, thus resembling closely to a complete
conventional ALU. Also, the physical implementation of the
operations are easy.

A strand with 2000 oligonucleotides are considered stable
[1] [18]. Each memory segment on the memory strand needs
to be unique. Even if we assume, each bit will need 6 bp
long sequence, it will allow more than 300 bit long binary
numbers to be represented without violating the constraint
of memory segment uniqueness, as there can be 46 = 4096
possible different 6 bp long nucleotide sequences.

IX. CONCLUSIONS AND FUTURE RESEARCH

Novel approaches to implement all possible logic, integer
and floating point operations have been proposed in this work,
resembling closely to a complete conventional ALU. This
approach can handle sufficiently large binary numbers. All the
biomolecular operations used here are easy to implement.

Although there has been a diminished interest [25] in sticker
method due to unreliable nature of DNA operations, [21] and
[26] describe methods to work with redundant DNA strands to
cope with this. Proposed algorithms can be highly suitable in
this context and can be adapted in future research to deal with
such redundant representation, as algorithms need to check
for whether test tubes are empty or not to take most of the
major decisions, and it can easily be performed by checking
the concentration of DNA strands in the corresponding test
tube.

Proposed techniques are highly suitable for design of au-
tomated DNA machine, once the basic operations of sticker
DNA model, except clear, are automated. As to become
a proper substitute of a conventional computer, all these
operations are necessary to implement in easily implementable
manner, this work is expected to play an important role in the
future design of automated DNA machine.
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