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TL-HLS: Methodology for Low Cost Hardware
Trojan Security Aware Scheduling with Optimal

Loop Unrolling Factor during High Level Synthesis
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Abstract—Security against hardware Trojan that is capable
to change the computational output value is accomplished by
employing Dual Modular Redundant (DMR) schedule during
High Level Synthesis (HLS). However, building a DMR for Trojan
security is non-trivial and incurs extra delay and hardware. This
paper proposes a novel HLS methodology for constraint driven
low cost hardware Trojan secured DMR schedule design for loop
based Control Data Flow Graphs (CDFGs). Proposed approach
simultaneously explores an optimal schedule and optimal loop
unrolling factor (U) combination for a low cost Trojan security
aware DMR schedule. As a specific example, proposed low cost
Trojan secured high level synthesis approach (TL-HLS) relies
on Particle Swarm Optimization (PSO) algorithm to explore
optimized Trojan secured schedule with optimal unrolling that
provides security against specific Trojan (causing change in
computational output) within user provided area and delay
constraints. The novel contributions of the paper are, firstly an
exploration of a low cost Trojan security aware HLS solution
for loop based CDFGs; secondly, proposed encoding scheme
for representing design solution comprising candidate schedule
resources, candidate loop unrolling factor and candidate vendor
allocation information; thirdly, a process for exploring the a low
cost vendor assignment that provides Trojan security; finally,
experimental results over the standard benchmark that indicates
an average reduction in final cost of ∼ 12 % compared to recent
approach.

Index Terms—Trojan, Intellectual Property, High-Level Syn-
thesis, Loop Unrolling, Particle-Swarm Optimization

I. INTRODUCTION AND MOTIVATION

HARDWARE Trojan’s are malicious logic/hardware com-
ponents embedded by a rogue in order to induce mal-

functioning of Integrated Circuits (ICs). Globalization of Sys-
tem on Chips (SoC) design and manufacturing has raised
serious concerns on the security and trustworthiness of the
embedded third party intellectual property (3PIPs) [1] [2], [3]
[4]. Fig. 1 shows the typical design cycle involving third party
vendors and in house system design. In this figure, the first
block indicating datapath components or third party Register
Transfer Level (RTL) library is considered untrustworthy,
while the remaining blocks(in house system designer and
foundry) are considered trustworthy. The SoCs may involve
analog and digital components at the same time for cost and
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performance trade-offs [5]. However, the focus of this current
paper is the digital components when their design exploration
are performed at the architecture level.

During designing, an IP may be corrupted (by an adversary),
by inserting hardware Trojan into it. During HLS, it should
be ensured that any possible infection of 3PIP is detectable,
thereby generating a trustworthy design. 3PIPs are the IPs
present in the module library of a HLS tool, which may
have been imported from an outside (third party) vendor
and is considered untrustworthy. The key is that any third
party module may contain malicious Trojan logic inserted by
an adversary in the third party design house. This unique
possibility of Trojan insertion in third party module of a
HLS library was highlighted and discussed in recent literature
[6]. In a typical case, the HLS company provides the RTL
files of the modules/IPs of the library, which might have
been imported from third party vendors. These RTL files
of a module may contain Trojan logic as discussed above.
Therefore, detection strategy during HLS for possible Trojan
in 3PIP/module (present in the library) requires attention [6].
However, the detection process of hardware Trojan during
HLS mandates additional hardware, which upon deployment
may not abide by the user area constraint provided. Further,
incorporating additional logic for Trojan detection during HLS
also results in extra delay for processing output, which again
may not abide by the user delay constraints specified. It
therefore becomes mandatory to consider the effect of extra
delay and hardware cost during Design Space Exploration
(DSE) in HLS.

The aforesaid process is applicable for Data Flow Graphs
(DFGs) in HLS. However, in the context of loop based
CDFGs, the exploration of a low cost hardware Trojan security
aware schedule does not suffice alone, due to involvement
of an additional variable called “loop unrolling factor”. Loop
unrolling plays an important significance in dictating the final
area and delay of a design. Therefore, during the design of
a Trojan security aware schedule for CDFGs, simultaneously
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considering the effects of loop unrolling on its area-delay
tradeoff is equally critical. This paper resolves the aforesaid
problem by proposing a methodology for simultaneous DSE
of low cost Trojan security aware DMR schedule and optimal
loop unrolling factor, that satisfies the user area-delay con-
straints provided. DMR results in duplication of operations,
which in turn may lead to more steering logic and internal
buffering compared to a normal (non DMR) design. However,
proposed low cost Trojan secured DMR scheduling does not
lead to functional resource overhead as it is designed based on
resource constraints, which is iteratively obtained through PSO
process. Further, the hardware overhead of proposed Trojan
secured DMR (i.e. steering logic and internal buffers) is also
optimized in our approach.

The rest of the paper is organized in the following manner:
Section II discusses the novelty aspects of the current paper.
Section III describes a scenario of Hardware Trojan in 3PIP.
Further, section IV discusses the approaches developed so far,
to handle hardware Trojans. Section V and VI presents the
evaluation models and proposed methodology. The results are
further described in section VII.

II. NOVEL CONTRIBUTIONS OF THE PAPER

The novel contributions of the current paper for advance-
ment of state-of-art in HLS for trusted hardware are the
followings:

1) Approach for simultaneous exploration of low cost Tro-
jan security aware DMR schedule and optimal loop
unrolling factor during HLS that abides by the user area-
delay constraints provided. This work aims at providing
low cost Trojan detection and not recovery (unlike in [7],
[8]). Therefore, the proposed technique in this paper is not
extended for Triple Modular Redundant (TMR) designs
to keep a focused scope.

2) Vendor allocation exploration procedure during proposed
PSO driven DSE process. This encoding explores the
most efficient vendor assignment that provides Trojan
detection.

3) Encoding scheme for representing design solutions that
comprises of candidate schedule resources, candidate
loop unrolling factor and candidate vendor allocation
information.

4) Technique for area-delay tradeoff using PSO during ex-
ploration of a low cost Trojan security aware DMR sched-
ule. DMR may lead to more steering logic and internal
buffering compared to a normal (non-DMR) design. How-
ever, proposed low cost Trojan secured DMR scheduling
does not lead to functional resource overhead (unlike in
[6]) as it is designed based on resource constraints (fed

through PSO process). Further, the overhead of proposed
secured DMR (i.e. steering logic and internal buffers) is
also optimized in our approach.

5) Model for delay estimation of a Trojan secured DMR
CDFG.

Why Security Aware HLS? Digital ICs go through design
exploration at various stages of abstraction in consistence with
divide and conquer philosophy, to handle the complexity at
the same time to control the non-recurrent design cost. There

is no doubt that, HLS is way matured starting from perfor-
mance optimization, power optimization, to process variation
optimization, conducted at the architecture level [9], [10]. In
the current era of smart mobile computing, IP based designs
are the need of the hour to meet the time to market demand
and HLS techniques can play more crucial role for the design
engineers [5]. So, a natural progression of HLS research is
to explore security awareness along the other challenges at
the architecture level through HLS. The key idea of low cost
Trojan security aware HLS solution for loop based CDFGs
has been depicted in the Fig. 2.

Threat Model for Proposed Research: The paper targets
Trojans in 3PIPs that only change computational output value
(and produces no other impact). This paper doesn’t target class
of Trojans that steal information/data. The insertion of Trojan
is possible in the following way: A malicious IP/module
present in the library of a HLS tool is designed either by a
rogue in the 3PIP design house or by a rogue in the in-house
design team. Since the adversary may not provide Trojan-
related information, hence detection by the validation team is
difficult. In proposed approach the foundry and the in-house
system designer are considered to be trustworthy in the IC
design flow. In other words, in our proposed approach only the
third party vendor (design house) is considered untrustworthy.
This indicates an adversary or rogue designer only in the
third party house can manipulate the IP (as the entire IPs
(examples shown in Fig. 3) are received from the third party
for subsequent design integration).

III. HARDWARE TROJAN IN 3PIP MODULE: AN EXAMPLE

Consider the following scenario, which explains the hard-
ware Trojan problem in 3PIPs and reason for hardware security
during HLS: an untrusted IP vendor/supplier may deliberately
insert Trojan logic into a module/IP (used as a component
in the HLS library). The Trojan logic remains ineffective,
until triggered by a rogue and therefore is difficult to be
detected during security review by in-house design team. This
is due to reason that, during normal conditions (when not
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Note: A possible case of an infected IP present within the module
library of a HLS tool. When select (S) = 1 is triggered by a
rogue (controlled externally), then, Trojan blocks get activated. Until
triggered, Trojan remains dormant in the system and circuit behaves
normally. Red colored wires/blocks indicate malicious Trojan logic
secretly inserted by an adversary in the third party design house.
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Fig. 3: Infected IP present as module in library of a HLS tool.
triggered), the logic behaves like a functionally correct IP.
Typically, the HLS company provides the RTL files of the
modules/IPs of the library that may contain malicious/Trojan
logic, which might have been imported from third party
vendors. The proposed approach deals with hardware Trojan in
the modules/IP that changes its computational value. However
the key is that Trojan only becomes visible at runtime (after
triggering by an adversary), thereby remaining completely
ineffective before, thus being difficult to detect during RTL
simulation/other lower level tests. Additionally, for the case
when the Trojan is ‘always on’ in an IP, it is likely that
most of the outputs reflect no change during RTL simulation
(except a few). Therefore, without detailed examination, the
Trojan may sometimes go unnoticed. This is applicable for
both small and large size modules present in HLS library.
This is because, even small modules are activated by an
adversary when deployed in real time situation to perform
computational error. Even an exhaustive examination (through
RTL simulation, physical inspection etc.) for small modules
makes it difficult for detection as in offline situation it behaves
like a functionally correct IP. The next paragraph outlines in
details the reasons why this type of Trojan in IP is difficult to
detect through normal examination. Fig. 3 shows an instance
of Trojan within a 3PIP/module present inside the library of
a HLS tool.

Here, few examples of possible Trojan logic in components
(BCD adder, decoder, digital comparator, multiplier etc.) of
a HLS tool library are shown, which on triggering changes
the normal functional output. The triggering of the Trojan can
be achieved through numerous possibilities such as, activation
through Trojan time bomb (FSM counter), sensing a specific
design signal, external antenna etc. Regardless of where the

component is used, activation of the Trojan logic is bound to
impact the computational output value of the entire system.
This is because, the Trojan that we handle in our work only
intends to affect the computational output value of the system
(that is, change the digital value), and not steal/leak any secret
information. Therefore, knowledge of the architecture of the
system is not required by the attacker to exploit hardware
Trojan and affect computational output value. Such Trojans
are difficult to be detected with the detection techniques
applied at lower levels of abstraction such as side channel
analysis [11] and RTL simulation as described below. This is
because, firstly, Trojan logics by design are typically triggered
under very specific predefined conditions (such as through
FSM counter value, sensing a specific design signal, external
antenna, etc.) which makes them unlikely to be activated
and detected during normal functional verification by test
vectors [12]. Normally, in the system RTL code, only the
complete design is functionally verified; secondly, in spite
of functional verification check (RTL simulation), the IP will
perform normally/correctly due to being dormant at that stage.
It is only activated by an adversary when deployed in real time
situation to perform functional failure. Thirdly, because there
is no trustworthy golden IP model, therefore, the detection
of Trojan in a 3PIP during HLS is not possible. Moreover,
detection by physical inspection and reverse engineering are
very difficult and costly owing to the complexity involved and
nanometer IC feature size. Since Trojans are intelligently in-
serted in a particular portion of the design and may be activated
by a single triggering signal, therefore, reverse engineering
usually doesn’t guarantee detection of Trojan. This is because,
detection of Trojans during reverse engineering depends on its
accuracy and efficiency, thus making the detection difficult.
Additionally, tests used for detecting manufacturing faults
(such as, stuck at faults, delay faults and bridging faults)
cannot guarantee detection of such Trojans. Finally, detection
of such Trojan using analysis of parametric signals is consid-
ered ineffective [12] due to decrease in physical feature size
because of evolution in technology.

Direct conversion into a register transfer level structure
from its corresponding behavioral description (CDFG) is
accomplished through HLS which involves the process of
DSE that includes evaluation of alternative candidate design
solutions based on objectives such as area and delay [13]–
[23]. During this process, multiple sub-processes participate
such as scheduling, allocation and binding [16]. The process
of DSE gets convoluted with the involvement of auxiliary
variable called loop unrolling factor for CDFG applications
as it adds an extra dimension to explore based on conflicting
user constraints of area and delay. Moreover, the consideration
of the aforesaid variables during DSE of a trusted hardware is
extremely complex as discussed in Section I.

IV. RELATED PRIOR RESEARCH

No effort has been made on designing a low cost Trojan se-
curity aware HLS that considers optimization of schedule and
loop unrolling (based on user constraints). There have been
few promising work that is based on code-coverage analysis,
property checker which checks whether an IP satisfies those
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TABLE I: Proposed Nomenclature of the Current Paper
Notations Definitions Notations Definitions
p Population size D Total available resource types

Xi
Resource set of a particular particle solution with
unrolling and allocation procedure information

−→
Rn Resource array

X+
i New particle position of ith particle Pv Vendor allocation procedure type

Xgb Global best particle positions U unrolling factor
Xlbi Local best particle position for ith particle Vj Type of vendor

N(R1),..N(Rd) Number of instances of resource type ’1’,..’d’ A(R
Vj

i ) Area of a resource type (Ri) corresponding to vendor (Vj )
Cf (Xi) Cost of particle with resource set Xi ADMR

T Total area of a DMR design
n and n’ Maximum value of node Acons User specified area constraint
Vdi Velocity of ith particle in dth dimension ADMR

max DMR solution with maximum area in the design
V +
di

New velocity of ith particle in dth dimension TDMR
E Total execution time of a DMR design

V max
di

maximum velocity of ith particle in dth dimension Tcons User specified execution time constraint
ω Inertia weight TDMR

max DMR solution with maximum time in the design space

Rdi
Resource value or ’U ’ value of particle Xi in dth

dimension of ith particle
Rdgb resource Value of Xgb in dth dimension

R+
di

New Resource value or ’U ’ value of particle Xi in dth

dimension of ith particle
Rdlbi

Resource value of Xlbi (local best position) in

dth dimension of ith,particle
b1, b2 Acceleration coefficients which balances the effect of

cognitive and social factor during exploration R
Vj

i Number of instances utilized from Vendor Vj for a
resource type Ri

r1, r2 Random numbers providing stochasticity CDMR
first Number of CS required to execute first iteration

of the CDFGDMR

CDMR
body Number of CS required to execute loop

body of CDFGDMR once CDMR
T Total CS required to execute the loop of CDFGDMR

I Maximum number of iteration (loop count) ∆ Delay of one Control Step (CS) in nanoseconds

properties. In code-coverage analysis [24], list of suspicious
signals are identified in the RTL design. Those signals are
identified as suspicious signals which remain stable during
coverage analysis. The motivation behind this concept is that
Trojans normally do not change states until triggered. Then the
approach adds test vectors to activate uncovered parts of the
design. Though this is beneficial however, it results in huge
verification time. Additionally, redundant circuit removal is
applied since these tend to stay at the same logic level during
verification. This is obtained by techniques where scan chains
are inserted into the post synthesis results (gate level netlist)
and analysed for stuck-at-faults through test patterns generated
by Automatic Test Pattern Generation (ATPG) process. An
untestable stuck-at-fault is likely to be a redundant logic. Thus
when an ATPG identifies a stuck-at- 1/0 fault as untestable,
the faulty net can be replaced by logic 1/0 in the gate level
netlist. All circuits driving fault nets will be removed as well.
Equivalence analysis [25] (like done in case of faults) may
be applied on the suspicious signal list in order to reduce
the number of signals, however, it incurs runtime overhead.
Further, in the lists of suspicious signals not all signals are
Trojans. Moreover, in this approach the quantity of suspicious
signals keeps increasing with the increase in the complexity of
Trojan inserted. Finally, it is difficult to achieve 100% code-
coverage for all IPs.

In [26], authors developed an efficient dummy flip-flop
insertion procedure to increase the transition probability of
nets when it is lower than a specific probability threshold. The
transition probability was modeled using geometric distribu-
tion. Furthermore, a number of approaches have been proposed
for Trojan detection at lower levels of chip design [12], [27]–
[30]. Besides, [20], which has dealt with Trojan detection at
system level however with no effort on exploring an optimized

Trojan secured schedule with optimal loop unrolling (based
on user constraints) that is capable of providing system level
protection. In [30], authors detect Trojans by generating a
multiple supply transient current integration methodology.
Once the detection of Trojan in a chip is done, an isolation
process is initiated to isolate the Trojans within the IC. In
[27], the detection process uses chip characteristics like path
delay and power consumption (of the manufactured chips) and
compares them with the expected values to identify Trojan’s.
Moreover, the approach, in [28] is capable of detecting mali-
cious hardware modifications in the presence of large process
variation induced noise. The detection strategy relies on the
fact that, Trojan’s once inserted change the design parameters
of the circuit.

Authors in [6], [31] have dealt with Trojan detection at
system level. Authors in [6], [31], adopted a concurrent
error detection (CED) approach for Trojan detection. The
approaches use a diverse set of 3PIP vendors for Trojan
identification. Authors have only targeted DFGs and therefore
do not handle loop based CDFG. Moreover, the approaches
[6], [31] do not have techniques for exploration of efficient
vendor allocation procedure for hardware in DMR system
since it affects the final area-delay of the solution [32]. As
a result of which an inferior quality solution (higher cost)
is generated. However, the proposed approach only focuses
on Trojan detection and not on preventing its activation (as
in [6]). Therefore, the cost comparisons reported for both
approaches are with respect to Trojan detection only. The
proposed Trojan secured HLS is different than fault secured
HLS approach [33] in terms of the threat model, number of
vendors required and the type of security constraints imposed.
For example, the threat model considered in Trojan secured
HLS is malicious logic inserted by an adversary secretly which
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remains dormant until triggered. However, fault secured HLS
considers resiliency against transient faults. Further, Trojan
secured HLS requires at least 2 vendors to provide distinctness
in the DMR output, however, its counterpart only requires
one vendor for security. Finally, the Trojan secured HLS
demands distinct vendor allocation to hardwares of sister
operations in DMR while its counterpart requires distinct
hardware assignments to sister operations in DMR only (where
even both distinct hardware units may be from same vendor).

V. SECURITY AWARE HLS: FORMULATION AND
MODELS

The aim of proposed approach is to explore the design
space of a Trojan Secured DMR schedule comprising of
candidate solutions for DMR schedule resource configurations
(architecture), candidate loop unrolling factor and candidate
vendor assignment procedure, all hybrid encoded (as discussed
in the upcoming sections).

A. Problem Definition

Determine a solution for Trojan secured DMR schedule, op-
timal {Xi} = {N(R1), N(R2),..N(RD), U Pv}, while exploring
the design space of a given CDFG and satisfying conflicting
user constraints and minimizing the overall cost. The problem
can be formulated as follows:

Minimize: Hybrid Cost(ADMR
T , TDMR

E ), for Optimal {Xi},
Subjected to: ADMR

T ≤ Acons and TDMR
E ≤ Tcons and

hardware Trojan security. The variables are explained in Table.
I. ‘Pv’ is the vendor allocation procedure capable of holding
only binary value (where ‘Pv’ = ‘1’ indicates all operations
of a specific unit being strictly assigned to resources of same
vendor type e.g. all operations of original unit strictly assigned
to same vendor ‘V1’ and all operations of duplication to
same vendor ‘V2’; while ‘Pv’ = ‘0’ indicates alternate vendor
assignment to operations in a CS of a unit). Hence, the variable
‘Pv’ is crucial for Trojan secured schedule optimization, as
both ‘Pv’ = 0 and ‘Pv’ = 1, provide vendor distinctness in
DMR design resulting in Trojan security. However, they have
different impact on final delay of the design.

B. Proposed Evaluation Models

In the proposed work, each particle position represents a
hybrid encoding of candidate solutions for schedule resource
configurations (Xi), loop unrolling factor (U ) and vendor
assignment procedure information (Pv) in the design space.

1) Proposed area model: Total area consumed (ADMR
T ) by

a resource set is given by:

ADMR
T =

2∑
j=1

m∑
i=1

(
A
(
R

Vj

i

)
×RVj

i

)
, (1)

where, the variables are explained in Table I. Note: The area
component includes area due to functional resources, intercon-
nect units (mux and demux), comparator (for error detection)
as well as overhead incurred from internal buffering (during
temporary storage of operation output in DMR scheduling).
The area evaluated is with respect to module library generated
with CMOS 90nm technology node [34], [35].

2) Proposed Delay Model: The delay is evaluated after
derivation of the delay model using the following two cases:

Case 1: When ‘U ’ is equal to one (indicates no unrolling)
then: Total # of CS = # of CS required executing loop body
once * number of duplicate iterations of loop body:

CDMR
T = CDMR

body ∗ α =

(
CDMR

body ∗
[
I

U

]
floor

)
(2)

where, α = [I/U ]floor Since U = I,
CDMR

T = CDMR
body ∗ I (3)

where, CDMR
T the variables are explained in Table I. Note:

eqn. 2 is valid when ‘U ’ evenly divides the loop count(I) (i.e.
I % U == 0).

Case 2: When ‘U ’ unevenly divides I: In such a case,
ImodU iterations will be executed sequentially, therefore, the
total no. of CSs is:

CDMR
T =

(
CDMR

body ∗
[
I

U

]floor)
+ (ImodU) ∗ CDMR

first (4)

{CSs for unrolled loop} {CSs for sequential loop},
The variables are explained in Table I. Hence the execution

time for the system is calculated as:
TDMR
E = ∆ ∗ CDMR

T (5)
where, ‘∆’ is the delay of one CS in nanoseconds. The
delay model is based on the latency values of each functional
hardware described at 90nm technology scale [36].

3) Fitness function: The fitness function (considering ex-
ecution time and area consumption of a solution) is inspired
from [37] [38] and is formulated as:

Cf (Xi) = W1

(
ADMR

T −Acons

ADMR
max

)
+W2

(
TDMR
E −Tcons

TDMR
max

)
. (6)

The variables are explained in Table I. W1 and W2 are the user
defined weights both kept at 0.5 during exploration to provide
equal preference. The equation above is a penalty graded
cost function which incorporates the effect of user constraints
(Acons and Tcons) during fitness evaluation of DMR system.
Further, it considers the maximum values of area and execution
time (delay) during evaluation to yield a normalized value of
cost (between 0 and 1). Since the objective of the proposed
exploration approach is to satisfy the user constraints as well
as minimize the hybrid cost (specified in section V-A), hence
a higher negative value indicates a more desirable solution.

VI. PROPOSED SECURITY AWARE DSE IN HLS
For detection of hardware Trojan in 3PIPs that only change

computational output value (and produces no other impact),
minimum two distinct third party vendors are required. The
concept of this was introduced in [6]. Even if the IPs from
two different vendors have dissimilar timing, but functional
similarity of two distinct IPs, allow for comparison at the
DMR output. In the proposed approach we only require two
distinct vendors for generating a Trojan secured schedule. We
do not require optimization of number of vendors, however we
optimize the cost of solution by regulating internal allocation
process of two distinct vendor within DMR schedule through
a variable ‘Pv’ during exploration. Imposing diverse set of
3PIP vendors as security constraints during allocation step
for similar operations in DMR design during HLS provides
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detection of malicious output. A simple demonstrative example
is shown in Fig. 5 where y is the primary input. Let us
consider a scenario: Multiplier of vendor V1 is malicious:
In such case assuming the multiplier maliciously performs
division. The subsequent output from original unit is 1/y,
however, the duplicate output is y3, indicating Trojan detection
(due to difference in computation value). As discussed in
[6] for cases where no sub-IP exists, it is highly unlikely
that different Trojans in different 3PIPs will produce identical
wrong outputs. In other words, when no sub-IP exists, the
chance of IP from both third party vendors being Trojan
infected or carrying same Trojan logic is low. In this approach,
we do not provide solution for cases when a 3PIP instantiates
a Trojan infected sub-IP from another IP vendor, as it falls
beyond the target scope of our paper. If both vendors are
untrusted, the chance of their hidden Trojan logic being same
is very rare (as both third party vendors are mutually exclusive
of each other). Just performing equivalence check on each IP
from the different vendors does not help in Trojan detection,
since the Trojan in an IP remains dormant (inactive) in normal
condition and gets activated only on external triggering (by an
adversary) during real time deployment. Therefore, performing
equivalence check on both the IP will not reflect a difference
(or Trojan detection).
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Fig. 5: Simple motivational example

A. Background on PSO Algorithm

PSO is a a metaheuristic search methodology where the
particles move through a multidimensional search space. Each
particle is attracted towards the position of the current global
best xgb and its own best location xlb in history. When a
particle finds a location that is better than any previously found
locations, then it updates it as the new current best for the
particle. The position of ith particle is changed by adding the
velocity to the current position as follows:

xi(t+ 1) = xi(t) + vi(t+ 1) (7)
wher, xi and vi be the position and velocity vector for particle
i. While, the velocity is updated with the following rule:
vi(t+1) = ωvi(t)+ b1r1[xlbi −xi(t)]+ b2r2[xgb−xi(t)] (8)

where, ω is called the inertia weight, b1 is the cognitive
learning factor, b2 is the social learning factor, r1, r2 are
random numbers in the range [0, 1].
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B. Proposed Methodology for PSO Driven Exploration of
Trojan Secured DMR Datapath

Module library, behavioral description of CDFG and pre-
defined user parametric constraints for area and delay, con-
trol parameters of PSO (such as inertia weight, acceleration
coefficients and swarm size ‘p’), maximum iteration count
for the CDFG and the pre-processing algorithm for unrolling
factors are provided as inputs to the proposed DSE process
(as indicated in Fig. 4). The details of the major steps of
PSO driven DSE framework are described in section VI-E
to VI-H later. However, for the sake of immediate reference, a
brief explanation for Fig. 4 is provided below: The PSO-DSE
initiates with novel particle encoding process representing
a candidate design solution Xi in the design space. The
encoding scheme for a candidate design solution comprises
of DMR schedule architecture (

−→
Rn), unrolling factor (U ) and

distinct vendor allocation procedure type (Pv). Therefore, a
particle position which is a candidate design solution in PSO-
DSE framework is labeled as Xi :

Xi = (
−→
Rn, U, Pv) (9)

where,
−→
Rn indicates the resource array (resource configuration

e.g. number of adders, multipliers etc). The reason behind
addition of last dimension (vendor allocation procedure type)
‘Pv’ is discussed in upcoming section. Once the initial en-
coding phase (initialization of particles) is complete, then the
next step is to build a Trojan secured DMR design (discussed
in upcoming section) which is subjected to fitness evaluation
through the cost computation block. Determination of local
and global best particle position is done after this, followed
with calculation of particle velocity and new particle position
(X+

i ). Determination of new particle position is accomplished
by evaluating new value for every dimension (d) for posi-
tion X+

i until, the final dimension ‘D’ is checked (note:
in our work, the final dimension ‘D’ is equal to ‘U ’ as
indicated in eqn. 9. This is because the last dimension ‘Pv’
can only hold Boolean value as discussed in the upcoming
paragraph). Interaction with velocity and resource clamping
block is performed if required to avoid boundary outreach.
Then similarly as discussed before, the next step is to build
a Trojan secured DMR design for the new particle position
X+

i followed by evaluation of its cost computation. If the
cost of the new particle position (X+

i ) is found higher than
the previous position (Xi), then change in X+

i is made by
evaluating another new particle position. Else, the local best
particle position is updated. This process is repeated for the
entire swarm population size (p) and finally the global best
position is updated. Mutation process is followed after this to
arrive at a further better solution if possible. The aforesaid
process continues until the terminating criteria (Z) is reached.

Mutation: Mutation operation is performed on all local
best resource configurations with probability Pm=0.25. The
algorithm uses two basic operations for mutation: a) Rotation
operation, and b) Increment or decrement operation. To per-
form these, the total population is divided into two groups:
a) even group, in which algorithm performs left rotation
operation and b) odd group, in which algorithm performs
increment or decrement with a random number.

Input –value of ‘I’(Total no. of loop iteration)
Output –screened set of unrolling factor (U)
1. Begin

// Screening of U//
2. int k = 0
3. For U=2 to I Do
3.1 IF ((I mod U < (U/2) ) && (U <= I/2)) Then

//Add Uinto the accepted U list//
3.2 Accepted U [k] = U
3.3 k++
3.4 End IF
3.5 End For
4. End

Fig. 6: Pre-processing of unrolling factor

C. Pre-processing of unrolling factor candidates
Pre-processing (screening) of unrolling factor candidates

that do not form part of an optimal solution during explo-
ration is extremely crucial. Some unrolling factors such as
the ones which yield large trailer loops are potential sources
for greater delay due to multiple sequential loops involved.
Further, it is established in [10], [37], that performance is not
a monotonically increasing function of unrolling factor value
i.e. for large unrolling factor values; therefore, the performance
improvement is found marginal. The corresponding algorithm
is shown in Fig. 6.

D. Designing a Trojan Secured DMR schedule for a design
solution during DSE

In the proposed approach for building Trojan secured sched-
ule, DMR logic with specific vendor allocation rule (discussed
in upcoming paragraph) is employed. In order to obtain
a Trojan secured DMR schedule, its corresponding DMR
schedule first needs to be obtained. In proposed DMR logic,
complete duplication is done for all the unrolled operations
of the CDFG (based on the unrolling information (U ) of
the candidate design solution Xi, described in eqn. 9). This
indicates that double modular redundancy of the CDFG is
done at the behavioral level itself before scheduling. Once
operations of the CDFG are unrolled, then both the operations
of original unit and duplicate unit are concurrently scheduled
using list scheduling algorithm based on the information of the
schedule architecture (N(R1), N(R2),..N(RD)) in the candidate
design solution (Xi). This enables to extract information of
CDMR

first and CDMR
body to determine the final delay CDMR

T (as
discussed in section V-B).

In the proposed approach, as described above DMR logic is
employed with some specific vendor allocation rule to design a
Trojan secured schedule. The vendor allocation rule states that
two distinct vendors are required for operation assignment in
DMR such that the similar operations v of original unit (WOG)
and v′ of duplicate unit (WDP ) are assigned to distinct vendor
[6]. This enables Trojan security (detection) as for cases where
no sub-IP exists, it is highly unlikely that different Trojans in
different 3PIP’s will produce identical wrong outputs. In this
approach, we do not provide solution for cases when a 3PIP
instantiates a Trojan infected Sub-IP from another IP vendor,
as it falls beyond the target scope of our paper. However it
is important to note that distinct vendor assignment rule for
Trojan security can be implemented in more than one ways
(discussed later), therefore, the most optimal distinct vendor
allocation to similar operations (in original and duplicate) is
explored through our proposed scheme. Therefore, how the
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two distinct vendors are allocated within the DMR schedule
(i.e. assignment of each vendor IPs within the system while
allocation) controls the final delay and area of the design. This
is because the same resource type/IP from two different ven-
dors have different area and delay. Note: Further it is assumed
that the IP characteristics from vendors (V1 and V2) are as
follows: Multiplier and adder provided by vendor V1 has area
= ‘2468au’ (au = area unit; 1 au = 1 Transistor) and ‘2034au’,
delay = ‘10000ns’ and ‘265ns’, while multiplier and adder
provided by vendor V2 has area = ‘2464au’ and ‘2032au’,
delay = ‘11000ns’ and ‘270ns’ respectively. Therefore, in the
proposed approach components (IPs) with parametric values
(i.e., different cost values) are considered during exploration of
an optimized Trojan secured schedule. Since the components
serve as modules in the HLS library, the final solution of
the proposed approach changes if the components from two
different vendors have different parameter values.

Let us now discuss the two different ways (denoted by Pv =
1 and Pv = 0) how two distinct vendor allocation can be made
inside a DMR scheduling in order to provide Trojan security.
The value of ‘Pv’ as ‘0’/‘1’ is characterized as follows:

1) Vendor allocation procedure (Type 1): Pv = 1:
• All operations of a specific unit (original/duplicate), are

strictly assigned to same vendor type (i.e., all operations
of WOG strictly assigned to vendor ‘V1’ and all opera-
tions of WDP to vendor ‘V2’).

• Similar operations of both WOG and WDP being as-
signed to two different vendors.

2) Vendor allocation procedure (Type 2): Pv = 0:
• Alternate vendor assignment to operations of a resource

type in a CS of a unit. Moreover, in a CS if an
opeartion with another resorce type is encountered then
independantly alternate vendor assignment is performed.
(Example, in Fig. 8, alternate vendor assignments of V1,
V2, V1 and V2 are provided to operations 1, 2, 3 and
10 respectively in a CS. Same assignment is followed
for each remaining CS. Moreover in CS#4, separately
alternate vendor assignments have been made for each
resource types adder and multiplier i.e. 7 & 15 alterna-
tively assigned to V1 & V2 separately while, 22 & 21 are
also alternately assigned to V1 & V2 separately).

• Similar operations of both WOG and WDP being as-
signed to two different vendors.

As described before in this Section, consider two cases as
illustrated in Fig. 7 and 8; which shows list scheduling based
CDFG for Diffeq benchmark unrolled thrice with:
• resource constraint of

−→
Rn = 2(+), 4(*), 2(-), 1(<); U = 3;

iteration count (I) =4 Pv = 0. The corresponding TDMR
E

= 176350ns and ADMR
T = 28380 au.

•
−→
Rn = 2(+), 4(*), 2(-), 1(<); U =3; iteration count (I)=4;
Pv = 1. The corresponding TDMR

E = 173350ns and
ADMR

T = 38908 au.
It can be seen that there is a difference in the area and

delay values of the two generated scheduling solutions, which
have distinct vendor assignment to similar operations for de-
tectability. The DMR schedules with vendor allocation details
generated in Fig. 7 and 8 are both hardware Trojan secured
(with two vendors required in both cases) with duplication of

all the operations of the original unrolled CDFG. For the sake
of demonstration let us assume we have a candidate design
solution Xi = (2(+), 4(*), 2(-), 2(<), U= 3), Pv for building a
Trojan secured DMR schedule. This indicates that the CDFG
needs to be unrolled thrice (I1, I2 and I3) and duplication
must be done for all the operations of the three iterations
(‘I1, ‘I2 and ‘I3) to create an unrolled DMR CDFG. Once
unrolled DMR CDFG is created, it (both original unit and
duplicate unit) will be concurrently scheduled based on the
schedule resource information in Xi: 2 adders, 4 multipliers,
2 subtractors and 2 comparators. However as evident in Fig.
7 and 8, one Trojan secured DMR schedule is better than its
counterpart in delay or area based on the value of Pv , regard-
less of same schedule resources and unrolling information.
Therefore, in context of DSE exploration of Pv (indicating
allocation procedure of IPs from different vendor type) which
can either be ‘0’ or ‘1’ dimension, along with resource array
(as shown in eqn. 9) is important.

The cost of obtained Trojan secured DMR schedule is
further evaluated. The cost function inudes includes area com-
ponent due to functional resources, interconnect units (mux
and demux), comparator as well as overhead incurred from
internal buffering (temporary storage of operation output). The
area due to internal buffering involves overhead incurred in
a DMR similar operation (from both original duplicate) at
different times. The system needs to keep the outputs from
both units stored in some internal buffer to compare only
when both outputs are ready. This process of evaluating design
solutions (particle positions) evolves through the proposed
DSE using PSO to generate an optimal hardware Trojan fault
secured DMR system that satisfies Acons, Tcons, as well as
minimizes hybrid cost.

From the above discussion, it is clear that the proposed
approach considers three factors:

• Efficient distinct vendor allocation inside DMR schedul-
ing

• Optimized combination of schedule resources
• Screening of unwanted loop unrolling factors to achieve

low cost optimal solution to Trojan secured schedule.

All the aforesaid factors were not considered in past ap-
proaches so far.

E. Initialization of Particle

In this current proposed approach, a candidate design solu-
tion is represented through a particle. The position of a particle
in PSO as defined earlier in eqn. 9 can be expanded as follows.
The particle position ‘Xi’ is given as follows:

Xi = (N(R1), N(R2), ..N(RD), U, Pv) . (10)
The particles are uniformly distributed over the design space

and are initialized as follows:
X1 = (min(R1),min(R2), ..min(RD),min(U), 0) (11)

X2 = (max(R1),max(R2), ..max(RD),max(U), 1) (12)

X3 =
(

min(R1)+max(R1)
2 , ...min(RD)+max(RD)

2 , (13)

min(U)+max(U)
2 , 0

)
.
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Fig. 7: Scheduled and binded DMR design of Differential equation for Xi = {(2(+), 4(*), 2(-), 2(<), U = 3), Pv} with Pv = 1; for achieving
vendor distinctness for Trojan security; TDMR

E = 173350ns and Area = 38908au.

However, rest of the particles (X4...Xn) are initialized by
the following:

Xn =
(

min(R1)+max(R1)
2 ± α, min(R2)+max(R2)

2 ± α,

...min(Rd)+max(Rd)
2 ± α, min(U)+max(U)

2 ± α,
random(Pv)) . (14)

where, α is a random integer between min and max of
particular resource type or unrolling factor.

F. Particle Movement using Velocity

PSO-DSE [39], each dimension (d) of a particle position
Xi (except the last dimension) is updated using the following
function [37]:

R+
di

= Rdi
+ V +

di
. (15)

The variable V +
di

is updated by eqn. 16 as follows:
V +
di

= ωVdi + b1r1[Rdlbi
−Rdi ] + b2r2[Rdgb

−Rdi ] (16)
The local best (Xlbi ) and global best (Xgb) particle positions
are updated using eqn. 17 and 18:

Xlbi = R1lbi
, ...RD−1lbi , U (17)

Xgb = R1gb , ...RD−1gb , U (18)
The variables have been explained in Table I. A DMR

schedule (SDFGDMR) (with distinct vendor assignment rule

to detect the hardware Trojan), is generated corresponding to
a particle positions/configurations.
G. Velocity clamping

The velocity clamping adopted from [37] is performed,
when a particle’s exploration drift (V +

di
) crosses the ±V max

di

as follows:

V +
di

=


+V max

di
if V +

di
> +V max

di

−V max
di

if V +
di
< −V max

di

V +
di

else
(19)

In the above expression, the value of ±V max
di

is the following:

V +
di

=

(
±max(N(Rd))−min(N(Rd))

2

)
. (20)

H. Terminating condition
The proposed methodology terminates when a) the max-

imum number of iterations exceeds 100 (S1), or when no
improvement is visible in Xgb over ‘δ’ number of iterations.
(δ =10) (S2).

VII. EXPERIMENTAL RESULTS

This section shows the results of proposed methodology
discussed in following sub-sections: (a) experimental setup and
benchmark, (b) analysis of results, (c) comparison with related
prior research and (d) detection ability of design solutions
generated during DSE.



10

V2

A1

M4M3

M4

M3M2

S1

M3

M2
M1

M4

M1

M2

S1

M1

S2

M1

V2

‘30

‘31 ‘32

‘33

‘34

‘35

‘36

‘37

‘38

‘19

‘20 ‘21

‘22

‘23

‘25

‘26

‘27

‘24

V1

V2

V2

V2

V1

V1
V1

V1

‘14

‘10

‘12

‘11

‘18

‘13

‘15

‘16

‘17

‘1 ‘2

‘3‘4

‘5
‘6

‘7

‘8

‘9

I

‘29

3

V2

V2

V2

V1

V2

V2

V2

V2

V1

V1

V2

V2

V2

V2

V2

V1

V1

‘28

V1

V2

V2

V2

V2

V2

V2

V1

V2

V1V2

V1

V1

V1

V1

V1

V1

V1

V2

V2

30 31
32

33
34

35

36

37

38

V1

I

3

V2

28

I

29

19 20

2122

23
24

25

26

27

V1

V1

V2

V2

V1

V1

V1

V2

V1

V2

V2

V1

V1

V2

V2

V2

V1

V1

10

11 12

13

15

14

16

17

18

M1

M1

M1

M2

M2

M2

M3

M3

M3

M4

M4

M4

M4

I

V2

V1 V2

V1

V1

V1

V1

V1

V1

1
2 3

4 5

6

7

8

9

M1

M1

M1

M2

M2

M3

M4

M4

M1

M1

A1

M1

M2

M2

S2

S1

S1

S1

S1

S2

S1

S2

A1

A1

A2

A1

C1 S1

M3

M2

S1

S1

M1

A1 A2

C1

M3
M1

M3

M2

M4

S1

S1

M1

A1

A1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

W
OG

W
DP

* *

*

*

*

*

* * *

**

*

*

* *

*
*

*

*

* *

** * *

**

*

*

*

* *

**

*
* *

* * *

* *
*

*

**

*

*

+

+

+
+

+

+

+ +

+

+

-

-
-

- -

- -

-

-

-

-

-

-

-

-

-

<

<

Fig. 8: Scheduled and binded DMR design of Differential equation for Xi = {(2(+), 4(*), 2(-), 2(<), U= 3), Pv} with Pv = 0; for achieving
vendor distinctness for Trojan security; TDMR

E = 176350ns and Area = 28380au.

A. Experimental Setup and Benchmarks

The proposed approach and [6], have been implemented in
java. The proposed flow when implemented run on Intel Core-
i5-3210M CPU with 3MB L3 cache memory, 4GB DDR3
primary memory and processor frequency of 2.5 GHz. During
experimentation, 15 runs were executed for proposed PSO-
DSE with equal weightage to both user objectives of area and
delay (W1= W2 =0.5). During experiments, it was found that
the proposed approach is scalable and is able to handle large
size problems (for instance, mutiple CDFG applications with
nodes greater than 200 have been tested, which also yielded
final optimal solution within acceptable exploration runtime).
Further, during experiments, following optimal settings from
[40] for PSO framework were fixed: ω (inertia weight) =
linearly decreasing between 0.9 to 0.1; b1 and b2 (acceleration
coefficient) = 2; r1 and r2 (random numbers) = 1; stopping
criterion = S1 or S2; p = 3 or 5 or 7.

B. Analysis of Results

Table II shows the effect of swarm size ‘p’ on the explo-
ration time of the proposed methodology. As seen from Table
II (for all benchmarks), the exploration time of the proposed
approach to find the non- dominated solutions increases with

TABLE II: Comparison of Exploration Time with respect to swarm
size ’p’ for proposed approach

Benchmark
Exploration Time

(ms) for Swarm Size, p
p=3 p=5 p=7

Differential
Equation 370 550 678

FIR 446 769 978
FFT 1797 2680 3847

Test Case 571 715 1345
Mesa

Interpolate 32522 57550 91818

ARF 594 828 1844
IDCT 8679 14719 20680
WDF 2453 5175 7344
GLRT 3045 6415 7933
DHMC 21836 43218 62345

the increase in swarm size, however with no improvement in
the quality of the solution found. This is due to the

fact that, total number of positions evaluated in a run in-
creases with the increase in ‘p’. Additionally, for all the bench-
marks viz. DFGs, single and nested loop applications tested,
the proposed approach generates, solutions that lie within the
user provided are-delay constraints and minimizes the hybrid
cost in eqn. 6, as shown in Table III. For example, for FIR
benchmark, the proposed approach generates the final solution
(Xi) : (N(Radder), N(Rmultiplier), N(Rcomparator), U , Pv) =
(2(+), 6(*), 1(<), U= 3, Pv = 0) with ADMR

T = 23936 au and
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TABLE III: Results of Proposed Approach
Note: 1 a.u. = 1 Transistor; us = microseconds

Benchmark Tcons

(us)
TDMR
E

(us)
Acons

(au) ADMR
T Cost

Differential
Equation 182.2 120.81 43301 29136 -0.21

FIR 40.00 23.62 27000 23936 -0.16
FFT 200.0 163.18 41000 26632 -0.21

Test Case 130.0 99.00 29000 23070 -0.15
Mesa

Interpolate 237.6 99.35 117972 60254 -0.29

ARF 132.8 89.89 23747 16198 -0.23
IDCT 119.1 77.08 42858 31582 -0.22
WDF 115.60 111.69 22154 18356 -0.08
GLRT 170.00 109.80 50000 24962 -0.23
DHMC 420.00 262.33 35000 33524 -0.14

TABLE IV: Results of Approach [6]
Note: 1 a.u. = 1 Transistor; us = microseconds

Benchmark TDMR
E

(us)
TDMR
E

(us)
Acons

(au)
ADMR

T

(au) Cost

Differential
Equation 182.2 131.27 43301 29640 -0.19

FIR 40.00 34.08 27000 24692 -0.07
FFT 200.0 179.24 41000 33974 -0.10

Test Case 130.0 99.27 29000 23826 -0.14
Mesa

Interpolate 237.6 74.33 117972 75050 -0.29

ARF 132.8 121.54 23747 21398 -0.06
IDCT 119.1 98.89 42858 38746 -0.09
WDF 115.60 111.69 22154 24422 -0.01
GLRT 170.0 78.08 50000 37580 -0.23
DHMC 420.00 286.35 35000 52824 0.05

TDMR
E = 23.62 us, which completely satisfies the area-delay

constraints (Acons = 27000 au and Tcons = 40us). (NOTE:
Acons and Tcons could be any value between the minimum
(Amin, Tmin) and maximum value (Amax, Tmax)). Similar
behavior is observed for the other benchmarks. Additionally,
the result for approach [6] is shown in Table IV, which shows
that the execution time (TDMR

E ) for [6] is higher than proposed
TDMR
E . Further, the process of screening the unfit unrolling

factor values through algorithm in Fig. 6 is described in Table
V, VI and VII (for sake of brevity additional tables have
not been added). The first column indicates the unrolling
factor values, second represents the number of sequential
loops, third indicates the number of pipelined loops and
the fourth column indicates accept/reject status. The results
produces accept/reject of unrolling factor values by screening
unroll values that results in large sequential loops as well as
ignoring very large unroll values that provide only marginal
performance improvement (as performance enhancement is not
a monotonically increasing function of unroll factor values).

C. Comparison with Related Prior Research
This sub-section reports the comparative results with a state

of the art approach [6] with respect to the final solution.
The cost function, for both [6] and proposed approach, also

considers the area of single comparator/error detection block
responsible to runtime Trojan detection at the final output.
Table. VIII shows the comparative results of the proposed
approach with [6], in terms of cost, hardware area, delay,
respective overheads and final architectural solution found.
Since both [6] and proposed approach uses the concept of
diverse 3PIP vendors, hence both approaches provide equally
robust security. As evident, the proposed approach generates

TABLE V: Pre-processing of Unrolling factors for Differential Equa-
tion

I = 16

U Sequential loop
(I mod U)

Pipelined loop
(I-I mod U) Accepted(I)

2 0 16 1
3 1 15 1
4 0 16 1
5 1 15 1
6 4 12 0
7 2 14 1
8 0 16 1
9 7 9 0
10 6 10 0
11 5 11 0
12 4 12 0
13 3 13 0
14 2 14 0
15 1 15 0
16 0 16 1

TABLE VI: Pre-processing of unrolling factors for FIR
I = 18

U Sequential loop
(I mod U)

Pipelined loop
(I-I mod U) Accepted(I)

2 0 18 1
3 0 18 1
4 2 16 1
5 3 15 0
6 0 18 1
7 4 14 0
8 2 16 1
9 0 18 1

10 8 10 0
11 7 11 0
12 6 12 0
13 5 13 0
14 4 14 0
15 3 15 0
16 2 16 0
17 1 17 0
18 0 18 0

lower cost solutions with no area and delay overheads (in
most cases) in comparison to [6]. This is because of the
following: (a) The proposed approach comprises of a sup-
plementary option in encoding for exploration of an optimal
allocation procedure of vendors Pv , which bears an impact
on the final optimization quality; (b) The proposed approach
comprises of another supplementary option in encoding for
exploration of an optimal unrolling factor; (c) The proposed
approach provides exploration of schedule resources based
on user constraints, which also bears an effect on the final
design quality. Therefore, calculations show that, the proposed
approach provides an average reduction of 11.4 % in cost of
the final Trojan secured schedule compared to [6]. Since there
is no feature for exploring an optimal unrolling factor and
distinct vendor allocation in [6], it uses the maximum unroll
factor value as well as same vendor allocation to each unit
rule (Pv = 1) during DMR design thereby resulting in higher
cost. Therefore, distinct vendor allocation type, Pv = 0, always
yields lower cost final solution than Pv = 1.

D. Detection ability of design solutions generated during DSE

Type of Trojan inserted: We insert Trojans in components
of HLS library that can only change the output computational
value (and has no other effect). Therefore, this paper targets
only this specific class of Trojan during detection analysis.
Few examples of this specific class of Trojan inserted in our
approach and its payload are shown in Fig. 3 .
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TABLE VII: Pre-processing of unrolling factors for FFT
I = 24

U Sequential loop
(I mod U)

Pipelined loop
(I-I mod U) Accepted(I)

2 0 24 1
3 0 24 1
4 0 24 1
5 4 20 0
6 0 24 1
7 3 21 1
8 0 24 1
9 6 18 0

10 4 20 1
11 2 22 1
12 0 24 1
13 11 13 0
14 10 14 1
15 9 15 0
16 8 16 0
17 7 17 0
18 6 18 0
19 5 19 0
20 4 20 0
21 3 21 0
22 2 22 0
23 1 23 0
24 0 24 0

The proposed DSE framework generates solution for Trojan
secured DMR schedule. A DMR schedule is generated for
every explored solution (before fitness evaluation) which needs
validation in its ability to detect hardware Trojan present in the
3PIP. In case of HLS, the 3PIPs are the IPs/modules present in
the HLS module library, which may have been imported from
an outside (third party) vendor and may contain malicious
logic inserted by an adversary in the third party design house.
Typically, the HLS company provides the RTL files of the
modules/IPs of the library that may contain malicious/Trojan
logic, which might have been imported from third party
vendors. The proposed approach deals with hardware Trojan in
the modules/IP that changes its computational value. However
the key is that Trojan only becomes visible at runtime (after
triggering by an adversary), thereby remaining completely
ineffective before that, thus difficult to be detected during RTL
simulation/other lower level tests. For checking the detection
ability of the solution generated, the presence of hardware
Trojan in module of HLS library was emulated by inserting
malicious logic in the module (such as adder/ subtractor etc.)
of the HLS library. Hardware Trojan were implemented in the
modules of the HLS library as maliciously altered RTL codes.
Some examples of the schematic equivalent of the malicious
alterations made in the RTL codes of the HLS module library
are shown in Fig. 3. Test vectors generated through 8th order
polynomial Linear-Feedback Shift Register (LFSR) as ATPG
is fed into the DMR schedule for comprehensive coverage
of Trojan detection in the final explored solution. Results
indicate that in the explored solution whenever a Trojan was
inserted (in any module provided by a vendor); difference
in the computational value in the output was noticed from
original and duplicate unit, indicating Trojan detection. 100%
Trojan detection has been possible when handling such Tro-
jans, because these Trojans when activated produce no other
effect, but only change in computational value as payload.
Hence, through the proposed DMR allocation rules for both
Pv = 0 and Pv = 1, a complete coverage of Trojan detection
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Fig. 9: Number of potential untrustworthy 3PIPs as vulnerabilities
detected (secured) by proposed approach

was obtained. Therefore, it can be said that, it is safe to
allow interleaving of IPs (Pv = 0) resulting from different
vendors. The time taken for the final Trojan secured schedule
depends on the initial population selected during exploration.
For example, time taken for Trojan security is ∼ 5.9 sec, ∼
10.3 sec and ∼ 16.0 sec for p = 3, 5 and 7 respectively. For
successful detection at least one comparison point is needed,
which is at the primary output of DMR scheduling. However,
additional checkpoints can be inserted at the output of each
unrolled loop body in DMR scheduling. This indicates that the
additional checkpoints are equal to the unrolling factor value.
In the proposed approach, security can be provided against
any Trojan that has ability to affect functional output. This is
because insertion of Trojan in a 3PIP by a rogue induces a
different output in one of the units than the other due to usage
of a distinct vendor in original and duplicate units. This results
in comprehensive detection in all cases. However Trojan which
affects output in terms of only disabling components (with
no change in output magnitude) cannot be detected in our
approach.

Security Analysis: We further provide security analysis by
presenting how robust our approach is. This is a direct in-
dicative of the number of vulnerabilities detected by proposed
approach. Each potentially untrustworthy 3PIPs used in the
design is considered as a vulnerability. Further, the number of
3PIPs used is directly proportional to the number of operations
in the DMR design. In the proposed approach we detect
each such potential vulnerability by applying the concept of
distinct vendor to both original and duplicate operations in
DMR design. Thus the extent of security is the capability
of proposed approach to detect potential vulnerabilities. Fig.9
shows the number of potential vulnerabilities detectable by
proposed approach for each benchmark (comprising of a mix
of DFGs, single loop CDFGs and nested loop CDFGs). As
seen in Fig. 9, the number of vulnerabilities is largest for
DHMC nested loop CDFG, which are all detected by proposed
approach.

VIII. CONCLUSIONS AND FUTURE RESEARCH

This paper presented a novel work on simultaneous explo-
ration of an optimized Trojan secured schedule and optimal
loop unrolling factor for CDFGs. More explicitly, the paper
contributed in the following novel aspects: (a) a model for
execution delay determination of a DMR system for Trojan
secured CDFG (b) particle encoding scheme that concurrently
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TABLE VIII: Comparison of Proposed DSE Approach with [6]

Benchmark
Final architecture

solution for Trojan Secured
schedule (proposed)

Final architecture
solution for Trojan

Secured schedule [6]

Cost of
final

solution
(proposed)

Cost of
final

solution [6]

Area overhead
of [6]

compared to
proposed

(a.u.)

Delay overhead
of [6]

compared to
proposed

(us)
Differential
Equation

3(+), 3(-), 5(*), 2(<),
U = 4, Pv = 0

2(+), 2(-), 5(*), 2(<),
U = 4, Pv = 1 -0.21 -0.19 504 10.46

FIR 2(+), 6(*), 2(<),
U = 3, Pv = 0

3(+), 5(*), 2(<),
U = 6, Pv = 1 -0.16 -0.07 756 10.46

FFT 4(+), 2(-), 4(*), 2(<),
U = 1, Pv = 0

5(+), 2(-), 5(*), 2(<),
U = 4, Pv = 1 -0.21 -0.10 7342 16.06

Test Case 4(+), 3(*), 2(<),
U = 2, Pv = 0

3(+), 3(*), 2(<),
U = 6,Pv = 1 -0.15 -0.14 756 0.27

Mesa
Interpolate 3(+), 16(*), Pv = 0 10(+), 17(*), Pv = 1 -0.29 -0.29 14796 -

ARF 2(+), 4(*), Pv = 0 5(+), 3(*), Pv = 1 -0.23 -0.06 5200 31.65
IDCT 6(+), 4(*), Pv = 0 5(+), 3(*), Pv = 1 -0.22 -0.09 7164 21.81
WDF 3(+), 2(*), Pv = 0 3(+), 3(*), Pv = 1 -0.08 -0.01 6066 -
GLRT 4(+), 6(*), Pv = 0 4(+), 10(*), Pv = 1 -0.23 -0.23 12618 -
DHMC 4(+), 6(*), 2(<), Pv = 0 3(+), 5(*), 2(<), Pv = 1 -0.14 0.05 19300 20.02

explores schedule configuration, unrolling factor and vendor
allocation procedure (c) methodology for area - execution
delay trade-off using PSO during optimization of secured
schedule.

Our future research directions includes nanoelectronic tech-
nology based trusted HLS as the hardware eventually imple-
mented using such a technology [10]. For example, we intend
to work on architecture-level synthesis based obfuscation
technique, IP trust, process variation awareness, and fault
tolerance.
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