
1 

Wireless Sensor Network Simulation Frameworks: A Tutorial Review 

MATLAB/Simulink bests the rest. 

 

By Madhupreetha L. Rajaram, Elias Kougianos, Saraju P. Mohanty, and Uma Choppali 
 

  
A Wireless Sensor Network (WSN) is a distributed set of 

sensors deployed to work together for collective sensing and 

possible data processing. A WSN can be used to monitor 

environmental behavior and structural integrity in a variety of 

application fields, thus becoming an integral part of consumer 

electronics of smart buildings in smart cities. Due to ever 

increasing population growth with limited natural resources 

smart cities are expected to be the wave of the future. For 

instance, wireless sensor networks are widely used in industrial 

settings with machine monitoring and play an important role 

for monitoring the structural integrity of large buildings and 

bridges. This review paper focuses on existing WSN simulation 

frameworks that could be integrated with real-time hardware 

prototypes. Various such simulation frameworks are analyzed 

and compared, and a suitable simulation environment that 

supports specific software packages is determined. 

 

I. INTRODUCTION  

 

A typical sensor is used to sense environmental properties 

such as temperature, pressure, stress and vibration in the 

form of electrical signals which are then calibrated to 

measure the corresponding physical properties [1]. Wireless 

sensor networks (WSNs) are collections of such sensors 

deployed to sense variations in, and transmit data through, 

wireless networks as depicted in Figure 1 [2]. These sensors 

and sensor networks are an integral part of consumer 

electronics used for the development of smart cities, smart 

structures, smart transportation systems, and smart health 

care. 

 

 
FIGURE 1. Illustration of a wireless sensor network 

(WSN). 

 

A specific example of usage of a WSN for structural health 

monitoring is depicted in Figure 2. The collected data 

provide better understanding of the structural materials, 

capacity of the structure and can also be used to generate 

alert warnings during natural calamities. In order to obtain 

complete and accurate information, a large number of 

sensor nodes must be deployed in the areas of interest. 

During the process of sensing and transmitting data, issues 

such as power management, data collection, time 

synchronization, communication protocols used and 

congestion need to be addressed. Various algorithms are 

proposed by researchers to overcome these issues. These 

algorithms can be verified with a simulation modeling 

framework or an experimental setup.  

 

 
FIGURE 2. Illustration of a WSN for structural health 

monitoring. 

 

One approach to test the design is through an experimental 

setup using actual components but it is expensive and rigid 

for explorative research. On the other hand, a simulation 

framework can reduce time and the risks associated with 

high cost. However, it is important to select a suitable 

simulation environment since there are numerous such 

platforms available for wireless sensor network (WSN) 

simulation. In this review paper, a comprehensive selection 

of WSN simulation frameworks is analyzed paying 

particular attention to those packages that can be interfaced 

with actual hardware. 

 

This article is organized as follows. Section II reviews 

related works in WSN, and section III introduces various 

wireless sensor frameworks. Section IV and Section V 

provide analysis and comparison of these simulation 

frameworks. Finally, Section VI concludes with final 

remarks. 



2 

 

II. WIRELESS SENSOR NETWORKS: STATE-OF-ART 

 

The advancement of WSNs has led to more accurate 

monitoring of structural integrity, data collection and 

analysis of observed data. However, the data collection 

process is affected by various factors. Different solutions 

and algorithms have been proposed by researchers to 

improve the performance of the WSN. 

 

A. Power Management  

 

The sensor nodes are powered by a battery source, and the 

lifetime of the sensor node is determined by the energy 

stored in the battery. Hence, the effective use of the 

available power is a main challenge faced in sensor data 

collection. An algorithm for selecting the cluster heads for a 

group of sensors in order to reduce the power consumption 

is proposed in [3]. The algorithm was based on random head 

selection where minimum distance between the nodes was 

tabulated. Then the node with the minimum hopping 

distance was determined and assigned as the cluster head, 

which reduces the energy required to hop the data over long 

distances. An optimizing algorithm for limited buffering 

and controlled mobile sink is proposed in [4]. The mobile 

sink that collects the data by moving from one point to 

another increases the wait time, and therefore, can lead to 

buffer overflows. So, an optimization algorithm to reduce 

wait time is discussed, and the algorithm is implemented in 

the OMNeT++ simulator.  

 

B. Data Collection 

 

One of the most important operations of the sensor nodes is 

the data collection. Different data aggregation techniques 

have been proposed for efficient data collection. A complete 

information collection mechanism by deploying an agent in 

the WSN is proposed in [5]. This agent collaboration 

provides a means to coordinate with multiple sensor nodes 

to complete data collection, analysis and distributed fault 

diagnosis. Different agents are assigned different 

operations, and they coordinate with each other to complete 

the entire task, as shown in Figure 3. The model is 

simulated in a network simulator to verify operation. 

 

 
FiGURE 3. A Typical agent structure. 

 

C. Communication Protocols 

 

In order to obtain complete information of the area of 

interest, a large number of sensor nodes are deployed. When 

all these sensor nodes try to communicate with the base 

station or sink, data congestion can occur. A new congestion 

control mechanism is proposed in [6]. In this mechanism, 

the buffer in each node is adjusted based on downstream 

data transmission in order to minimize packet loss. The 

performance of the algorithm was verified by simulating the 

model in MATLAB®.  

Data collected at sensor nodes needs to be transmitted to the 

base station or sink. This requires an efficient 

communication protocol. For this, a sleep scheduling 

algorithm is proposed in order to turn on and off the radios 

in [7]. The switching on and off of the radio is defined as a 

contiguous link scheduling problem and simulated in a C++ 

simulator. A hierarchical routing protocol, which is an 

optimized Low Energy Adaptive Clustering (LEACH) 

protocol, has been proposed in [8]. LEACH is a clustering-

based protocol that aims at reducing the energy based on the 

assumption that all nodes have the same amount of energy. 

In actual practice all nodes do not consume the same 

amount of energy hence, in this algorithm an optimized 

LEACH is proposed. The algorithm allocates time slots for 

all the nodes. When the node does not transmit data during 

its time slot, then some other node utilizes the vacant slot 

for transmission. This reduces the wait time for other nodes, 

which results in efficient utilization of the available 

resource. The performance of the algorithm was tested in 

OMNeT++. A data gathering tree is constructed, and an 

energy efficient scheduling algorithm is proposed in [9]. 

The algorithm aims at reducing the state transitions, and 

hence the energy consumption. This algorithm uses a Time 



3 

division multiple access (TDMA) technique for scheduling. 

The activities of subsets of the sensors are divided into 

different groups, and successive time slots are scheduled. 

The entire network is divided into different groups, as 

shown in Figure 4. In the network, each group consists of a 

parent and children nodes. The children nodes will send 

data to the parent, and the parent will send information to 

the sink later within the allotted time slot. The model was 

simulated in NS2.34 to verify the performance. 

 

 
FIGURE 4. Illustration of a network model. 

 

D. Time Synchronization 

 

The data transmitted to the base station is stamped with time 

information to provide details on when the data was sensed. 

If each node operates at a different clock time, the time 

stamped with data transmission will not be the same for all 

nodes.  Hence, it is important to synchronize the time for all 

nodes. In [10], an algorithm for time synchronization of 

neighboring nodes is proposed based on a Gradient Time 

Synchronization Protocol (GTSP), as shown in Figure 5, 

designed for accurate clock synchronization of neighboring 

nodes in a network simulator. 

 

 
FIGURE 5. The Gradient Time Synchronization Protocol 

(GTSP). 

 

III. WIRELESS SENSOR NETWORKSSIMULATION: SELECTED 

FRAMEWORKS 

 

The behavior of a system can be analyzed analytically, 

experimentally with a simulation mode, or a combination of 

these approaches. Analytical methods, however, cannot 

provide complete details on the impact of power 

consumption and other issues. On the other hand, 

experimental analysis can provide more accurate 

information but this is achieved at a higher cost. Simulation 

models serve as the best alternative to understand the 

behavior of a system at low cost and in short time. A 

simulation model can be designed based on different 

algorithms. It is important to determine an algorithm that 

best fits the requirements of the WSN.  

A wide variety of simulation platforms are available, but 

only a few simulators might be applicable for certain 

operations. Various software tools are available such as NS-

2, OMNeT++, PAWiS, GloMoSim/QualNet, OPNET, 

SENSE, J-Sim, Ptolemy II, Cell-DEVS, NesCT, GTnets, 

System C, Prowler, NCTUns2.0, Jist/SWANS, SSFNet, 

TOSSIM, Atarraya, Avrora, ATEMU, EmStar, SENS, 

Shawn, PiccSIM, TrueTime 2.0 in MATLAB®/Simulink® 

and native MATLAB®/Simulink® [11, 12]. Each one of 

them could be used for different kinds of applications. 

 

IV. DETAILS OF SELECTED SIMULATION FRAMEWORKS 

 

There are more than 25 WSN frameworks available. Out of 

all the simulation environments, a few frameworks were 

short listed and analyzed. The key features considered for 

the selection of a simulation platform were the following: 

co-simulation with MATLAB®, operating system support, 

programming language implementation and API, number of 

nodes that could be simultaneously simulated, 

documentation, latest version availability, ZigBee® support 

and potential issues during installation. Since the objective 

is focused on integrating the software model and hardware 

prototype, MATLAB® plays an important role in the design. 

So, the simulation environment must have capabilities to 

communicate with MATLAB®/Simulink® during real time 

operation.  

 

A. Network simulator NS-2 

 

Network Simulator (NS-2) is a discrete event, object 

oriented, and general purpose network simulator based on 

C++ language that can be used to simulate local and wide 



4 

area networks [11, 12, 13]. It was primarily developed to 

operate in Linux-based Operating Systema such as Ubuntu. 

However, it can also be installed in Windows® OS with 

Cygwin support. For analysis purposes, NS-2 was installed 

in Ubuntu. There are three commands that need to be typed 

in the terminal to install the latest version: (1) sudo apt-

get install ns2; (2) sudo apt-get install 

nam; and (3) sudo apt-get install xgraph. 

When installation is complete, “ns” can be typed in the 

terminal, and a percentage symbol is returned, which 

confirms successful installation of NS-2. A network 

animator (NAM) editor window, as shown in Figure 6, can 

be opened by typing “nam” in the terminal. In order to 

design a model, a program can be written in the “Tool 

Command Language” (TCL) and visualized through the 

NAM editor. The performance is reliable for node sizes up 

to 100 nodes and degrades with increased node size. The 

disadvantages of NS-2 are the interdependency between the 

modules and that co-simulation with MATLAB® requires 

special framework definitions [14]. Also, in order to 

implement the ZigBee® communication protocol, separate 

patch files must be installed.  Even though this network 

simulation can be used for verifying different algorithms, 

NS-2 cannot be used easily for hardware-software co-

simulation in MATLAB® as it requires separate framework 

definitions. 
 

 
FIGURE 6. NS- 2 NAM editor window. 

 

B. OMNeT++ 

 

OMNeT++ [11, 12, 15] is a modular simulation framework 

written in C++ that can be used for simulating ad-hoc 

networks. Frameworks developed in OMNeT++ that can be 

used for WSN analysis include: MiXiM, Mobility 

Framework, media access control (MAC) layers, Castalia, 

INET framework and NesCT.  NesCT can be used for 

simulating TinyOS sensor based networks. PAWiS is also 

an OMNeT++ based simulator that captures a wide array of 

modules, and provides support for mobility and 

environmental dynamics [9]. OMNeT++ is a commercial 

software that can be used for educational and research 

purposes. The modules are written in the Network 

Description (NED) programming language. Co-simulation 

of MATLAB® and OMNeT++ can be achieved by 

converting C/C++ code into objects and compiling these 

objects in OMNeT++. However, it does not support 

communication during real time simulation.  

 

C. Prowler 

 

Prowler is an event driven wireless sensor network 

simulator designed to run on MATLAB® [11]. Simulation 

codes that implement routing protocols and other 

applications can be written in the MATLAB® language. This 

framework can be used for optimizing communication 

protocols [16]. Prowler can be installed in MATLAB® by 

simply adding the directory to the MATLAB® startup path. 

The editor window can be opened by typing “prowler” in 

the MATLAB® command window. A window, as shown in 

Figure 7, appears where the data transferred between the 

nodes can be visualized. Some routing protocols such as 

flood 1D, flood 2D, span tree and collision demo can be 

verified through Prowler. However, it cannot be used for 

developing a customized WSN framework. There is no clear 

documentation provided for developing user defined 

models, and no new versions have been released recently. 

Also, Prowler does not support the ZigBee® protocol.   
 

 
FIGURE 7. User interface of Prowler. 

 

D. Atarraya   

 



5 

Atarraya is an event driven simulator that can be used for 

teaching and researching control topology algorithms and 

wireless sensor protocols [17]. It is designed to operate in 

the Windows® OS. The simulator can be installed by adding 

the directory path to the environmental variable. After 

installation, the Atarraya simulation panel, as shown in 

Figure 8, can be opened by double clicking the 

“Atarraya.jar” file. Atarraya is written in Java. The latest 

Oracle Java version must be installed for using Atarraya. 

The simulation panel consists of a deployment panel, a 

protocol selection panel, a visualization panel, a node stats 

and a report panel. In the deployment panel, the number of 

nodes, location, and size can be selected. The 

communication protocol can be selected from the protocol 

selection panel, and the nodes can be visualized in the 

visualization panel. The advantages of Atarraya are: it 

supports different topology construction and maintenance; it 

allows simulation of initial agent topology with available 

algorithm. In addition, Atarraya supports simple and walk-

based mobility and energy models. On the other hand, the 

simulator does not support the ZigBee® protocol and cannot 

be integrated with MATLAB®/Simulink®.  

 
FIGURE 8. Atarraya simulation panel. 

 

E. PiccSIM 

 

PiccSIM [18] is a simulation platform for integrated 

communication, control design simulation, implementation 

and modeling. This tool kit can be used for co-simulation of 

networked control systems (NCS). The main advantage is 

that the simulator can be integrated with Simulink® and 

NS2.34. But two separate computers - one running NS-2.34 

and the other running MATLAB® - are required. For 

analysis, NS-2.34 was installed in a Virtual machine, and 

MATLAB®/ Simulink® was installed in the host machine. 

Since NS-2.34 was an older version, some bugs had to be 

rectified before installation. After successfully installing 

NS-2.34, the PiccSIM-NS-2.34 patch was installed. But the 

patch files corrupted NS2.34 with an error, as shown in 

Figure 9.  The simulator is no longer supported by the 

developer and the error in the patch could not be rectified.  
 

 
FIGURE 9. PiccSIM- NS-2.34 patch error. 

 

F. Truetime 

 

TrueTime is a real-time control system based framework 

that operates in MATLAB®/Simulink®, as shown in Figure 

10 [19]. TrueTime is written in the C++ and MEX 

languages. TrueTime can be installed in MATLAB® by 

adding its path to the PATH environmental variable and the 

MATLAB® startup path. In order to compile programs in 

Truetime, Microsoft Visual Studio must be installed. The 

Truetime package comprises of network blocks such as 

Ethernet, controller area network (CAN), time division 

multiple access (TDMA) and frequency division multiple 

access (FDMA), Round Robin, Switched Ethernet, FlexRay 

and PROFINET. It also consists of wireless network blocks 

such as WLAN 802.11b and 802.15.4 ZigBee® technology, 

as shown in Figure 10. Truetime supports battery power 

sources and can act as a stand-alone network interface 

block. It allows co-simulation of controller task execution in 

real-time, network transmission, and continuous plant 

dynamics. The disadvantage with true time is that clear 

documentation for programming the kernel blocks is not 

available, which made it difficult to use this framework. 

 
FIGURE 10. TrueTime Tool Box or Block Library. 

 

G. MATLAB®/Simulink® 

 

MATLAB®/Simulink® [20] is a software package for 

numeric computation and analysis that is developed and 

maintained by Mathworks® Inc., The software is flexible 

and reliable. Simulink® is a software package for modeling, 

simulating and analyzing dynamic systems. The software 

can be installed in the major operating systems such as 

Windows®, OS X, and Linux. Simulink® supports a wide 



6 

variety of toolkits such as digital signal processing toolkit, 

communication toolkit, control system, and embedded 

controller toolkit. As a result, it enables users to make 

customized designs with MATLAB®/Simulink® seamlessly. 

The key advantage of MATLAB®/Simulink® is that all these 

toolkits are documented with examples. Another benefit of 

MATLAB®/Simulink® is the automatic code generation 

feature, which promotes integration of real time processors 

with the simulation model. With Simulink®, customized 

node communication through the ZigBee protocol can be 

developed. With the code generation capabilities of 

MATLAB®, the simulation model can be integrated with 

hardware models easily. As a result, MATLAB®/Simulink® 

attractive for WSN framework simulations [1, 2].  

 

 

V. SUMMARY AND CONCLUSIONS 

This article focuses on comparing WSN simulation 

frameworks that need to be integrated with an actual 

hardware platform. Various frameworks that can be used for 

simulating WSNs were analyzed. Specifically, software 

such as NS-2, OMNeT++, Prowler, Atarraya, PiccSIM, 

Truetime, and MATLAB®/Simulink® were analyzed in 

detail. These simulators were compared and studied 

thoroughly based on specific criteria. An important design 

Table 1. Comparative perspectives of simulation frameworks. 
 

Framework OS Compiler 
Latest 

Update 

Programming 

Language 
Node size 

MATLAB®/ 

Simulink® 

integration 

Zigbee 

Support 

NS-2 

Unix/ 

Windows with 

CYGWIN 

C++, JDK 

1.6 

ns-

2.35/2013 

Tool Command 

Language 

(TCL)/Otcl 

100 nodes 

Maximum 
Yes Yes 

OMNeT++ 
Windows, OS 

X, Linux 

C++11, JDK 

1.7 or later 

OMNeT 

4.6/2014 

NED (Network 

Description) 

Language 

- Yes  Yes 

Prowler 

OS that 

supports  

MATLAB® 

Apple 

Xcode 

version 4.0 

or higher 

Windows: 

C++, JDK 

V1.25/2004 

Graphical 

Programming 

tool (GUI) 

Based on 

the type of 

application 

Yes No 

Atarraya 

Windows, 

requires GUI 

formatting for 

Linux 

Java 6 
1.3 beta/ 

2011 
GUI 

Can 

simulate 

1000 nodes 

No No  

PiccSIM 
Windows, OS 

X, Linux 

Apple 

Xcode 

version 4.0 

or higher 

Windows: 

C++, JDK 

PiccSIM  

Simulink® 

Version 

1.16 /2013 

TCL/Otcl for 

network 

modelling 

Similar to 

NS-2 
Yes Yes 

TrueTime 
Windows, OS 

X, Linux 

Apple 

Xcode 

version 4.0 

or higher 

Windows: 

C++, JDK, 

Microsoft 

visual studio 

TrueTime 

2.0 beta 7 / 

2012 

Graphical 

Programming 

tool 

Limited Yes Yes 

MATLAB®/

Simulink® 

OS X, 

Windows, 

Linux 

Apple 

Xcode 

version 4.0 

or higher 

Windows: 

C++, JDK 

R2015a C, C++, Fortran 

Code: > 

100 nodes 

Simulation: 

Restricted 

- Yes 

         



7 

requirement is the co-simulation capability with the real-

time processors and the support for the ZigBee network 

protocol. So, the simulators that did not meet these 

specifications were eliminated. Finally, it was found that 

MATLAB®/Simulink® met the most important design 

specifications such as customized node design, ZigBee, and 

co-simulation with hardware. Hence, MATLAB®/Simulink® 

can be effectively used for the framework design and 

simulation.  

 

ABOUT THE AUTHORS 

 
M. L. Rajaram (preeth.madhu05@gmail.com) obtained her 

Master’s degree in Electrical Engineering Technology from 

the University of North Texas, USA in Dec. 2015.  

 

Elias Kougianos (eliask@unt.edu) is currently an associate 

professor in Electrical Engineering Technology at the 

University of North Texas. He obtained his Ph.D. in 

electrical engineering from Louisiana State University in 

1997. He is author or co-author of over 100 peer-reviewed 

journal and conference publications. He is a Senior Member 

of IEEE. 

 

Saraju P. Mohanty (saraju.mohanty@unt.edu) is a Professor 

at the Department of Computer Science and Engineering, 

University of North Texas, and the director of the 

NanoSystem Design Laboratory. He obtained his Ph.D. in 

computer science and engineering from the University of 

South Florida in 2003, his master’s degree in systems 

science and automation from the Indian Institute of Science, 

Bangalore, India, in 1999. He is the author of 200 peer-

reviewed journal and conference publications and 3 books. 

He is an inventor of 4 US patents. He is a Senior Member of 

IEEE and ACM. 

 

Uma Choppali (umachoppali@gmail.com) is currently an 

adjunct faculty at the Department of Engineering 

Technology at the University of North Texas, Denton. She 

obtained a Ph.D. in Material Science and Engineering from 

the University of North Texas in 2006. She holds a master’s 

degree from the Indian Institute of Technology Bombay, 

India. She has authored 10 peer-reviewed publications. 

 

REFERENCES 

[1] S. P. Mohanty, Nanoelectronic Mixed-Signal System Design, 
McGraw-Hill, 2015, ISBN: 978-0071825719. 

[2] M. L. Rajaram, “Comparative Analysis and Implementation of High 
Data Rate Wireless Sensor Network Simulation Frameworks”, 
Master’s Thesis, Department of Engineering Technology, University 
of North Texas, Fall 2015. 

[3] G. Zhang, G. Liu, W. Chen and C. Yang, “Quantitative Analysis of 
Cluster-Head Selection for Wireless Sensor Networks,” in 
Proceedings of the World Automation Congress (WAC), 2012, pp. 
277-281. 

[4] T. Rault, A. Bouabdallah, and Y. Challal, “WSN lifetime 
optimization through Controlled Sink Mobility and Packet 
Buffering,” in Proceedings of the Global Information Infrastructure 
Symposium, 201, pp. 1-6. 

[5] Y. Lei, “Research and Implementation of WSN-based Data 
Acquisition and Analysis System Using Agent Collaboration,” in 
Proceedings of the 2nd International Conference on Power 
Electronics and Intelligent Transportation System, 2009, pp. 235-237. 

[6] V. Michopoulos, L. Guan, and I. Phillips, “A New Congestion 
Control Mechanism for WSNs,” in Proceedings of the 10th IEEE 
International Conference on Computer and Information Technology, 
2010, pp. 709-714. 

[7] J. Ma, W. Lou, and X.-Y. Li, “Contiguous Link Scheduling for Data 
Aggregation in Wireless Sensor Networks,” IEEE Transactions On 
Parallel And Distributed Systems, Vol. 25, No. 7, July 2014, pp. 
1691-1701. 

[8] N. Fatima and S. Gambhir, “Op-Leach: An Optimized LEACH 
Method for busty Traffic in WSNs,” in Proceedings of the 4th 
International Conference on Advanced Computing & Communication 
Technologies, 2014, pp. 222-229. 

[9] P. Shrivastava and S. B. Pokle, “An Energy Efficient Scheduling 
Strategy for Data Collection in Wireless Sensor Networks,” in 
Proceedings of the International Conference on Electronic System, 
signal Processing and Computing Tchnologies, 2014, pp. 170-173. 

[10] P. Sommer and R. Wattenhofer, “Gradient Clock Synchronization in 
Wireless Sensor Networks,” in Proceedings of the International 
Conference on Information Processing in Sensor Networks, 2009, pp. 
37-48. 

[11] S. A. Madani, J. Kazmi, S. Mahlknecht, “Wireless sensor networks: 
modeling and simulation,” InTechopen, 
http://cdn.intechopen.com/pdfs-wm/11548.pdf, Last visited on 14 
December 2015. 

[12] Q. I. Ali, “Simulation Framework of Wireless Sensor Networks 
(WSN) using MATLAB®/Simulink® Software”, 
http://cdn.intechopen.com/pdfs-wm/39337.pdf, Last visited on 14 
December 2015. 

[13] The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/, Last 
visited on 14 December 2015. 

[14] O. Heimlich, R. Sailer, and L. Budzisz, “NMlab: Cosimulation 
Framework for MATLAB® and NS-2,” in Proceedings Second 
International Conference on Advances in System Simulation 
(SIMUL), 2010, pp. 152-157. 

[15] OMNeT++, http://www.omnetpp.org, Last visited on 14 December 
2015. 

[16] G. Simon, P. Volgyesi, M. Marioti, and A. Ledeczi, “Simulation-
based Optimization of Communication Protocols for Large-Scale 
Wireless Sensor Networks,” in Proceedings of the Aerospace 
Conference, 2003, pp. 1339-1346. 

[17] Attaraya, http://www.cse.usf.edu/~labrador/Atarraya/, Last visited on 
14 December 2015. 

[18] PiccSIM, http://wsn.aalto.fi/en/tools/piccsim, Last visited on 14 
December 2015. 

[19] TrueTime, http://www.control.lth.se/truetime, Last visited on 14 
December 2015. 

[20] MATALB®/Simulink®, http://www.mathworks.com, Last visited on 
14 December 2015 2015.

 

mailto:preeth.madhu05@gmail.com
mailto:eliask@unt.edu
mailto:saraju.mohanty@unt.edu
mailto:umachoppali@gmail.com
http://cdn.intechopen.com/pdfs-wm/11548.pdf
http://cdn.intechopen.com/pdfs-wm/39337.pdf
http://www.isi.edu/nsnam/ns/
http://www.omnetpp.org/
http://www.cse.usf.edu/~labrador/Atarraya/
http://wsn.aalto.fi/en/tools/piccsim
http://www.control.lth.se/truetime
http://www.mathworks.com/

