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Abstract—Image or video exchanges over the Internet of
Things (IoT) is a requirement in diverse applications including
smart health care, smart structures, and smart transportations.
This paper presents a modular and extensible quadrotor ar-
chitecture and its specific prototyping for automatic tracking
applications. The architecture is extensible and based on off-the-
shelf components for easy system prototyping. A target tracking
and acquisition application is presented in detail to demonstrate
the power and flexibility of the proposed design. Complete design
details of the platform are also presented. The designed module
implements basic PID control and a custom target acquisition
algorithm. Details of the sliding-window based algorithm are also
presented. This algorithm performs 20× faster than comparable
approaches in OpenCV with equal accuracy. Additional modules
can be integrated for more complex applications, such as search-
and-rescue, automatic object tracking, and traffic congestion
analysis.

A hardware architecture for the newly introduced Better
Portable Graphics (BPG) compression algorithm is also intro-
duced in the framework of the extensible quadrotor architecture.
Since its introduction in 1987, the Joint Photographic Experts
Group (JPEG) graphics format has been the de facto choice
for image compression. However, the new compression technique
BPG outperforms JPEG in terms of compression quality and size
of the compressed file. The objective is to present a hardware
architecture for enhanced real time compression of the image.
Finally, a prototyping platform of a hardware architecture for a
Secure Digital Camera (SDC) integrated with the Secure Better
Portable Graphics (SBPG) compression algorithm is presented.
The proposed architecture is suitable for high performance
imaging in the IoT and is prototyped in Simulink® . To the best of
the authors’ knowledge, this is the first ever proposed hardware
architecture for SBPG compression integrated with an SDC.

Index Terms—Internet of Things (IoT), Object Detection,
Robot Vision Systems, Secure Digital Camera (SDC), Better
Portable Graphics (BPG), Image Compression, VLSI Architec-
ture

I. INTRODUCTION

In the last few decades personal computers (PCs) have had
an enormous impact in society. PCs are omnipresent in various
types and form factors such as desktops, laptops, tablets,
smart-phones, and other application specific systems. It is

envisioned that in the next few decades the personal robot will
have the same, if not higher, impact on society [1]. Automation
is currently widely used in many industries, performing a mul-
titude of tasks. Robots, a mode of automation, are generally
quicker, more productive and extremely accurate, and perform
many of the tasks that are either too dangerous or undesirable
for humans to do. Their applications cover a wide range from
manufacturing, cleaning and maintenance, to bomb disposal.
They are currently very specialized, only being able to perform
a few predetermined tasks and are mostly used in industrial
and military applications. However, they are starting to be used
more for civil applications. Personal robots like the ones found
in many futuristic novels and movies are intelligent, are able
to perform a set of tasks, to make decisions on the fly allowing
them to adapt to and interact with their surroundings. In order
for this to become a reality, robots need to be not only smarter
but must be enabled to be more aware of their surroundings.
This is not far off and Willow Garage’s PR2 [2] is a good
example of the current state of personal robots.

Quadrotors are commonly used with an onboard camera
and one or two operators. The operators control both the
flight of the vehicle and the camera operation. In industrial
applications this provides a quick, easy and relatively low-cost
means for inspection of pipelines, bridges and large structures
and navigating areas that are remote and otherwise hard to
access. Civil applications include search and rescue, traffic
congestion analysis, fire monitoring, HAZMAT operations and
the inspection of dangerous sites as well as environmental
assessments and nature conservation. In law enforcement
they are useful for surveillance, documenting crime scenes
and gathering intelligence. They can also be used for aerial
photography, television and videography, real estate and prop-
erty assessment. By enabling autonomous control with object
recognition and video tracking many of these tasks can be
automated allowing for more vehicles to be deployed with
considerably fewer operators. For example, during a search
and rescue mission, multiple quadrotors could be programmed
to search a given area sending an alert to the search team
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when a possible subject is found. If they are equipped with
an infrared thermal imaging camera this would allow them to
search through the night. Similarly, for law enforcement and
surveillance a subject could be tracked by multiple quadrotors,
all communicating with the base station or each other, forming
a subnet of the Internet-of-Things (IoT), as shown in Fig. 1.
These systems is expected to have significant applications in
smart cities [3], [4]. The control algorithm can then analyze
information from not just one vehicle but the whole swarm
and the IoT itself allowing it to make more complex calculated
decisions. A pictorial view of a search-and-rescue application
is shown in Fig. 2. The quadrotor(s) continuously process
information from external sources (such as GPS) and the IoT.

Fig. 1. The IoT-enabled aerial platform.

Fig. 2. Search-and-rescue module block diagram.

The Secure Digital Camera (SDC) is a novel approach
in capturing digital images [5]. For better understanding the
importance of the SDC, a comparison with a plain digital
camera can provide useful insight. A simple digital camera is
only able to capture digital images and maintain a visual record
of events. However, it is not possible to track the source, ensure
the authenticity and procession of custody for the digital
images. Even the use of digital watermarking capabilities
cannot provide indisputable authentication of the images. Data
loss might also occur in a digital camera. Thus, with the digital
camera there is also scope of eavesdropping and manipulation
of the multimedia file. The SDC on the other hand, with
is unique components is capable of tracking the identity of
the photographer, corroborate image veracity and maintain the
chain of custody with detailed records of point in time, day,
month, year and other significant information [6]. From the
above discussions, it is evident that the SDC is arguably one of
the best proven appliances of capturing multimedia. It attempts
to eliminate privacy and security concerns.

As multimedia usage continues to expand with an enormous
number of applications, the demand for high quality images
with acceptable size has been dramatically increased. BPG
[7] is a novel step in the field of image compression that aims
to supersede the decades-old de facto JPEG format [8] with
its distinct attributes: meeting modern display requirements
(high quality and lower size) of developers, programmers and
graphic businesses. HEVC (High Efficiency Video Coding)
[9] and compatibility considerations are accommodated in the
form of a small JavaScript (56 KB) decoder which is one
of the key composing elements of the new format. Unlike
JPEG, BPG does not require supplementary browser plug-
ins to display the compressed image. Other attributes that
differentiate BPG from JPEG and make it an excellent choice
include the following:

• The open source and royalty-free and patent-free nature
of the BPG justifies it as a more appropriate choice for
users because they do not need to be concerned with legal
issues.

• BPG is close in spirit to JPEG and can offer lossless
compression.

• With advanced quality features, BPG offers different
chroma formats making it compatible with multiple video
encoding schemes such as analog, digital, and JPEG
encoding schemes. Chroma formats supported include
grayscale, RGB, YCgCo, YCbCr, Non-premultiplied al-
pha, and Premultiplied alpha.

• BPG uses a range of metadata for efficient conversion
including EXIF, ICC profile, and XMP.

• BPG is capable of cross-platform use through its
JavaScript interpreter.

The rest of this paper is organized as follows: The novel
contributions of this paper are summarized in Section II.
Section III describes related prior work. Section IV discusses
the relevant flight dynamics and control systems of quadrotors
in general. Section V presents the hardware considerations
taken into account for this design. Section VI describes
the hardware setup and communication protocol followed in
this design. Section VII presents the object detection and
video processing algorithms used. Section VIII illustrates the
secure digital camera for the quadrotor. In Section IX, the
proposed algorithm and architecture for BPG image and video
compression are discussed. Section X discusses the custom
control software developed for initialization and autonomous
operation, while Section XI concludes the paper and briefly
discusses areas of future development of this platform.

II. NOVEL CONTRIBUTIONS OF THIS PAPER

The main objective of this paper is to describe a unified
and modular hardware architecture of an easily customiz-
able quadrotor with integrated secure better portable graphics
(SBPG) compression encoder that is integrated with an SDC.
The objectives are twofold. On the one hand, the proposed
SBPG architecture offers double-layer protection in the form
of encryption and watermarking, which addresses issues re-
lated to security, privacy , and digital rights management
(DRM) [6]. On the other hand, the paper proposes an SDC in-
tegrated with secure BPG compression for real time intelligent
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traffic surveillance (ITS). The proposed architecture meets
modern technology requirements: high quality and smaller size
because of using BPG compression. To the best of the authors’
knowledge, this is the first ever proposed hardware architecture
of an SDC that is integrated with SBPG compression encoder.

The novel contributions of this paper are the following:
• Design of a functional low-priced quadrotor based on

modification of existing proprietary and open-source plat-
forms.

• Design of a medium resolution (640 × 480) optical
camera system and attached to the quadrotor.

• A ground control station was designed and prototyped. It
provides for autonomous wireless control of the quadrotor
without affecting the vehicle’s payload. PID control was
also implemented on-board.

• Wireless video transmission was achieved between the
quadrotor and the ground station using commonly avail-
able off-the-shelf components.

• The OpenCV computer vision software platform was
modified to accomplish all video related tasks, including
pattern recognition.

• A library of serial communication functions was custom
developed for this project to allow the control of the
quadrotor from the ground station if autonomous flight
fails.

• A novel algorithm and architecture for SBPG that is
integrated with SDC, suitable for real time intelligent
traffic surveillance (ITS), is presented.

• A novel simplified hardware amenable architecture for
hardware BPG compression is proposed.

• The first-ever Simulink® -based prototype of the BPG
compression architecture is implemented.

III. RELATED PRIOR RESEARCH

In the last decade, a growing number of researches have
been conducted toward using quadrotors in image commu-
nication. The authors in [10] present a brief history and
overview of quadrotors. They also show the reliability of the
whole system when a PID algorithm is implemented. The
research also discusses the design and testing aspects of a
functioning quadcopter test-bed. Similarly, in [11] the authors
show various aspects of utilization of color histograms in a
quadrotor. The applications are diverse, such as the ability to
report location and size of any target image and the ability
to position a quadrotor coming from any angle. In [12], a
scheme is proposed to control quadrotors that makes use of
image based visual servos which are integrated with adap-
tive back-stepping control. The proposed system minimizes
the errors related to image feature positions. Shoufan [13]
has considered an architectural design that ensures secure
communications between a quadrotor and a ground station.
A dedicated software application was also used to test the
proposed security function. An extension board is used to
integrate the system and the implementation is made on an
FPGA. Another quadcopter system is proposed by Senkul et
al.[14]. Tilting rotors are used in this system as an alternative
propulsion design. This system fills gaps related to some of the

drawbacks of regular quadrotors. Better performance of this
system was seen when compared with a traditional quadrotor.
Asymptotic trajectory tracking can be a serious problem for
under actuated quadrotors and [15] presents a new controller
to deal with the issue. This controller changes the kinetic
description of the system. Lastly, the authors in [16] have
presented a communication system that allows a quadrotor
or UAV to have safe operations in unfavorable environmental
conditions.

A work by Mohanty [6] demonstrated a unique approach for
a secure digital camera with a double-layer of protection, inte-
gral watermarking and encryption capabilities. The proposed
architecture considers hiding binary images and their secure
authentication. It also provides a method for FPGA imple-
mentation. Its compatibility was also assessed with different
multi-media constructing electrical devices, and system-on-a-
chip (SoC) technology is a central component of the model.
Darji et al.[17] show the development of hardware capable of
entrenching invisible watermarks using a LeGall 5/3 Discrete
Wavelet Transform (DWT). In the suggested structural design,
the authors have considered all the limitations of a digital cam-
era. JPEG compression was used to assess the algorithm, and
Verilog HDL was used to prototype the processor in 0.18µm
VLSI technology. In [18], a novel scheme is introduced to
support pictures and illustrations captured by digital cameras.
Two techniques proposed employed combination of semi-
brittle and vigorous blind type watermarks. For development
of watermarks, the authors used the rate of information recur-
rence and the proprietors biometric records. It is worthy to note
that the proposed plan is capable of meeting the requirements
needed for image verification and pattern protection. Lastly,
[19] provided an innovative approach for putting into prac-
tice the two observable digital image-watermarking methods.
These methods are principally based on the very large scale
integration construction approach, which is capable of incor-
porating into any other available digital camera structure. The
proposed designs follow a series of steps for dealing with the
watermark on a pixel-by-pixel basis based on signal-to-noise
ratio.

The JPEG standard’s successor, JPEG-2000, intends to
overcome several of the existing shortcomings such as better
compression ratios, compression scalability, and resolution
accuracy. Ghodhbani et al.[20] suggested that hardware imple-
mented JPEG-2000 encoding is more efficient and optimized
than current software implementations and demonstrated an
optimized EBCOT algorithm architecture implemented on an
FPGA platform. Improved operational efficiency was observed
for a pipelined BPC encoder implemented in the VHDL
Hardware Description Language (HDL).

Liu et al.[21] particularly studied the HEVC which im-
plements compression methods based on 64×64 blocks and
minimum recursive block partitions of 4×4. Prediction modes
and tree-structures improve HEVC coding efficiency. A fully
pipelined parallel HEVC implementation with negligible Peak
Signal-to-Noise-Ratio (PSNR) was demonstrated that allows
real-time encoding, such as 1080p at 30fps with minimal
hardware at 600 MHz.

The Ultra High Definition Television (UHDTV) format is
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expected to support 3840×2160 and 7680×4320 resolutions at
120 fps. This implies a data throughput 100 times higher than
current 1080p HDTV. Zhou et al.[22] proposed optimizations
such as pre-normalization, hybrid path coverage, binarization
components, context modeling and lookahead rLPS to reduce
the path delay of the BAE. These optimizations are possible
by exploiting the incompleteness of data dependencies in rLPS
updating, which yields a Context-Adaptive Binary Arithmetic
Coding (CABAC) encoder at 4.37 bins/s i.e. a 45.3% op-
timization costing 4.8% BPCC performance degradation and
62.5% better performance than current architectures.

Optimized VLSI architecture techniques allow high perfor-
mance SAO encoding in HEVC. Mody et al.[23] demonstrated
4 K resolution at 60 fps at 200 MHZ using 0.15 mm2 of
silicon area in a 28 nm CMOS process with artifact avoidance
algorithms, which provide 4.3% savings in SAO encoding.

IV. QUADROTOR SYTEM-LEVEL DESCRIPTION

In this Section a description of the quadrotor is presented
with brief discussion of each of the system-level components.

A. UAV

The unmanned aerial vehicle (UAV) is a powered, aerial
vehicle that is either remotely piloted or controlled au-
tonomously. A remotely piloted UAV is known as a drone.
Drones have been around since the early 20th century. How-
ever, in recent years, many UAVs have been developed
with autonomous control allowing them to carry out prepro-
grammed flight plans. They are most commonly used for mili-
tary applications including reconnaissance and attack missions
[24]. Furthermore, they are increasingly being used for other
non-military tasks including fire fighting, surveillance, and
inspection.

B. Quadrotor

A quadrotor is an aerial vehicle whose lift is provided
by a set of four rotors. The rotors can be separated into
two pairs, each pair rotating in the opposite direction to the
other. Control is achieved by varying the speeds of the rotors
either individually or in pairs. Unlike a regular helicopter, the
blades on a quadrotor have a fixed pitch and the design as
a whole is much simpler as the only moving parts are the
four rotors. This reduces the maintenance time and cost of the
vehicle. Quadrotors have several advantages over fixed wing
aircrafts and traditional rotor helicopters. These advantages
include the following: (1) simplified design, (2) the ability to
hover, (3) vertical takeoff and landing (VTAL) capabilities,
(4) maneuverability, and (5) ability to fly both indoors and
outdoors. Small rotors impart less kinetic energy to quadrotors.
This makes them safer and less prone to causing substantial
damage when colliding with other objects. For these reasons,
quadrotors have been gaining popularity as a platform for UAV
research. The main disadvantage of a quadrotor over other
aerial vehicles is its short flight time, which is usually limited
to about 15 - 30 minutes.

C. Flight Dynamics

When considering the motion control of an aerial vehicle
the three main parameters involved are the angles of rotation
about the vehicles center of mass. These are known as the
following: (1) pitch, (2) roll, and (3) yaw. They refer to the
rotation about their respective axes: x (roll), y (pitch) and z
(yaw), with x being the direction of flight and z being the
perpendicular. Altering these parameters either individually or
together enables the motion of the vehicle to be altered as
needed [25]. In a quadrotor the only moving parts are the
four rotors and are considered in two pairs. Two opposite
motors form one pair that rotates counterclockwise while the
other two motors form the second pair that rotates clockwise.
All motions are obtained by varying the speed of each rotor
individually or in pairs [26], [27]. The individual rotors are
identified by compass directions (N, S, W, E) with North
corresponding to the direction of flight.

1) Altitude: In order for the quadrotor to hold a constant
altitude, the thrust generated by the rotors needs to equal the
downward force due to the mass of the vehicle. Uniformly
increasing the speed of all four rotors will increase the thrust
generated resulting in a net upward force thus causing an
increase in altitude. Similarly uniformly decreasing the rotor
speed will result in reduced altitude.

2) Pitch: By decreasing the speed of the forward facing (N)
rotor and increasing the speed of its opposite (S), the pitch of
the vehicle is decreased. This results in a forward motion of
the quadrotor. To move the quadrotor in the opposite direction
the speed of N is increased while the speed of S is decreased.
This results in a backward motion of the quadrotor.

3) Roll: A change in roll is obtained by similarly altering
the speeds of the sideways (W, E) rotors. These speed changes
result in motion in either the left or right directions.

4) Yaw: To prevent the quadrotor from rotating about its
vertical axis, the torque produced by the rotors needs to be
balanced. Therefore, rotors W and E need to rotate in the
opposite direction as that of rotors N and S. When all four
rotors are rotating at the same speed they generate an equal
and opposite torque, which results in a net torque of zero and
a constant yaw angle. When the speed of one pair of rotors
is increased relative to the other pair, the total torque will no
longer be zero, which results in rotation or yaw. The rotation
of the quadrotor is opposite to that of the faster rotating rotor
pair.

D. Control System

The quadrotor is a dynamically unstable nonlinear system.
This makes the quadrotor difficult to fly without an embed-
ded control system [28], [29]. This is highly essential for
autonomous flights. A closed-loop feedback control system,
as represented in Fig. 3, is implemented in the quadrotor to
achieve stable flight. In the case of a quadrotor, the process
is the vehicles dynamics and the output Y (s) is the current
position and orientation. The various sensors measure this
information in real-time and compare it to the desired value.
The difference of the desired input value and actual output
is the tracking error ε. The controller processes this error
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and the output is the new speed for each individual motor.
The change in motor speed results in a change in the system
output, which in turn is compared to the desired input and the
cycle continues to repeat this process. Many studies have been
conducted to test the response of various feedback controllers.
These include Dynamic Contraction Method [30] and Linear-
Quadratic Regulator (LQR) [31].

Controller
 

Process

Feedback

R(s)

Gc (s) G(s)

ϵ(s ) u (s ) Y (s )

-

Fig. 3. Closed-loop feedback control system.

The Proportional-Integral-Derivative (PID) controller is a
closed loop feedback controller consisting of three constant
parameters, as shown in Figure 4. This controller is the most
widely used in the industry mainly due to its simplicity and
good performance in a wide range of operating conditions
[32]. This type of control is implemented in the presented
design.

 Process

Feedback

R(s)
K I

G(s)

ϵ(s ) u (s ) Y (s )

-
s

 

 K p

sK D

Fig. 4. Closed-loop feedback system with PID control.

The output in the time domain is given by the following
expression:

u(t) = KP ε(t) +KI

∫
ε(t)dt+KD

ε(t)

dt
, (1)

where u(t) is the process input, ε(t) is the error and KP , KI

and KD are the proportional, integral and derivative control
constants, respectively and are derived by extensive tuning
during pre-flight tests. The Laplace transformation of Eqn. 1
results in the transfer function of the controller GC(s):

GC(s) = KP +
KI

s
+KDs =

KDs
2 +KP s+KI

s
. (2)

Each of the three terms in Equation 2 has a different effect
on the system and by adjusting the KP ,KI and KD values the
system can be tuned for the desired output response [26]. The
proportional control produces an output that is proportional to
the error and is adjusted by changing the KP value. For a
given error a high proportional gain will result in an increased
sensitivity and large change in the output while a small
gain will result in reduced sensitivity and a slower response.
However, too much increase in the proportional gain may
result in an unstable control system. Adjusting the KP value
allows for the rise time and steady-state error to be reduced
at the cost of increasing overshoot. There is always steady-
state error with only proportional control. The integral term is
proportional to the duration and magnitude of the error. This
has the effect of eliminating the steady-state error. However,

it may have a negative effect on the transient response of the
control system. The derivative response is proportional to the
rate of change of the process. Adjusting KD can increase the
stability of the system, reducing the overshoot and improving
the transient response. The derivative term is highly sensitive
to noise. Therefore, a low value is normally used.

V. HARDWARE COMPONENTS OF QUADROTOR
ARCHITECTURE

Many different quadrotor platforms have been developed
for both research and commercial applications. Most tend
to be relatively costly ranging from $,2000 - $,7000. The
ArduCopter [33] (succeeded by the APMCopter [34]) is an
open source quadrotor UAV project with a large active com-
munity and low cost components. The controller is based
on the popular Arduino platform and is undergoing constant
development. This makes it a good platform for further de-
velopment. The hardware was purchased from three vendors.
The ArduCopter frame, controller and sensors were purchased
from 3D Robotics, the manufacturer of the ArduCopter. The
Radio Controller, video camera and transmitter, battery, battery
charger, battery sensor, and the USB capture device, were
purchased from various online resources. The total cost of the
hardware was $1,276 which is very reasonable for its intended
applications. The hardware will be discussed in three different
sections: the ArduCopter (which consists of the frame, the
drive system, the controller or autopilot and the sensors), the
radio controller and the ground control station (that includes
the wireless telemetry, video capture system and computer).

A. ArduCopter

1) Frame: The frame was purchased as a kit that contained
the main plates, arms, motor mounts, battery mount, the carrier
boards and the landing gear as shown in Fig. 5 [35].

Fig. 5. Assembled quadrotor.

2) Drive system: The drive system consists of four elec-
tronic speed controllers (ESC) that drive the brushless DC
motors. The system is powered by a battery pack via a
power distribution board and the ESCs receive a Pulse-Width
Modulated (PWM) control signal from the ArduPilot Mega
(APM) controller, as shown in Fig. 6. The APM consists of
an Arduino Mega microcontroller and associated firmware.
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Power Distribution
Board

ESC

APM
(ArduPilot Mega)

LiPo Battery
11.1V - +

ESC

ESC

ESC

Brushless DC Motor

Brushless DC Motor

Brushless DC Motor

Brushless DC Motor

(Blue Arrows) Power Signals (Red Arrows) PWM Control Signals

Fig. 6. Drive system block diagram.

3) Brushless DC motors: Brushless DC motors are used
over brushed motors as they have a higher efficiency, expe-
rience less wear, produce less noise, allow for more accurate
speed control and offer a better thrust to weight ratio. However
they are more expensive and require more complex and
costly control electronics. The current and torque relationship
is linear as well as the frequency and speed relationship.
Brushless DC motors are rated by their Km (motor constant)
and Kv (motor velocity constant) values. The Kv rating of a
motor is the ratio of the unloaded Rotations Per Minute (RPM)
to peak voltage. Depending on the motor configuration they
are normally referred to as either “outrunners” or “inrunners”.
The conventional configuration is the “inrunner” and consists
of three stator windings surrounding the rotor which contains
the permanent magnets. An “outrunner” consists of the stator
coils in the center with the permanent magnets attached to
the rotor which rotates around the outside. The motors used
have a Kv value of 850. Thus with an 11.1 V supply they are
capable of reaching a maximum of 9435 RPM. They weigh
62 g each and can produce a maximum torque of 1095 g.

4) Electronic speed controller: The motors are driven by
a programmable electronic speed controller (ESC) which
receives a 50 Hz PWM control signal from the APM and
switches a network of field effect transistors (FETs). The
position of the motor is determined by measuring the back
EMF, which allows for the controller to energize the correct
coil causing the motor to rotate.

5) LiPo batteries: Two 11.1V lithium polymer (LiPo) 3-
cell batteries were purchased, each with a capacity of 3000
mAh and weight of 269 g. This allows for a flight time of
approximately 10-20 minutes.

6) Rotors: A set of four 10-inch rotors consisting of two
pushers and two pullers, was used. The pushers are used on
the clockwise rotating motors (N and S) while the pullers are
used on the counter-clockwise rotating motors (W and E). It
is important to ensure that the rotors are balanced so as not to
introduce vibrations into the system, as this will induce errors
in the sensor readings.

7) Controller (APM): The controller is responsible for the
stabilization of the vehicle by continually processing the data
from the sensors and adjusting the speed of the rotors accord-
ingly. The ArduPilot Mega (APM) is a controller board based
on a 16 MHz ATMega1280 microcontroller and is responsible
for the stabilization and navigation. A PID feedback control
loop is implemented in the controller in order to stabilize the
vehicle.

8) Sensors: Various sensors are used to determine the
current position, orientation and velocity of the vehicle. The
majority of these sensors are located on the Inertial Measure-

ment Unit (IMU), while others are mounted on the frame
and connected to either the IMU or the APM. A separate
board (ArduPilot Mega IMU Shield) is required to interface
the sensors with the main controller. This board attaches
to the APM and has an onboard gyroscope and three-axis
accelerometer. It also allows for a magnetometer and various
other sensors to be connected. A GPS module attaches directly
to the controller and communicates via a USB/UART interface.
It is a MediaTek MT3329 and allows for positioning of the
vehicle within 3 m of the desired location. In order to hold
the same position it is important to continuously know the
direction the vehicle is facing, as the controller needs to
continuously calculate the corrections that need to be made
to account for the drift in the yaw gyroscope. GPS can only
calculate a directional vector when the vehicle is in motion
thus a magnetometer is required to determine the direction
while hovering in a single position. The magnetometer used is
based on Honeywell’s HMC5843 and communicates through
an I2C interface. It was soldered onto the IMU, leaving the
I2C port free to be used for other peripherals if required.

9) Video camera and transmitter: The onboard video sys-
tem consists of a 1/2 inch CCD NTSC Sony camera with a
resolution of 510 × 492 and a 2.4 GHz four-channel video
transmitter used to transmit the video back to the ground
station. The transmitter has two connectors, a 2-pin power
input connector that was soldered to the power distribution
board, and a 5-pin video in connector. As seen in Fig. 7,
two pins are used to power the camera, two are used for the
microphone input (not connected) and the remaining pin is the
analog video signal.

Antenna

Transmitter

CCD Camera

Mic out
(unconnected)

Power in

Video in 

Fig. 7. Camera system block diagram.

B. Radio Controller

It is important to have a manual control that can override
the control signals sent by the computer at all times, hence a
standard 6 channel RF Radio Control (RC) unit and receiver
is used. For each channel the RC transmits a PWM signal
that is decoded by the ArduCopter. The controller consists
of two control sticks each with two degrees of freedom that
make up the first four channels. These channels provide the
basic flight controls, namely throttle, yaw, pitch and roll by
sending a varying PWM signal that ranges from 1000 to 2000
microseconds. The remaining two channels are toggle switches
that only have two states, low and high, represented by a
PWM value of 1000 or 2000 microseconds respectively. These
toggle switches can be used to set custom control modes for
the ArduCopter. In this design channel 5 is used to toggle
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between a manual stabilized control mode and the altitude
hold mode and channel 6 is left unused. The layout of the first
four channels is described by 4 different modes, with Mode 1
and Mode 2 being the most common. Mode 1 is more popular
in the United Kingdom and has the throttle and yaw on the
right hand side stick. Mode 2 is used in this design. It is the
favored mode in the United States and has the throttle and yaw
on the left hand stick. The PWM range will differ between RC
controllers, thus the ArduCopter needs to be calibrated. This
can either be done by setting the values manually with the
command line interface or by using the Mission Planner GUI
based calibration [36].

C. Ground Control Station

The ground control station (GCS) which is presented in
Fig. 8 handles all the video processing and consists of a
laptop computer, wireless video receiver, USB video capture
device and a USB XBee wireless module for telemetry [35].
Telemetry is the transmission of the sensor data and com-
mands between the ArduCopter and the GCS. The sensor
data includes current position data from the GPS, altitude,
velocity, orientation and RC PWM values. The ground station
is connected to the XBee module via an XBee Explorer which
allows for the serial commands to be sent and received over
USB.

Fig. 8. Ground control station.

1) Wireless video receiver: The video receiver requires a 12
V power supply. Therefore, a 2.1 mm power jack was placed
on the right hand side of the GCS. This allows for the receiver
to be powered with a wall wart or a 12 V battery may be used.

2) USB capture device: A capture device is required to
convert the analog video output from the wireless video
receiver to a digital format that can be used by the software.
These capture devices are available as either internal capture
cards or external devices that are commonly connected via
USB or FireWire. An Elgato 10020840 external USB 2.0
device was chosen, as it can be used with either a desktop
or portable computer and USB connections are more common
than FireWire. It supports a video resolution of 640 × 480
and uses either the H.264 codec at 1.4 Mb/s or the MPEG-4
codec at 2.4 Mb/s.

3) Xbee: XBees are small, low-powered radios well suited
to low bandwidth RF applications. They implement a simple
serial command set making them ideal to wirelessly interface
a microcontroller and personal computer. The two XBee
modules considered were the XBP09 and the XBP24, which
operate at 900 MHz and 2.4 GHz, respectively. The XBP09 is
capable of point-to-point, peer-to-peer and point-to-multipoint
networking and has a range of up to 10 km and a data rate
of 156 Kb/s. The XBP24 modules are based on the IEEE
802.15.4 standard (the basis for ZigBee) and have a higher data
rate of 250 Kb/s but a reduced range of 1.6 km. The XB09
module was selected due to its greater range and operating
frequency of 900 MHz, which would not cause interference
with the 2.4 GHz RC. In order to interface the XBee module
with the APM an XtreamBee board is used in the current
design.

4) Computing System: A command line program is exe-
cuted on a laptop running Mac OS 10.6.8 with OpenCV 2.3.1
installed. Two USB connections are required for the XBee and
video capture device.

VI. WIRELESS COMMUNICATION IN QUADROTOR

Video processing requires a substantial amount of process-
ing power and is beyond the capability of the AVR microcon-
troller used to control the APM. To perform the processing
onboard the quadrotor a microcomputer (BeagleBone, Rasp-
berry Pi or similar board) capable of running OpenCV would
be required. This would add weight and require significantly
more power thus reducing the battery life and flight time
considerably. Instead, a ground control station (GCS) is used to
do all the heavy processing. This is accomplished by sending
the video to the GCS via a wireless transmitter. The GCS
processes the video and determines the actions to be taken,
sending back control commands to the ArduCopter. As seen
in Fig. 9, the video link is a one-way downlink while the
control link is bidirectional, allowing for the GCS to send and
receive data from the ArduCopter. It is important for these
links to operate at different frequencies so as not to cause any
interference. The RC operates at 2.4 GHz, thus a 5.4 GHz
video transmitter was selected. The data link consists of two
XBee modules.

A. Serial Communication

The RS-232 standard serial communication protocol in-
volves sending a byte of data one bit at a time over a single
transmission line (TX) and it receives a packet of data over the
RX line. The serial packet consists of 10 bits. First the start
bit (always logic low) is sent. Next, the character is sent from
least significant bit (b0) to most significant (b7) and finally
the stop bit is sent, which is logic high. Some connections
make use of a parity bit, which comes before the stop bit.
However, the XBee model does not make use of the parity
bit. This connection thus has a 2-bit overhead and is known
as an 8N1 connection (start/stop bit with no parity). Serial
connections were designed to transmit data over relatively long
distance and have a range of about 15 m. These connections
make use of voltages up to 25 V. Long data lines however
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Fig. 9. Wireless communication setup in which the quadrotor is an integral
component.

are not needed, so the XBee uses TTL levels of 0 - 3.3 V.
The XBee has a full duplex connection and can thus send and
receive data at the same time. The speed of the connection is
described as the baud rate and is measured in bits per second
(bps). A serial connection traditionally consists of a 25-pin D-
sub connector however a minimal serial connection can be
made with just 3 or 5 wires. The XtreamBee serial break
out board for the XBee uses the 5-wire connection. Serial
communication is implemented by using the standard UNIX
library termios.h, which has functions for setting up and
connecting to a serial port. Passing the serial port name and
the required baud rate to the serial port initialization function
opens the port and sets up the required option flags for an 8N1
connection.

B. MAVLink

The ArduCopter uses MAVLink [37], a two-way com-
munication protocol based on the W-CAN and SAE AS-4
standard that was developed specifically for micro air vehicles.
MAVLink consists of a header library that has implemented
various commonly used messages that allow for settings to be
updated, sensor readings to be read, modes to be changed and
control commands to be sent. If custom messages are required
they may be generated in either C or Python. A message
packet varies in length and can be between 8 and 263 bytes.
Every packet consists of at least 8 bytes and the message type
determines the length of the payload which can be between 0
- 255 bytes. The first byte is the packet start sign (0x55) and is
followed by the payload length (0-255). The third byte is the
packet sequence and represents the number of messages that
have been generated during the current session. This number is
automatically incremented when each new message is packed.
The next two bytes are the system ID and the Component ID.
This allows for multiple systems to communicate with multiple
vehicles as a message can be addressed to a specific one. The
sixth byte is the Message ID that determines the function of
the message. There are a number of commonly used messages
as well as some that are specific to the ArduCopter. The
payload can vary in length from 0 - 255 bytes depending on

the message and it carries the information either being sent
to or received from the ArduCopter. The payload can contain
8/16/32/64 bit signed or unsigned integers, floats, doubles or
char values. Finally the last two bytes consist of a 16 bit
checksum generated by the same means as that used in the ITU
X.25 and SAE AS-4 standards. The number of messages that
can be sent per second is determined by the speed of the serial
connection and the payload size. The XBee modules have a
baud rate of 57600 bps, therefore the number of messages per
second can be described by the following:

Messages per second =

(
Baud rate

10× Number of bytes in message

)
=

(
57600

10× (8 + Payload length)

)
.

(3)

This results in a message rate of between 21.9 Hz and 720 Hz
depending on the payload length.

The main message used in the program is the RC Channel
Override message, which allows for the program to set the
PWM values for each channel overriding the RC values for
one or multiple channels. The message payload consists of 18
bytes. The first two bytes are the target system and component
ID, which are both set to one. The remainder of the payload
consists of eight 16 bit unsigned integers representing the
PWM value for each channel. To override the channel this
value should be between the minimum and maximum PWM
values for that channel, normally between 1000 and 2000. To
release control of a channel back to the ArduCopter a value
of 0 is set and to leave the current value for the channel
unchanged a value of -1 (0xFFFF) is set. Each message
has a corresponding pack function that takes the required
values and generates the message. MAVLink has already been
implemented on the ArduCopter and thus, only needed to be
incorporated in the ground control station program. On the
GCS the message is packaged with the required MAVLink
pack method and then sent out over the serial port. The
ArduCopter then receives the message and checks the data
integrity by comparing the checksum. If there is no data lost
then the message is unpacked and the data is passed to the
required function determined by the message ID. A number of
helper functions were created to pack and send messages out
over the serial port. To arm the motors, after the ArduCopter
has booted up, the left control stick is held in the bottom
right position for a few seconds. This corresponds to a throttle
value of 0% and a yaw right value of 100%. A function
was created to arm the motors by sending a message with
the corresponding PWM values for channels three and four,
waiting 4 seconds and then handing control back to the RC.

VII. OBJECT DETECTION AND VIDEO PROCESSING IN
QUADOTOR

Object tracking is performed using a vision system. It
consists of three steps: (1) the detection of the desired object,
(2) the tracking of the object between frames and (3) the
analysis of the changes in object position to determine the
behavior of the object. This has many applications including
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vehicle navigation, surveillance and motion-based recognition.
The OpenCV based control software running on the GCS
performs the object tracking. This section will briefly cover
computer vision, the OpenCV library and the custom template
matching algorithm used.

A. Computer Vision, Object Recognition and Video Tracking

Object recognition is used to find a given object in an image
or video sequence. This can be an extremely difficult task as
the appearance of the object to be detected is dependent on
various factors, such as the position of the object relative to
the camera, lighting variations and differences in the object
models. There are three main methods used in computer
vision to detect objects: geometry-based, appearance-based
and feature-based. Geometry-based methods use geometric
models and were used in the initial attempts of object de-
tection, however this proved to only be effective in limited
situations. Appearance-based and feature-based methods [38]
are currently more common and will be discussed briefly.
Appearance-based methods use a reference image to identify
the object; however the object may not be reconcilable under
different lighting conditions and at different angles. Therefore
multiple images are generally used. Some of these techniques
include edge matching, divide and conquer search, grey scale
matching, and gradient matching. Feature-based methods in-
volve analyzing the image for possible feature matches with
the object features. Surface patches, corners and linear edges
are features that could be used to match an object. Some
common methods include interpretation trees, hypothesize and
test, pose consistency, pose clustering, invariance, geometric
hashing, scale-invariant feature transform (SIFT) and speeded
up robust features (SURF). A video tracking method must be
selected according to the object to be tracked as each method
has better performance for a specific subject. Blob tracking
[39] is useful for detecting human movement as the shape is
continuously changing. Other algorithms include kernel based
tracking and contour tracking. Filtering algorithms are more
complex and can be used for tracking objects that have been
partially obscured or have a more complex shape. Common
filtering algorithms include the Kalman filter and the particle
filter.

B. OpenCV

OpenCV is an open source real-time video-processing li-
brary originally developed by Intel in 1999 that can be freely
used for commercial or non-commercial applications. It is now
maintained by Willow Garage and is under active development
with a new release every six months. It was originally written
in C, however the latest version has a new C++ interface
as well as wrappers for various other languages including
Python, Ruby, Java and C#. At its core OpenCV consists of
a collection of cross-platform C functions and C++ classes
that allow for high-speed common computer vision functions
to be performed. Libraries for many applications are available
including facial recognition, motion tracking, machine learning
and mobile robotics. As can be seen in Fig. 10, CXCore
implements all the basic structures, algorithms and drawing

functions while CV handles all the image processing and
vision algorithms. HighGUI is responsible for the creation of
windows, handling mouse and keyboard events, adding track-
bars, reading and writing images from or to disk, capturing
video from a camera and writing video to a file. CvCam allows
for video to be captured and processed and all the machine-
learning algorithms reside in the ML library.

MLL

Statistical Classifiers

Clustering Tools

HighGUI

GUI

Image & Video IO

CV

Image Processing

Vision Algorithms

CXCORE

Basic Structures

Algorithm and Drawing

Fig. 10. OpenCV software architecture.

C. Template Matching

Template matching is one of the most common tech-
niques used for object detection and has been implemented
in OpenCV as the matchTemplate function. In order
to perform the match, a template image is used to identify
an object in a source image by comparing the pixel values
of the target with those in a portion of the source image. A
result image is created with each pixel value representing the
confidence of the match at the corresponding location. There
are six different comparison methods available in OpenCV
[40]. The template image T with pixel width Tw and pixel
height Th is initially overlaid on the source image S with
pixel width Sw and pixel height Sh, starting in the upper left
corner as shown in Fig. 11.

XTemplate

Source

X

Sw

Sh X

M x

M y

X

X

Fig. 11. Sliding window method used for template matching.

A comparison of the pixels is performed and the result R
is the confidence of the match at this location. The template
image is moved 1 pixel to the right (x = x+ 1) and another
comparison is performed. When the right edge of the template
image reaches the right edge of source (x = Sw − Tw) the
template image is then moved down 1 pixel (y = y + 1, x =
1) and the process is repeated until the template reaches the
bottom right corner (x = SwTw, y = Sh − Th). The result
image will have a width of Rw = SwTw and a height of
Rh = ShTh. The location in the result image with either the
highest or lowest value, depending on the method used, has the
highest match probability. This point is relative to the result
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image and thus needs to be converted to a point relative to the
source image, using the following equations:

Mx = Rx + Sx −
Tw
2

(4)

My = Ry + Sy −
Th
2
, (5)

where (Mx,My) are the coordinate locations of the match
with respect to the source and (Rx, Ry) are the coordinate
locations of the match with respect to the result image. One
of the disadvantages of this method is that it can be slow if
the source image is relatively large or the template image is
much smaller than the source. In this case the source image
from the video feed is 640 × 480 pixels. Assuming a template
image of 100 × 100 pixels then 205,200 comparisons of the
template image would be performed as seen below:

No. of comparisons = (640−100)× (480−100) = 205, 200.
(6)

Another disadvantage is that the target in the template image
needs to be the same size as the target in the source image.
This is a problem as the size of the target in the source image
is dependent on the distance between the quadrotor and the
target. There are two possible ways to overcome this, the first
is to get an altitude reading from the ArduCopter and scale
the target image accordingly to match the expected size of
the target in the source. This would require that the size of
the target is known and that an accurate measurement of the
distance to the target can be obtained. The other method would
be to attempt a match and if one is not found then scale the
target and repeat until a match is found. However this would
be significantly more computationally expensive and would
result in a much lower frame rate. To perform a template
match in OpenCV the template image is loaded as a gray-
scale image and stored in a native data structure. The video
stream is opened using the desired camera source and then a
single frame is grabbed and stored as the source image. The
image that is captured form the camera is an 8-bit image and
has three channels, red, green and blue. The color channels are
not needed, as the target image is black and white, the image
is converted to gray scale thus using just one channel. This
greatly reduces the size of the matrix (by a factor of almost
3) and results in a significant speed increase.

D. Fast Template Matching

One method of improving the time taken to perform the
template matching is to equally scale down the source and
template images. By doing this the number of comparisons
performed can be reduced greatly. For example, if a source
image of 640 × 480 pixels and a template image of 100 ×
100 pixels are scaled down by a factor of 4 then the number
of comparisons performed will be reduced from 205,200 to
12,825 This results in a significantly large computational
saving as now 93.25% fewer comparisons are performed,
however the accuracy of the location of the match will be less
accurate. The confidence of the match will also be affected,
as information is lost when the image is down-sampled. An
OpenCV function [40] uses this method to down-sample the

source and template images and find multiple match locations.
The original source image is then searched around these match
locations by creating a Region of Interest (RoI) that is centered
on the match location with a size that is slightly larger than
the template image. This allows for the match location to be
determined without a great cost in computation or resolution.
The final algorithm used to perform the template matching was
based on the FastMatchTemplate with image pyramid
[41]. The original function was updated to use the new C++
data structures, which do not require memory management. All
unneeded code was removed, as only one match location was
required, thus simplifying the function. For this application the
goal is to detect an object while flying above it and at high
altitudes; it is therefore likely that the target is only going to
move by a small number of pixels between each pass through
the loop. An option was thus added to skip the down sampling
step if there was a match previously and instead just search
around the location of the previous match. This can produce
a small improvement in the time taken to find a match for
a slow moving target. This method will also filter out any
large changes in the match location that could be due to false
positives or other targets being detected and will prevent the
quadrotor from making sudden changes or losing track of the
current object. The first thing the algorithm does is to check
that the template image is smaller than the source image and
that the number of channels in each image is equal, otherwise
the function will fail. Next, copies of the source and template
are made so as to not alter the originals. In the case when there
was not a match the last time through the loop, then down
sample the images and try to find a match with confidence
above the desired value. If a match is found then the match
location is set to then new value. When there was a previous
match or there is a new match, then the original source image
is searched over a small user defined RoI. If a valid match is
found in this region then the match location is converted back
to the source image coordinates. Finally, the target location
may be highlighted on the source image and displayed for the
user. This custom developed fast template matching algorithm
achieved an average speedup of 20× over the unoptimized
FastMatchTemplate.

VIII. SECURE DIGITAL CAMERA FOR QUADROTOR

As quadrotors will be widely used in places where it
would be hard for direct access, the images obtained need
to be completely trusted as a faithful reflection of the exact
situation. Images obtained using a conventional camera are
more vulnerable to tampering. So they cannot be used for
targeting in a quadrotor. For example, when a quadrotor is
used for critical applications like documenting a crime scene,
if the images are tampered by hackers, then the very purpose of
documenting will not be achieved. Similarly, when a quadrotor
is used for civil applications like traffic congestion analysis if
secure image processing is not performed, then hackers can
easily distort it leading to chaos during important hours of
the day. In situations such as environmental assessments, the
image can be easily modified by anyone using image editing
tools widely available. Hence using a Secure Digital Camera
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for these applications is very important as there is a need to
protect these images against intrusion.

SDC is a device that has the standard features of a digital
camera and built-in facility for real-time, and low-cost and
low-power operation [5]. In this paper, we present a novel
concept of a secure Better Portable Graphics (SBPG) encoder
with built-in watermarking and encryption facility. The BPG
compression has several advantages over JPEG compression
including high quality with lower size than JPEG, which
makes it suitable for real time and bandwidth requirements.
SDC is integrated with SBPG and typically designed as an
SoC. Using double-layer protection, watermarking and encryp-
tion, the SDC addresses many DRM-related tasks including
ownership rights, usage tracking, detection and extent of
tampering, and facilitating content authentication. Thus, the
SDC is arguably one of the best proven ways to facilitate
real-time rights management, and is considered to be very
suitable for real time applications such as the IoT in highway
surveillance systems, as introduced in this paper.

The proposed architecture is the digital camera with built-in
capabilities: watermarking and encryption, for the protection
of the images that it captures. The system-level block diagram
of the proposed SBPG integrated with SDC is shown in
Fig. 12. It consists of an active pixel sensor (APS) unit,
analog-to-digital converter, liquid crystal display, encryption
unit, watermarking unit, and compression unit. The image is
captured by an image sensor and converted to a digital signal,
then stored temporarily in scratch memory. The image then
is further transmitted to the SBPG. The controller unit is
responsible for controlling the entire sequence of events. In
the proposed architecture, the encryption, watermarking, and
compression modules are working together in the system-on-
a-chip (SoC) architecture of the SDC.

Fig. 12. System-level block diagram of SBPG integrated with SDC.

In the SBPG, an invisible robust blind watermarking ap-
proach is used along with Rijndael advanced encryption (AES)
[42]. The BPG performs the BPG compression process, which
achieves higher compression ratio with smaller size than
JPEG for similar quality. BPG compression is based on high
efficiency video coding (HEVC), which is considered a major
advance in compression technique. The proposed architecture
provides two layers of protection, which are the AES encryp-
tion algorithm and invisible robust blind watermarking. The
encryption or watermarking algorithm alone does not address
all the issues related to DRM. For example, an encryption

algorithm prevents unauthorized access of the digital content;
however, it does not prevent an unauthorized user from doing
illegal replication of the decrypted content, which can be
addressed by using digital watermarking. Digital watermark-
ing establishes owner rights, and prevents illegal replication;
thus, it protects images against unauthorized modification
and false ownership claims. Applying both encryption and
watermarking algorithms addresses this issue and provides
full protection: confidentiality and integrity. Starting with
the watermarking and encryption process, then preforming
the BPG compression is more secure than starting with the
compression process because information is again changed
during compression. In the latter case, the original data in
a host image is changed by the compression process before
applying the watermarking, which means the watermark is
altered since it is based on changed information of the host
image.

IX. THE PROPOSED ALGORITHM AND ARCHITECTURE
FOR BPG IMAGE AND VIDEO COMPRESSION

Proper usage of image compression can make a signif-
icant difference in terms of size and quality in order to
meet modern display requirements. BPG is considered as the
newest technique in image compression. BPG is dependent on
HEVC, which is considered as the latest standard in video
compression. Unlike other compression techniques such as
JEPG, BPG is essentially an I-frame of the HEVC. By using
HEVC, the I-frame is encoded more efficiently. Comparing
with JPEG which encodes each block independently, HEVC
encodes only the differences between blocks rather than deal
with the full block information. This can be done by reducing
the redundancy between different blocks in the HEVC I-
frames.

A. A Simplified BPG Compression Algorithm

BPG is a new image format offering several advantages
over the JPEG format. It achieves higher compression ratio
with smaller size than JPEG for similar quality. In the BPG
format, lossless compression, animation, various color spaces
(grayscale, YCbCr, RGB, YCqCo), and chroma formats are
supported [7]. The reference BPG image library and utilities
(libbpg) can be divided into four functions: BPG encoder, BPG
decoder, Javascript decoder, and BPG decoding. The BPG
encoder takes JPEG or PNG images as input, performs BPG
compression and provides the corresponding BPG image. The
BPG decoder does the reverse function. With a small Javascript
decoder, the BPG format is supported by most web browsers.
The BGP decoding allows any BPG image to be decoded in
any program. In the proposed architecture, the focus is in
the BPG image encoder compression. The BPG encoder is
based on HEVC encoding [9]. HEVC is considered the prime
candidate to replace H.264 encoders due to its compression
efficiency [43]. The HEVC project aims at reducing the bitrate
compared to H.264/AVC because it is more parallel-friendly
[44], [45]. Fig. 13 shows the initial steps of the BPG encoder
algorithm. It can be seen from the figure that at some point
the encoder must check whether an input is a video (dynamic
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image) or static image. If the input is video, the algorithm
proceeds to the video encoder, shown in Fig. 14; otherwise,
the algorithm continues to the image encoder, illustrated in
Fig. 15.
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Fig. 13. BPG encoder algorithm.
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Fig. 14. BPG video encoder algorithm.

After reading the image, the encoder does an initialization
processes to read meta data, color space, bit depth, etc. There
is an essential step in which the algorithm must check two
conditions: bit depth and color space. Bit (color) depth refers
to the amount of data that can be used to indicate the color
of each pixel [6]. It can be represented by different numbers:
8, 10, 12, · · · . The concern with images that have high bit
depths are data storage, and required transmission bandwidth.
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Fig. 15. BPG image encoder algorithm.

Also, some displays are not capable of reproducing all of these
colors. Undoubtedly, there must be a trade off between quality
and bit depth. The BPG compression encoder strictly considers
images with bit depth of 8 for each color’s channel.

B. Proposed Hardware Architecture for the BPG Encoder

The hardware architecture of the BPG encoder is presented
in this section. BPG compression encoding can be divided into
two phases: the pre-encoding (initialization) phase and HEVC
encoding, which are shown in Fig. 16. In general, compression
can be classified into two categories, lossless and lossy. When
the exact original data is recovered, this is called lossless
compression, while in the lossy case, a close approximation
of the original data is obtained. BPG is capable of both lossy
and lossless compression.
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Fig. 16. BPG encoder block diagram.

1) Initialization Phase: Images can have different pixel
depth, color spaces, and alpha channel. There are initializa-
tion procedures that have to be completed before doing the
compression encoding. The first procedure is to obtain the
image details: meta data, color space, pixel depth, and alpha.
The BPG compression encoder algorithm requires images with
bit depth of 8 and true color or grayscale color spaces. These
are essential requirements, otherwise the encoder provides an
error message indicating that bit depth or color space are not
supported. Algorithm 1 illustrates the steps of the initialization
phase.

2) HEVC Encoder Phase: BPG encoding is based on the
HEVC encoder, which is considered a major advance in
compression techniques. HEVC offers high coding efficiency
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Algorithm 1 Initialization phase of the proposed BPG com-
pression.

1: Parameters ← {PixelDpth,ColorSpace,AlphaChannel}
2: Resolution ← {pixels/inch}
3: ColorType← {TrueColor,GrayScale}
4: if Length > 2 then
5: Bitdepth← {M ateData/ImageSize}
6: if Bitdepth 6= 8 then
7: AlphaChannel← ∅
8: PRINT “ERROR: while opening bitdepth en-

coder.”
9: Else

10: if Bitdepth 6= 8 then
11: AlphaChannel← ∅
12: PRINT “ERROR: while opening bitdepth encoder.”
13: if ColorType < 12 then
14: PRINT “ERROR: Color space is not supported.”
15: end
16: PRINT “Bit Depth and color space are supported.”
17: PRINT “Image accepted for BPG compression.”
18: end

because of the intelligent approach that is used to reduce
the area (pixels) that is encoded [46]. HEVC uses an 8×8
block as the basic coding unit, and the Discrete Cosine
Transform (DCT) or the Discrete Sine Transform (DST) as the
transformation mechanism to the frequency domain. In HEVC,
the amount of information content (entropy) is considered via
context-adaptive binary arithmetic coding (CABAC), which is
more efficient compared to the method that JPEG utilizes:
Huffman entropy coding [47]. The HEVC encoder encodes
the pictures into a bitstream, which contains a sequence of
data known as a Network Abstraction Layer (NAL). The
encoder stores pictures in the Decoder Picture Buffer (DPB)
as illustrated in Fig. 17. A picture in HEVC is divided into
one or multiple slices, which contain one or multiple slice
segments.

Input
 pictures  

Encoding
Engine 

Decoder Picture
Buffer (DPB)

NAL Units
Bitstream

Encoder

Fig. 17. HEVC Encoding Block Diagram.

HEVC encoding is performed in three stages: prediction,
reconstruction, and bitstream core. The prediction core is the
essential stage because it handles intra and inter prediction
in parallel, where the reconstruction code constructs reference
frames at each time of the encoded frame [46]. The bitstream
core performs CABAC. The three core stages of the HEVC
encoder are the following:

• Inter Prediction: in this block the essential task is

to reduce temporal redundancy by comparing a current
prediction unit with neighboring prediction units, which
can be done by motion estimation. In motion pictures, the
Inter-picture is performed to make predictions in which
motion vectors specify the movement of the suggested
image in the direction existing image. The suggested
picture is chosen from the interpreted image buffer in
order to perform Intra prediction on a block basis, which
indicates the displacement location according to the se-
lected picture and its prediction block. Planar motion of
rigid object prompts the displacement.

• Intra Prediction: is the process of disconnecting the link
surrounded by the regions of the picture, if the prediction
block process is carried out. Intra prediction is applied to
reduce spatial redundancy.

• Transform and Quantization: transform is the next step,
which is performed after reducing the temporal and spa-
tial redundancy. The size of transform can be 4×4, 8×8,
16×16, or 32×32. Two transforms are used: Discrete
Cosine Transform (DCT), and Discrete Sine Transform
(DST). The sinusoidal transform is considered appropri-
ate for decorrelation. After the process of transform, the
sample is quantized and transformed by entropy coding.
Quantization is the process that resolves signals to an
assembly of denoted values; however, scalar quantization
process involves the quantization of individual values.

• Entropy Coding: it is the process of plotting syntax
elements into the bitstream. Syntax elements are the
transformed quantized elements, which also include in-
tra prediction modes, motion vectors etc. However, the
coding stages of entropy differ according to the design
criteria. Two categories of syntax elements are used: fixed
length codes are applied when syntax elements identify
eminent characteristics of the bitstream. Variable length
codes (VLCS) are known for coding information on the
images. The main objective is to eliminate redundancy
which has not been removed by the prediction stage.

The encoder control is responsible for all the encoding of
images of the series of shots of video into the bitstream as
required by the function. It also ensures that the encoding of
video is according to the required videos coding specification.
It also makes sure that the decoder buffer of the receiving
bitstream has sufficient size. The decisions that the encoder
control takes involve the division of the image and the division
of code blocks. The proposed hardware architecture of the
HEVC encoder is shown in Fig. 18.

C. Simulink® Implementation of the Proposed BPG Encoder
Architecture

The system-level architecture of the proposed BPG com-
pression encoder is illustrated in Figure 19. The blocks shown
in the dotted lines perform the initialization phase and HEVC
encoder. The initialization phase preprocesses the input image
and obtains image details: bit depth, alpha, chroma format, and
a code for color space. Postprocessing verifies bit depth and
color space. The HEVC encoder receives the verified image
and then starts performing the splitting, intra frame prediction,
DCT, IDCT, and quantization processes.
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Fig. 19. System Level Architecture of the Proposed Algorithm.

1) Simulink® Based Modeling: The proposed algorithm is
prototyped in MATLAB® /Simulink® Version 8.3 (R2014a),
with the Computer Vision System Toolbox Version 9.7 [48].
The BPG encoder model is shown in Fig. 20. The methodology
that is used to represent the high level system modeling is
bottom-up. The first step is focused on building function units;
the next step is to integrate these units into sub-systems;
and finally, verifying and testing overall system functionality.
MATLAB® /Simulink® offers image processing functions and
modules that facilitate fast prototyping. Another advantage
of using MATLAB® /Simulink® is the availability of function
units such as DCT/IDCT and block processing. In addition,
the system-level modeling can be accomplished using different
modules: Color Conversion and DCT domain compression.

2) Validation of the BPG Encoder: Four standard test
images were selected: Bear, IceClimb, Lena, and Wallpaper,
with different spatial and frequency characteristics. The test
images are encoded using the proposed BPG compression
encoder. Describing the type and amount of degradation in re-
constructed compressed images is considered a major concern
in evaluating picture quality in image compression systems.
It has been proven [49] that some measures of image quality
correlate well for a given compression algorithm but they are
not reliable for an evaluation across different algorithms. Thus,
the most common measures of image quality were used in this
paper. The mathematical expressions for Root Mean Squared

Error (RMSE) given in Eqn. 7 [50] and Peak Signal to Noise
Ratio (PSNR) given in Eqn. 8 [51] :

RMSE =
1√
MN

M−1∑
j=1

N∑
n=1

||(IO(i, j)− IO′(i, j)||2(7)

PSNR = 10 log

(
(2n − 1)2

MSE

)
(8)

= 10 log

(
2552

MSE

)
, (9)

where the image has dimensions M × N , IO is the original
image and IO′ is the compressed image.

The need of metrics that correlate well with human per-
ception of quality justifies introducing additional quality as-
sessments: Structural SIMilarity (SSIM), Multi-scale MSSIM,
and Visual Information Fidelity (VIF). SSIM and MSSIM aim
to measure image resolution and viewing condition. Uncom-
pressed images are used as references and then the similarity
between the compressed images and references is measured.
Details for the calculation of SSIM and MSSIM are given in
[52]. The quality assessment VIF utilizes mutual information
between reference images and distorted images [53]. Table I
summarizes the image quality assessments that have been used
in this paper.

The test images and the corresponding BPG images are
shown in Fig. 21, Fig. 22, Fig. 23, and Fig. 24. Table II
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Fig. 20. BPG Compression Encoder in Simulink® .

illustrates the related metrics for each compression technique
and test image. It is observed that for essentially the same
PSNR, the size of the BPG image is substantially reduced.
According to the experimental results, the proposed hardware
architecture achieves better quality conforming to the quality
assessments, shown in table II. Figures (25(a)), (25(b)), (25(c),
26(a)), (26(b)), (26(c)), 27(a)), (27(b)), (27(c)), 28(a)), (28(b)),
and (28(c)) analyze and illustrate the related metrics for Bear,
IceClimb, Lena, and Wallpaper images respectively.

TABLE I
SUMMARY OF QUALITY METRICS USED FOR THE COMPRESSION

TECHNIQUE AND TEST IMAGE

Quality Metric Remarks.

RMSE The average squared difference, pixel-by-pixel.

PSNR Luminance Component.

SSIM Correlates with human perception: luminance, contrast,
and structure.

MSSIM Variance and cross-correlation.

VIF Mutual information.

X. AUTONOMOUS CONTROL OF QUADROTOR

Autonomous control is achieved by means of a command
line program running on the GCS computer. In order to start
the program, the serial port path (at a minimum) needs to be
passed to the program as well as the baud rate, target image
and source device id. For example the program can be run as
follows:

$ ./searchcopter -p
/dev/tty.usbserial-A600eGfb -b 57600 -t
/target.jpg -s 0

This will open a serial connection at 57600 baud with the
specified USB serial device, load the target image and open
the default video source. There are other user options that can
be set at runtime; these are viewable along with their default
values by printing the help menu with the “h” or “?” Flags.
A basic flow diagram of the program can be seen in Fig. 29
which gives an overview of the program function.

On launch, the user inputs are parsed and the default values
of the other options are set. Next an attempt is made to
open a serial connection with the specified port. If this is
unsuccessful the programs exits with a failure status, otherwise
the target image is loaded and video stream is opened. If they
are loaded successfully the program enters the main loop and
the target is searched for in the source image. If a match is
found the location is displayed on the video stream and the
required action is determined. The response is proportional
to the distance to the target. The greater the distance, the
faster the ArduCopter will move towards it. As it approaches
the desired location it will slow down and finally stop when
within the given region. Once the PWM values are calculated,
a message is packed and sent to the ArducCopter. At the end
of the loop there is a 1 msec delay to allow for keyboard
actions to be detected. Currently “a” will arm the motors, “d”
will disarm them and “spacebar” will hand control back to the
RC. The program can be terminated by pressing either “ESC”
or “q”. Several distinct communications protocols are involved
and their interdependence is shown in Fig. 30.

XI. CONCLUSIONS AND FUTURE RESEARCH

A versatile and extensible quadrotor platform, shown in
Fig. 5, based on open-source hardware and software was
designed and is described in detail in this paper. As an
example application of the platform’s capabilities, a target
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TABLE II
QUALITY METRICS FOR THE BPG COMPRESSION FOR TEST IMAGES.

Test Image Compression Size (KB) RMSE SSIM VIF MSSIM PSNR

Bear Image
JPEG (input image) 19.4 0.015 0.960 5.097 8.691 84.0

BPG image 15.8 0.012 0.977 5.201 9.008 84.8

IceClimb Image
JPEG (input image) 85.3 0.012 0.990 5.293 9.092 86.0

BPG image 78.4 0.010 0.999 5.890 9.537 86.1

Lena Image
JPEG (input image) 29.3 0.200 0.987 4.285 8.103 80.6

BPG image 26.4 0.023 0.999 4.310 8.287 80.7

Wallpaper Image
JPEG (input image) 06.2 0.190 0.948 4.315 8.131 81.1

BPG image 04.4 0.022 0.953 4.391 8.305 81.2

(a) RMSE & SSIM (b) VIF & MSSIM (c) Size versus PSNR

Fig. 25. Bear image

(a) RMSE & SSIM (b) VIF & MSSIM (c) Size versus PSNR

Fig. 26. ICeClimb image

(a) RMSE & SSIM (b) VIF & MSSIM (c) Size versus PSNR

Fig. 27. Lena image
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(a) RMSE & SSIM (b) VIF & MSSIM (c) Size versus PSNR

Fig. 28. Wallpaper image

recognition system was designed, programmed and imple-
mented using custom and published algorithms with outstand-
ing performance. Research work is currently underway to
extend the functionality of the vehicle by incorporating line-of-
sight optimal communications location for search and rescue
operations. Further work will concentrate on improving the on-
board computing capabilities so that most of the computation
burden is removed from the base station thus reducing the
large amount of wireless traffic currently incurred. To securely
transfer image and video data, the quodrotor architecture is
equipped with an on-board secure digital camera (SDC) [54].
In such an situation, the quodrotor can be deployed to capture
and transmit sensitive information reliably through the use of
its on-board SDC. This is particularly important in certain
applications in which a 3rd party can tamper with the data
transmitted from the quodrotor.

A hardware architecture to perform BPG compression en-
coder in images is also presented. The encoding scheme can be
divided into two phases. First is the initialization phase, which
reads an image and extracts its details then verifies specific pa-
rameters such as bit depth, alpha, and color space. The second
phase is HEVC encoding, which is considered a major advance
in compression techniques. The proposed architecture is pro-
totyped in Simulink® . The experimental results are compared
with existing JPEG techniques in terms of quality and size
and indicate the superior compression characteristics of BPG.
Further work could include proposed hardware architecture as
prototype using a hardware description language like Verilog
and also building hardware in actual silicon. Also, since this
paper only considers image compression, further work can be
done on BPG video compression; the algorithm is clarified
in Section IX. The BPG architecture will soon be integrated
with encryption and or digital watermarking capabilities [48],
[55]. Energy efficiency will remain a challenging problem
for the battery operated systems [56], [57]. Future research
directions also include developing energy-efficient as well as
high-performance architectures which can be used in image or
video communications in Internet of Things (IoT) frameworks.
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