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Abstract—With the increasing complexity of nanoscale-CMOS
circuits and systems integration, full SPICE simulations for sili-
con accurate results have run times in the order of days or weeks.
This brief presents a methodology that uses a simple Kriging
metamodeling technique capable of modeling the correlation
effects between parameters, and a simulated annealing algorithm
for ultra-fast design optimization. The proposed methodology is
applied to a clamped bitline amplifier circuit and shows promis-
ing results for increased accuracy in process-aware metamodeling
techniques. The error of the metamodels is very small and they
are generated in 10.5 mins compared to the 72 hours taken for
an exhaustive simulation. The design optimization performed on
the metamodels improved the precharge time of the circuit by
61.15%.

Index Terms—Kriging Methods, Metamodeling, Fast Design
Optimization, Nano-CMOS Analog Circuits

I. INTRODUCTION

Full simulation of complex nanoscale circuits takes days
and sometimes weeks. With a large number of parameters
and pronounced effects from process variation, efficient and
accurate design optimization becomes thus prohibitive. The
inherent problem is one of computational efficiency versus
accuracy. Metamodeling techniques based on low-order poly-
nomial regression are one of the most common methods used
[2] to reduce run times. In regression based techniques, the
errors due to process variation are assumed to be random
and uncorrelated and are thus equally approximated across
the design space, which leads to inaccurate models for global
optimization. In the case of many nano-CMOS designs, where
the effects of process variation are a significant factor, the
errors are usually correlated among design parameters. Kriging
methods use a combination of global trend functions and local
departures to create more accurate models [3]. The local depar-
ture function is a correlation function which accurately models
the nanoscale effects making Kriging metamodels process
aware and robust for high dimensional designs. Metamodeling
based optimization design using Kriging prediction techniques
has been explored in many fields but only recently in VLSI
[4], [5]. In [4], Kriging methods are used to iteratively extract
Pareto models. In [5], Kriging models are generated for an
operational amplifier.
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The novel contribution of this paper is a methodology
that combines metamodels and optimization algorithms for
fast design optimization of analog/mixed-signal circuits. The
speedup comes from the use of metamodels (instead of SPICE
netlist), automatic optimization algorithm, and elimination of
multiple manual layout steps. The metamodels are then opti-
mized using a simulated annealing based algorithm. Specifi-
cally, the contributions of this paper are: 1) A fast method-
ology combining metamodeling with automatic optimization
algorithms is presented which reduces analog design cycle
significantly. 2) Simple Kriging metamodeling is explored and
its accuracy analysis with “golden” data is performed. 3) A
case study circuit for a 45 nm CMOS based clamped bitline
sense-amplifier (CBLSA) is presented. 4) A sense amplifier
optimization algorithm that uses the Kriging metamodels and
converges to a solution in reasonable time is proposed.

The rest of this paper is organized as follows: The simple
Kriging method is introduced in Section II. The proposed fast
flow is discussed in Section III. Experimental results of the
proposed methodology using a 45nm CMOS CBLSA as case
study are presented in Section IV. Conclusions and future
research are discussed in Section V.

II. FUNDAMENTALS OF SIMPLE KRIGING METAMODELS

The main idea behind Kriging is that the predicted outputs
are weighted averages of sampled data. The weights are unique
to each predicted point and are a function of the the distance
between the point to be predicted and observed points [6], [7].
The general expression of a Kriging model is as follows:

y(x0) =

M∑
j=1

λjBj(x) + z(x), (1)

where y(x0), is the predicted response at design point x0

{Bj(x), j = 1, · · · ,M} is a specific set of basic functions
over the M -dimensional design domain DM , λj are fitting
coefficients (or weights) to be determined and z(x) is the
random process error. In simple Kriging, a constant and
known mean over the global domain is assumed for the
predicted point. It is assumed that the process has a mean µ,
variance σ2, and correlation function, called the “variogram”
in geostatistics”, r(s, t) between points s and t given by:

r(s, t) = Corr(z(s), z(t)). (2)

The variogram is used to derive the Kriging weights, λj . The
autocorrelation of the design points is characterized by the
covariance function [8]. The weights are chosen so that the
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Kriging variance is minimized and the weighting scheme is
given by: 

λ1
...
λn
µ

 = Γ−1


γ(e1, e0)

...
γ(en, e0)

1

 , (3)

where Γ is the covariance matrix of the observed points. One
advantage of Kriging is that the estimated response at sample
points is exactly the same as the observed data [8].

Estimation of the correlation between sampled points and a
predicted point is done with the semivariogram model. Based
on the nature of the observed data points, the empirical model
could be fit to either spherical, linear, Gaussian or exponential
theoretical models. The smoothness of the predicted responses
is affected by the theoretical model used. A steeper model re-
duces the smoothness because it places more weight on closer
neighbors. The most common model used is the spherical and
with C0, C and a are shape parameters it is expressed by:

γ(h) = C0 + C

(
3h

2a
− 1

2

(
h

a

)3
)

for 0 < h ≤ a. (4)

III. PROPOSED KRIGING-BASED FAST METHODOLOGY

Metamodels are used to increase the efficiency of the
design optimization while maintaining a sufficient accuracy.
Kriging methods, which take into account the correlations
among design parameters, are excellent prediction models for
complex designs with high dimensionality. The proposed fast
design flow is shown in Fig. 1 and is divided into four steps
as discussed below. The flow can be modified to incorporate
statistical models to accommodate nanoscale effects [9].

A. Parasitic-Aware Netlist Generation and Parameterization

The starting point of the flow is a parasitic-aware netlist
extracted from the physical layout design and used in order
to achieve silicon-level accuracy. Design (length L and width
W ) and process (threshold voltage Vth and oxide thickness
(Tox)) parameters are identified in the parasitic-aware netlist
which is then parameterized with respect to these variables
for automatic sample point generations. The parameterization
ensures that the layout design does not have to be physically
redrawn during each iteration. The main assumption being that
the resizing of the devices does not perturb the interconnect
significantly. We call this on-the-fly automatic layout-accurate
netlist resizing “virtual resizing”.

B. Accurate and Fast Design Space Sampling

Latin Hypercube Sampling (LHS) is used for generating
sample design points. LHS covers all input dimensions simul-
taneously thus improving on the variance compared to random
Monte Carlo distributions. The variance of the mean yLHS of
a function f(x) over n LHS sample points and is given by
[10]:

V ar(yLHS) =
1

n
V ar(f(x))− k

n
+ o

(
1

n

)
, (5)
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Fig. 1. The proposed Kriging assisted fast and accurate design optimization.

where k is a positive constant shown to be smaller than
the variance of random samples. A comparison of sampling
techniques and sample sizes have been performed and LHS is
preferred [11]. LHS sample point responses are generated us-
ing analog simulations and are fed into the Kriging metamodel
generator. L and W are used as design parameters while the
process parameters are varied to model the effects of process
variation.

C. Simple Kriging Metamodel Generation

The generated metamodel is a function of the design pa-
rameters L and W , and process parameters. In this paper,
metamodels are generated using Wn and Wp. A total of four
metamodels are generated; one for each of the Figures-of-
Merit (FoMs) in the CBLSA design: precharge time TPC ,
sense delay TSD, average power PSA and sense margin VSM .
Each FoM can be expressed based on the general form of the
Kriging function. For example, the predicted precharge time
Ŷpr at an unknown design point W ∗

n is expressed as follows:

Ŷpr (W ∗
n) =

N∑
i=1

λ (W ∗
n)i Ypr (Wni

) , (6)

where Ypr(Wni
) are the observed precharge values for the

given N Wni (i = 1, 2, . . . , N ) sample points. The weights
λ(W ∗

n) are unique for each predicted point W ∗
n and are

calculated from Eqn. (3). Algorithm 1 summarizes the process
of the simple Kriging metamodel generation.
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Algorithm 1 Simple Kriging based metamodel generation for
various FoMs of the clamped bitline sense amplifier.

1: Obtain the target specifications of the CBLSA design and
select the performance objectives or FoMs.

2: Create the parameterized parasitic-aware netlist of the
CBLSA circuit after performing the baseline physical
design, DRC and LVS verification, and RCLK extraction.

3: Initialize the number of sample set points (n).
4: Generate n sample set points using LHS.
5: Obtain n sample points D = [D1, . . . , Dn] for M design

variables using LHS.
6: Derive variogram model for each FoM based on the

observed sample points.
7: for Each design point to be predicted. do
8: Generate the variogram for simple Kriging.
9: Generate prediction weights for simple Kriging.

10: Generate simple Kriging models for design points.
11: end for
12: Perform accuracy analysis of the simple Kriging meta-

models using the Root Mean Square Error (RMSE) and
the correlation coefficient R2.

D. Algorithm for Optimization over Kriging Metamodels

A simulated annealing based algorithm is proposed to
optimize the simple Kriging metamodels of the CBLSA. The
metamodels can be optimized for each of the identified FoMs.
In this paper, the precharge time (TPC) is used as the objective
while the average power consumption (PSA) is used as a
design constraint. The optimization steps are presented in
Algorithm 2. The algorithm used to generate the Kriging
metamodels was written using MATLAB with the help of the
toolboxes mGstat [12] and SUMO [13].

IV. EXPERIMENTAL RESULTS WITH A CASE STUDY

A. A 45nm CMOS Clamped Bitline Sense Amplifier Circuit

The clamped bitline sense amplifier is a variation of the
conventional sense amplifier used in DRAMs. The advantage
of the clamped bitline is that it is clamped to a stable voltage
after a sensing operation. This reduces the capacitive effect
of the bitlines during the sensing operation, hence resulting
in decreased dynamic power and sense delay [14], [15]. The
schematic and physical design of the CBLSA are shown in
Fig. 2(a) and Fig. 2(b). The initial design parameters for the
transistors are length Ln, Lp = 45 nm, width Wn = 120 nm,
and Wp = 240 nm. These dimensions are based on the nominal
45 nm technology node values and similar designs in [16]. The
CBLSA needs matched transistors for optimal performance,
making it a good test circuit to model the effects of process
variation. The extracted SPICE netlist from the layout includes
the parasitics of the design which impact its performance as
seen in Table I.

B. Generation of Simple Kriging Metamodels for the FoMs

Each Kriging predicted point is calculated with a different
weight. A parametric analysis using Wn and Wp as variables
show that the circuit characteristics are dominated by Wn. The

Algorithm 2 Simulated-Annealing based optimization over
simple Kriging metamodels of the CBLSA.

1: Initialize iteration counter: counter ← 0, Temperature: Θ

and Cooling Rate, and start from a solution ̂CBLSAi.
2: Calculate FoMs for ̂CBLSAi from Kriging metamodels.
3: Consider the objective TPCi . result← ∆TPC

← TPCi .
4: while (∆TPC

! = 0 ) do
5: counter ← max Iteration.
6: while (counter > 0) do
7: Make a random walk from ̂CBLSAi to ̂CBLSAj .
8: Calculate FoMs for ̂CBLSAj using the metamodels.
9: if (TPCj < result) then

10: result← TPCj . ̂CBLSAi ← ̂CBLSAj .
11: else
12: ∆TPC

← TPCi
− TPCj .

13: if ( ∆TPC
< 0, random(0,1) < e

∆TPC
T ) then

14: TPCi ← TPCj . ̂CBLSAi ← ̂CBLSAj .
15: end if
16: end if
17: counter ← counter − 1.
18: end while
19: Θ← Θ× Cooling Rate.
20: end while
21: return result and ̂CBLSAi.

TABLE I
CHARACTERIZATION OF THE BASELINE 45NM CBLSA CIRCUIT DESIGN.

Precharge Sense Power Sense Area
Design Time Delay Margin

TPC TSD PSA VSM

(ns) (ns) (µW) (mV) (µm2)
Schematic 10.31 1.79 1.84 26.91 -
Layout 10.40 1.91 1.88 26.86 6.045

topology of the CBLSA circuit supports this trend as there are
10 NMOS transistors compared to 2 PMOS transistors. The
operation of the circuit thus is more dependent on the variation
of the NMOS transistor widths. The simple Kriging predicted
surfaces are shown in Fig. 4.

C. Accuracy Analysis of Simple Kriging Metamodels

An exhaustive simulation was performed to compare the
accuracy of the Kriging metamodels. A total of 1000 design
points were simulated to densely capture a “golden surface” in
the design space. A statistical analysis for the the metamodels
shows that the accuracy is very high. A summary of the
statistical analysis of the metamodels for 2-variable Kriging
metamodels generated with 100 sample points is shown in
Table II. The metrics used for analysis are the Root Mean
Square Error (RMSE) and the correlation coefficient R2. The
correlation coefficient R2 also known as the cross-correlation
coefficient gives the quality of a least squares fitting compared
to the original data. It essentially gives an estimate of the
confidence level or how well the predicted metamodel will
perform. A complete correlation gives R2 of 1, so the closer
to 1, R2 is, the more accurate the metamodel.
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TABLE II
STATISTICAL ANALYSIS OF THE SIMPLE KRIGING PREDICTED VALUES.

FoMs Precharge Time, TPC Sense Delay, TSD Average Power, PSA Sense Margin, VSM

Samples 20 100 20 100 20 100 20 100

MSE 1.7× 10−18 7.6× 10−20 1.4× 10−13 5.6× 10−06 5.4× 10−20 1.4× 10−22 5.6× 10−06 7.9× 10−08

RMSE 1.3× 10−09 2.8× 10−10 3.8× 10−07 5.3× 10−08 2.3× 10−10 1.2× 10−11 2.4× 10−03 2.8× 10−04

R2 0.9810 0.9838 0.9664 0.9673 0.9971 0.9986 0.9436 0.9548
STD 6.9× 10−10 6.9× 10−10 1.8× 10−07 4.5× 10−08 1.2× 10−10 9.3× 10−12 1.1× 10−03 2.1× 10−04
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(a) Schematic design.

(b) Physical design.

Fig. 2. Circuit and layout for the clamped bitline sense amplifier.

From an analysis of the results it is seen that the predicted
points have an average R2 of 0.97. The simulation time
for the generation of the simple Kriging metamodels was
approximately 10.5 min. for the 2-variable metamodel
compared to 72 hours for an exhaustive simulation. The
reduced time for sampling and creation of metamodels with
very high accuracy demonstrates the efficiency of the sim-
ple Kriging metamodeling. The exhaustive simulation time
increases exponentially as the number of variables increase,
thus it is expected that the efficiency of this technique will be
much better for higher dimensional and complex designs. A
comparison of the simple Kriging and polynomial metamodels
is shown in Table III. Simple Kriging metamodels consistently
perform better than polynomial metamodels.

D. CBLSA Optimization Results

The temperature Θ is initially set to a high value, and
a random walk is carried out at that temperature. Then the
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Fig. 3. Waveform of sense amplifier functional simulation.
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Fig. 4. Simple Kriging predicted surfaces of the CBLSA using two variables
(Wn and Wp) as the design parameters.

TABLE III
COMPARISON OF KRIGING AND POLYNOMIAL METAMODELING.

FoMs RMSE R2

Kriging Polynomial Kriging Polynomial

TPC 2.76× 10−10 5.07× 10−10 0.9838 0.9301
TSD 5.27× 10−08 8.66× 10−08 0.9673 0.9046
PSA 1.18× 10−11 5.91× 10−11 0.9986 0.9617
VSM 2.81× 10−04 3.75× 10−04 0.9548 0.8925
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temperature is lowered according to a cooling schedule. This
initially high value of Θ allows the algorithm to accept new
locations to search for optimal values even if they are worse
than the current solution. As Θ declines, the probability of
accepting worse solutions decreases but is not entirely zero.
The slight probability of taking a step even if the new solution
is worse is what allows simulated annealing to frequently get
out of local minima. The algorithm stops when it reaches an
acceptable solution or reaches the maximum number of itera-
tions. The objective chosen for optimization is the precharge
time TPC with the average power consumption used as design
constraint.

The simulated annealing algorithm is heuristic and does
not give unique answers for each simulation. An average
number of runs gives the finalized values in Tables IV. Each
of the simulations were run for a maximum of 100 iterations,
with each solution close in value but not unique. For the
final CBLSA design, TPC is reduced by 61.54% while PSA

was increased by 48.4%. For this design there is a larger
improvement on the precharge time, however the average
power is increased. TSD and VSM however are also improved
significantly by 45.02% and 12.99%, respectively.

TABLE IV
FOMS OF THE OPTIMAL 45NM CBLSA DESIGN.

Precharge Sense Power Sense Area
Time Delay Margin
TPC TSD PSA VSM

Optimal 4.04 1.05 2.79 30.34 6.356
Design ns ns µW mV µm2

Change 61.15 % 45.02 % -48.4 % -12.99 % 5.15 %

The simulated annealing algorithm over the Kriging meta-
models on average finds optimized values in 2.78 ms compared
to a run of 45 minutes for an exhaustive search optimization
on the metamodels. In other words, the proposed design flow
could speedup the optimization process by several orders of
magnitude. In general, with the generation of the metamodels,
which includes the time for sampling the design, the design
process takes approximately 11 min. compared to a 72-hour
exhaustive simulation of the circuit without metamodels.

V. CONCLUSIONS AND FUTURE RESEARCH

A new methodology that uses simple Kriging metamodels
and a simulated annealing algorithm for a sense amplifier opti-
mization is presented. Simple Kriging metamodel based design
optimization techniques provide the designer with methods
to obtain accurate designs in a fast and efficient manner.
They overcome the problem of local optimization because
they provide robust models which are sufficiently accurate
over the global design space. Experimental results on the
metamodeling and design optimization of a CBLSA confirm
the high accuracy of the generated metamodels with very low
RMSE and high R2. The optimization of CBLSA using the
proposed flow improved its precharge time by 61.54% while
speeding up the design process by 390×. In future research,
the methodology will be extended to high dimensional design
parameters, incorporation of wire size along with the device

size, and statistically modeling the effects of process variation.
Optimization algorithms for multi-objective designs will also
be explored.
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