
Noname manuscript No.
(will be inserted by the editor)

MEM-DnP - A Novel Energy Efficient Approach
for Memory Integrity Detection and Protection in
Embedded Systems

Satyajeet Nimgaonkar ·
Mahadevan Gomathisankaran ·
Saraju P. Mohanty

Received: date / Accepted: date

Abstract The pervasiveness of modern day embedded systems has led to
the storing of huge amount of sensitive information in them. These embed-
ded devices often have to operate under insecure environments and are hence
susceptible to software and physical attacks. Thus, security has been and will
remain one of the prime concerns in the embedded systems. Although a lot of
hardware and software techniques have been proposed to provide high levels of
security, they are hampered by the trade-offs created by the design constraints
in embedded systems. This paper presents a novel energy efficient approach for
MEMory integrity Detection and Protection (MEM-DnP). The key feature of
the proposed MEM-DnP is that it can be adaptively tune a memory integrity
verification module by using a sensor module. This significantly reduces the
energy overheads imposed on an embedded system as compared to the conven-
tional memory integrity verification mechanisms. The simulation results show
that the average energy saved in the combined detection and protection mech-
anism ranges from 85.5% to 99.998%. This is substantially higher compared to
the results achieved in basecase simulations with traditional memory integrity
verification techniques.

S. Nimgaonkar
Trusted Secure Systems Lab (TSSL)
Department of Computer Science and Engineering
University of North Texas, Denton, TX 76203, USA
E-mail: satyajeetnimgaonkar@my.unt.edu

M. Gomathisankaran
Trusted Secure Systems Lab (TSSL)
Department of Computer Science and Engineering
University of North Texas, Denton, TX 76203, USA
E-mail: mgomathi@my.unt.edu

S. Mohanty
NanoSystem Design Lab (NSDL)
Department of Computer Science and Engineering
University of North Texas, Denton, TX 76203, USA
E-mail: saraju.mohanty@unt.edu

2 Satyajeet Nimgaonkar et al.

Keywords Embedded Systems · Memory Integrity Detection · Memory
Integrity Protection · Sensor Module

1 Introduction

The past decade has seen an advent of low-power wireless networks of em-
bedded systems that opened doors for new sets of applications to interface
digital world with the physical. From personal-digital assistants (PDAs) and
smart-mobile phones to network routers, networked sensors and smart cards,
home appliances to critical defence systems, the embedded systems have be-
come ubiquitous in this era of computing. Embedded systems, in contrast to
general purpose computing systems, are dedicated application-specific systems
designed to serve a specific task within a larger system or as an independent
system, depending on target application. They enjoy an unprecedented pop-
ularity due to their cost effectiveness, high performance, portability and ease
of accessibility. As the dependence on these devices increase so also does the
wealth of digital information stored in them. This information may also include
confidential and sensitive personal data like secret passwords, credit card num-
bers and bank account numbers etc. Thus security becomes a primary concern
in embedded systems.

To aggravate this security issue, most of these devices have to operate in a
physically insecure environment. This allows the adversary to have complete
control of the computing node — supervisory privileges along with complete
physical and architectural object observational capabilities. In addition, they
are also vulnerable to network based and software attacks. A recent Mobile and
Smart Device Security Survey [3] conducted by Mocana Corporation in Spring
2011, revealed that 65% corporate personel require a regular attention from
their I.T Staff for non-PC based device attacks. The Cyber Security Watch
Survey [2] conducted by CSO, the U.S. Secret Service, the Software Engineer-
ing Institute CERT Program at Carnegie Mellon University and Deloitte in
January 2011, disclosed that more than 58% of attacks are caused by outsiders
i.e by unauthorized access to network systems and data, thus contributing to
a staggering annual monetary losses of $123,000 per organization.

In an effort to mitigate these security threats, researchers have proposed se-
cure processor architectures- ABYSS [33], AEGIS [31], Arc3D [17,18], TIVA [16],
Hide [38] and XOM [21] etc. These architectures deploy hardware crypto-
graphic security mechanisms of Memory Encryption [6,13–15] to provide con-
fidentiality and Memory Integrity Verification (MIV) to preserve the integrity
of the application data. Memory encryption encrypts the data before writing
to the memory and decrypts it after reading. This prevents an adversary from
observing the confidential application data. MIV protects the data from being
modified by an adversary, thus preserving the state of the application.

Though, these secure processor architectures are effective against software,
network based and physical attacks, the security mechanisms implemented in
them are computationally intensive and account for excessive energy consump-

MEM-DnP 3

tion. An embedded system is highly resource constrained. Most of them are
battery powered and it is essential to have minimal energy consumption to
achieve high speed and performance. Thus security measures implemented in
embedded systems suffer from trade-offs imposed by energy consumption.

With this motivation, MEM-DnP, a novel energy efficient memory integrity
detection and protection mechanism in embedded systems, is proposed in this
paper. This paper focusses on reducing the energy consumption of MIV mech-
anism without sacrificing its security. The rest of the paper is organized as
follow. Section 2 describes the MIV property along-with the possible attacks
on memory integrity. Section 3 discusses the prior research related to this
paper. Section 4 presents the proposed MEM-DnP Mechanism followed by
detailed experimental evaluation in Section 6. Finally Section 7 presents the
Conclusion and direction of future research.

2 Memory Integrity Verification — A Brief Discussion

Before presenting the proposed MEM-DnP mechanism, it is important to dis-
cuss the MIV property, possible attacks on memory integrity and some com-
monly used solutions to subside these attacks. This brief discussion provides
the completeness to the paper and the reader can get a feel of the research with-
out referring to external resources. Also a significant amount of research [30,
34,8] etc. is directed towards explaining the Memory Integrity Verification
mechanism in detail.

The MIV property can be defined as follows: A processor communicates
with memoryM. MemoryM has two attributes, addresses A and contents V .
It maintains associations between addresses and contents. A read of memory
at address A denoted byM[R,A] returns the value associated with A. A write
into memory address A of value V is denoted by M[W,A, V]. A write of A
with value V immediately followed by a read of address A must return value
V . As memory reads and writes have a notion of time, the model needs to to
associate time T with reads and writes as M[R,A, T] and M[W,A, V, T].

Figure 1 shows the possible attacks on memory integrity — splicing attack,
spoofing attack, and replay attack. In splicing attack the adversary modifies
the associations between the memory addresses and its values. For example,
if value VA is associated with address A and value VA′ is associated with
address A′, a splicing attack would return the value VA′ for a memory read
corresponding to address A. In a spoofing attack the adversary modifies the
value VA to a random value V ′A. In a replay attack the adversary modifies
the association between the value and the time. For example, if value VA is
associated with address A at time T and the value V ∗A is associated with
address A at time T ∗, and T < T ∗, a replay attack would return the value VA
when a memory read is performed at time t > T ∗.

In cryptography a hash function, H, is used to protect the integrity of a
message. A sender creates a message authentication code (MAC) using a secret
key K together with the message m as MACm = H(m||K). It sends both the

4 Satyajeet Nimgaonkar et al.

Memory
M[A,V]

Embedded
Processor

Splicing

Attacks

Spoofing

Attacks

Replay

Attacks

Read Operation – M[R,A]

Write Operation – M[W,A,V,T]

Fig. 1 Attacks on Memory Integrity in a Embedded System.

message m and the corresponding MACm to the receiver. The receiver, which
shares the secret key K with the sender, can verify the integrity of the message
by recomputing the MAC. The security properties, collision resistance, pre-
image resistance and second pre-image resistance, of hash function H ensures
that any modification to message m or MACm go undetected with negligible
probability.

One solution for the memory integrity problem is to use message authenti-
cation codes. Processor generates a MAC hV,A = H(V ||A||K) for every mem-
ory write that stores a value V in address A. This MAC, hV,A, is stored in the
memory. On every memory read the processor computes the MAC h′V,A and
verifies it against the MAC stored in the memory. This solution can protect
memory integrity against splicing and spoofing attacks. A replay attack will
still succeed as the MAC does not have any notion of time and hence the
adversary could replay both the value and its corresponding MAC.

Protecting memory against replay attacks requires the processor to have
some memory about the recentness of the value. A Merkle Hash Tree, shown in
Figure 2, provides an optimal solution for this problem, requiring least amount
of on-chip memory. A Merkle hash tree of address range [A,A + k] creates a
tree of hashes with k+1 leaves corresponding to addresses A,A+1, . . . , A+k.
Any write to an address A + i in this address space can modify all the hash
values from the leaf node corresponding to A+ i upto the root of the tree. Any
read from address A + i needs to check the hash values along the path from
the leaf node A + i upto the root of the tree. The root of the tree is stored
in the trusted processor storage, so that it cannot be tampered. All the other
tree nodes along with the leaf nodes can be kept in the untrusted memory.

3 Related Prior Research

Software only security approaches fail in securing embedded systems as the
adversary can physically observe or tamper with the state of applications. To

MEM-DnP 5

B1 B8 B7 B6 B5 B4 B3 B2

H1 H2 H3 H4

H5 H6

Root
Hash

CPU - Trusted Boundary

= H(B1||B2) = H(B3||B4) = H(B5||B6) = H(B7||B8)

= H(H1||H2) = H(H3||H4)

= H(H5||H6)

Fig. 2 A Merkle Hash Tree provides time status of memory value.

achieve high level of security, the root of trust must be entrusted on the hard-
ware of these embedded systems. Hence as seen in Section 1 a lot of research
has been done in developing secure processor architectures to provide confi-
dentiality and integrity in embedded applications. Even though the hardware
approaches provide reliable security against physical and software attacks, con-
siderable modifications are needed to be done before they can be adopted in
an energy constrained embedded system.

3.1 Architectural Approaches

Many researchers have proposed energy efficient architectures for embedded
systems that aim at providing utmost security while consuming limited en-
ergy. For instance, Shi et al. in [29] present a secure and fast architecture for
authenticating shared memory. To incorporate memory authentication in their
architecture, the authors propose a new scheme of Authentication Speculative
Execution that not only is efficient but also offers lower average performance
degradation of less than 5%. In the paper [9], the authors present a model for
key masking to achieve minimal energy overhead in embedded systems. The
experimental results reveal that the technique supports up to 2.5% energy
overhead savings. Power-Smart System-On-Chip Architecture [32], presents
an architecture for preventing sensitive information leakage via timing, power
and electromagnetic channels. This architecture depends on a current sensing
module to measure the power and current consumption of the system. They
achieve significant success in measuring the current consumption of the system
while limiting the power overhead to less than 12% of the total power. In [27],
Roger et al. describe an efficient hardware mechanism to protect integrity of
softwares by signing each instruction block during program installation with
a cryptographically secure signature. This technique serves as a secure and
performance efficient alternative to conventional memory integrity verifica-
tion module. While [10], presents an architectural approach to address mem-

6 Satyajeet Nimgaonkar et al.

ory spoofing attacks. The data protection techniques proposed in this paper,
achieves high level of security with significantly low performance overhead.

3.2 Memory Encryption and Authentication Approaches

Along with architectural techniques, there has been significant research in
improving the performance of existing memory integrity verification mecha-
nisms. In [8], the authors combine caches and hash trees to deliver the most
performance efficient memory integrity verification scheme. The paper presents
CHash and LHash with varying cache block sizes to analyze the performance
overhead of each configuration. Similarly in [28], an Address Independent Seed
Encryption (AISE) is proposed along with Bonsai Merkle Trees (BMT). Sim-
ulation results prove that this technique reduces the overhead on the system
by 12% to 2% as compared to traditional approaches. Some other researches
[35] and [19], present new low overhead encryption algorithms and cache level
tuning to achieve relatively low performance degradation.

Although the above techniques are efficient and secure, the proposed MEM-
DnP mechanism achieves average energy savings in the range of 85.5% to
99.99%. This reduction is significant as compared to the above mechanisms.
Also another novelty of our mechanism is that it uses sensors to detect any
potential attack on the memory system.

4 MEM-DnP: The Proposed Detection and Protection Mechanism

The cryptographic MIV mechanism is secure against splicing, spoofing, and
replay attacks on the memory. However, the MIV mechanism is a computa-
tionally expensive process and consumes overwhelming energy, thus deterio-
rating the performance of an embedded system. As a case study, Potlapally
et. al. [26] present a detailed analysis of energy consumed by commonly used
hashing algorithms. This is shown in Table 1. Due to this energy consump-
tion, these hashing algorithms cannot be directly used to secure embedded
systems. Hence the need arises to modify the existing MIV mechanism so that
they consume minimal energy while preserving their security.

Table 1 Energy Consumption in Memory Integrity Verification Algorithms [26]

Algorithms

MD2 MD4 MD5 SHA SHA1 HMAC

Energy Consumption (µJ/Byte) 4.12 0.52 0.59 0.75 0.76 1.16

MEM-DnP 7

4.1 MEM-DnP Architecture

The intuition behind this approach is as follows. Embedded systems typically
employ several sensors to interact with its environment. These sensors can be
used to detect any physical attack on the memory. An attack would cause
some fluctuations in current, power dissipation or thermal dissipation in the
system. Thus corresponding sensors can be used to measure these fluctuations.
MIV is performed only when the fluctuations exceed a pre-determined value.
This is in contrast to the traditional operation, where the integrity verification
process must be performed for all the memory blocks read from the off-chip
memory. Thus the MIV process consumes a lot of energy to preserve the
integrity of the data in the memory. The use of sensors within the processor
chip boundary, to measure critical physical properties has been a rich area of
research for many years. For example Oh et al. [25], McGowen et al. [22], and
Zhang et al. [37], deploy hardware sensors to measure power dissipation and
thermal dissipation in the CPU. Similarly, Muresan et.al. [32] make use of a
Current Sensor Module to predict the power consumption of their architecture.
Similarly, in this research the hardware sensors in embedded systems are used
to detect an attack and only use the MIV in case the attack was detected.
This reduces the energy consumption of the system as the MIV mechanism is
not used during normal execution.

The general architecture of the MEM-DnP Mechanism is given in Figure 3.
The Sensor Module(SM), represents the hardware sensors in an embedded sys-
tem. The SM constantly monitors the memory bus for any fluctuations. The
architecture contains a specialized cache — Hash Cache to represent the MIV
mechanism. The hash cache contains the Hash Address and the corresponding
hash of each memory block written to the off-chip memory. This hash address
and the hash is used to verify the integrity of the memory. The processor chip
is trusted and hence the SM and Hash cache are located inside the processor
boundary. At this time, it is important to emphasize that the research in this
paper is only aimed towards MIV and not towards Encryption/Decryption
mechanism. An Encryption/Decryption block is included in the general archi-
tecture of the MEM-DnP, only to represent a more general secure processor
architecture.

The functioning of the architecture can be described in terms of its memory
operations, as shown in Figure 4. Here, there are two basic operations —
Write Operation and Read Operation. The memory write operation is shown
in Figure 4(a). Here, before writing a memory block to the off-chip memory,
the CPU computes its corresponding hash and hash address and stores it in the
hash cache. The memory block is then encrypted and stored in the memory.

During the memory read operation, as shown in Figure 4(b), the memory
block read from the memory is first decrypted. The SM continuously monitors
the memory bus to detect an attack. It maintains a threshold value (VT)
for the fluctuations. If the fluctuations in the system exceed this VT , it is
concluded that there is an anomaly on the system. Only in that case, the hash
address of the data is re-computed. The hash address is checked against all

8 Satyajeet Nimgaonkar et al.

CPU

L1 Cache

Enc/Dec

Hash Cache

Memory

Verify Hash

Sensor Module
Current/Temperature

Merkle
Hash

Trusted On-Chip Boundary

Fig. 3 MEM-DnP Architecture

Update Merkle
Hash Tree

Update Hash
Cache

Write Enc(Value)
and Hash to

Memory

(a) Write Operation

Read Dec(Value)
and hash from

Memory

Do not check hash
Proceed with read

Sensor
Attack

?

No

Check hash
tree

Yes

(b) Read Operation

Fig. 4 Memory Operations in MEM-DnP Architecture

the addresses in all the levels of the hash cache. If there is a hit in the hash
cache, the hash of the data is checked against the hash that is stored in the
hash cache. If the hash matches then it is concluded that the state of the data
is valid, if no then, it is concluded that the data is corrupted and there is
an attack on the system. In such a case, the CPU aborts any operation on
this data. This process is recursive and continues for all the memory reads
performed in the window of fluctuations exceeding VT . During this time,
if the fluctuations stabilize and fall below the VT , then it is concluded that

MEM-DnP 9

the threat has subsided. At this point, the hash address verification process
terminates. The SM and the MIV (hash cache) modules are coupled with each
other so that the MIV is only performed when required i.e. at the time of
extreme fluctuations or discrepancies. The experimental results in Section 6,
prove that this mechanism yields significant energy savings as compared to
traditional MIV mechanism.

The pseudo code of the function to compute the hash address of the mem-
ory block, is given in Algorithm 1. The function takes three arguments — level
of hash tree, memory block address and memory block size. The Hash Offset
and Hash Tree Size are pre-initialized. At first, the memory block number is
calculated based on the block address, level and its offset address. Using the
memory block number and Hash Tree Size, the hash number for that partic-
ular block is computed. Finally, the hash address is calculated using the hash
offset, level, hash number and the hash size. This algorithm is later used in the
simulations to measure the total number of hash invocations for a particular
benchmark per L1 Data cache accesses.

Algorithm 1 Function hash addr(level, block addr, block size) to compute
Hash Address of the memory block
Require: HashOffset[Max Hash Levels]
Require: HASH TREE SIZE
Ensure: level < Max Hash Levels

block number ⇐ (block addr - BlockOffset[lvl-1])/block size
hash number ⇐ block number / HASH TREE SIZE
hash addr ⇐ HashOffset[level] + (hash number × hash size)
return (hash addr)

4.2 Disjoint Hash Trees

The SM continuously monitors the memory bus, while the CPU operates on
the memory blocks. The MIV module(hash cache) works closely with the SM
to initiate verification when discrepancies in the readings are detected. At this
time, the MIV module starts re-computing the hash address and the corre-
sponding hash for the verification purpose. This process is cyclic and contin-
ues until the fluctuations are stabilized. To reduce the energy consumption in
the verification phase, this paper presents a novel mechanism of Disjoint Hash
Trees, shown in Figure 5. The idea behind this approach is to divide the orig-
inal Merkle hash Tree into smaller trees. Based on the location of the infected
memory block, a suitable disjoint tree is selected for the verification process.
The MEM-DnP mechanism relies on the precision of the SM to accurately
locate the infected memory block. The primary advantage of this technique is
that the hash tree is not re-constructed over the entire memory. Instead, only
that disjoint tree is re-constructed which contains the infected memory block.
At this point, it is important to emphasize that the number of Disjoint Trees

10 Satyajeet Nimgaonkar et al.

constructed in the memory directly relates to the number of secrets that can
be stored on-chip. In a traditional implementation of a Merkle hash tree, only
one root hash i.e. secret is stored on-chip. Whereas in the proposed mecha-
nism, multiple root hashes i.e. secrets corresponding to each Disjoint tree are
stored on-chip. Hence this approach exploits the availability of memory space
on-chip to deliver energy savings during the integrity verification process.

B1 B8 B7 B6 B5 B4 B3 B2

H1 H2 H3

H9 H11

Root
Hash

1

CPU - Trusted Boundary

B9 B10

H4

B11 B12

H5 H6

H10 H12

B13 B14 B15 B16

H7 H8

Root
Hash

2

Fig. 5 Disjoint Hash Tree

5 Relation between Process Variations in Sensors and VT

The measurements recorded from a sensor comprises an error profile that can
be attributed to the distribution of noise that affects its readings. The reason
for this noise is rooted in Process Variations [12] [11] [23] that occur in the
VLSI circuit of a sensor. As shown by Zhang et. al. [36], the noise related to
the process variations is the phase noise of the circuit. The assumption that
“all transistors are alike” is invalid in the case of nanochips. It is essential
that the variations in two transistors in a chip or different chips in the same
design are considered in any design decisions to make circuits robust and to
improvise the outcome targeted for the Design for Manufacturing (DFM). The
device parameters, chip performance, and the chip yield are affected by process
variations. The electrical parameters and the overall performance of the chip is
profoundly affected by the process variations and the effects are also evident in
the variation in power and delay and other attributes of the chip. The process
variations can either be inter die or intra die, it can be random or systematic,
it can be correlated or uncorrelated or it can be spatial or temporal. If this
variation is not considered, it may lead to significant design errors and loss of
yield.

Therefore for past several years, researchers have attempted to find alter-
native design approaches to ensure that the yield of the VLSI circuit has mini-
mal impact from process variations. There are three main types of approaches
to model process variations - statistical design approach, post silicon process

MEM-DnP 11

compensation/correction and avoidance of variation induced failures. Statis-
tical design methodology has been widely looked into as an efficient method
for yield under process variation. Whereas the post-silicon process compensa-
tion/correction has also been extensively explored. It detects process variations
using the on-chip process sensors and it may also involve manufacturing test
and compensating/correcting circuit parameters that may have deviated due
to process variations. And finally avoidance of variations-induced failures is
based on the concept of critical path isolation that makes a circuit subject to
voltage scaling while still being robust to parametric variations.

In this paper we have chosen the statistical modeling technique to model
the process variations (directly related to the sensor noise) in a sensor. The
noise samples in a sensor are typically modeled as continuously valued ran-
dom variables, while the noise waveforms are modeled as random processes. A
continuous random variable X with non-negative density F, is specified by its
probability density function (PDF) and is given in Equation 1.

fX(x) =

∫ ∞
−∞

fX(x) dx. (1)

Given a PDF for a random variable, it is then possible to calculate the mean
(µ) and the variance (σ2) for it. Both µ and σ2 are used to estimate the power
of noise or the random variable X and are given in Equations 2 and 3.

µX =

∫ ∞
−∞

xf(x) dx,

µ2
X =

∫ ∞
−∞

x2f(x) dx

(2)

σ2
X = µ2

X − (µX)2. (3)

The most common type of random variable used to model noise is the Gaussian
random variable. Also, the noise distribution in sensors follow a Gaussian
distribution with a zero mean [7]. It is shown in Figure 6. The PDF in a
Gaussian distribution is given in Equation 4

f(x) =
1

σX
√

2π
e
−1

2
(
x− µX

σX
)2

(4)

In the case of MEM-DnP approach, the sensor module measures many inde-
pendent signals each having their individual error/noise profiles. Thus math-
ematically a sensor module can be viewed as a Gaussian process P with 1...N
individual continuous valued random variables. While modeling the VT for the
sensors, it is important to know the relationship between individual signals
at different time instants. For ease of understanding, lets consider X and Y
as two individual normally-distributed random variables with zero mean. Let
F(X) and F(Y) be the PDFs of X and Y respectively. Hence the co-variance
of X and Y is given in Equation 5.

COV (X,Y) = F (XY)− F (X)F (Y) (5)

12 Satyajeet Nimgaonkar et al.

f
(x
)

Probability Density Function

Normal Distribution

� +���

Fig. 6 Gaussian Distribution Curve

However since both X and Y are individual random variables, F (XY) =
F (X)F (Y). Therefore COV (X,Y) = 0. Thus the two individual random vari-
ables X and Y in the same Gaussian process are uncorrelated. Similar is also
true for 1...N random variables in the same Gaussian process. Now, since the
individual random variables are uncorrelated, the resultant variance of the
Gaussian process (σ2

P) is nothing but the product of variances of N individual
random variables in the process, given in Equation 6.

σ2
P = σ2

1 ∗ σ2
2 ∗ σ2

3 .. ∗ ..σ2
N (6)

In the case of a sensor, there are false positives and false negatives affecting its
reading. A false positive measurement is the one that will indicate that there is
an attack but in reality there is none. Whereas a false negative measurement
is the one where there is an actual attack and the sensor failed to detect
it. While modeling such a system it is important that both false positives
and false negatives are kept in a minimal allowable range. In the MEM-DnP
approach, the emphasis is on false positives. In the MEM-DnP simulations,
a Random Value (RV) is embedded to simulate one such false positive that
indicates fluctuations in the readings. The details about RV are discussed in
Section 6.2.2. The Threshold Value VT is directly related to RV. For a N -bit
RV the probability that a fluctuation occurs is given by 1

2N
. Also in the case

of sensors, its mean (µ) and variance (σ2) is modeled during its design process
so as to accommodate the random noise in its readings. Thus given the values
of µ, σ and RV it is possible to compute the tolerance (τ) of the sensor circuit.
The tolerance τ of a sensor circuit is a point on the Gaussian distribution
curve, beyond which we consider that the false positives occur in the system
and that it is under an attack. This can be best explained with an example
below.

As a case study, Figure 7 presents a statistical characterization of process
variation in a 2-input NAND logic gate. This example represents a plot of prop-
agation delay in a 2-input NAND gate. This NAND gate is designed, tested

MEM-DnP 13

F
re

qu
en

cy
 o

f
o

cc
u

rr
en

ce

275.2 psec
106.1 psec

200p 400p 600p0.00

300

200

100

0.00

Frequency Plot of Delay

Fig. 7 Example: Propagation Delay PDF in a 2-input NAND Gate

and characterized in a 45 nm CMOS technology. We then used Monte Carlo
simulations [5] to translate the process and design variations in the input to the
Propagation Delay at the output. For these simulations, the parameters con-
sidered for the CMOS transistors in the NAND gate were channel length (L),
device width (W), gate oxide thickness (Tox), device threshold voltage (Vth)
and supply voltage (Vdd). It was observed that the propagation delay follows a
Gaussian distribution. For ease of simulation, modeling and understanding we
have only considered a single 2-input NAND gate. However, a realistic circuit
may contains hundreds or even thousands of these 2-input NAND gates. Since
the propagation delay PDF is Gaussian in nature, the input distribution at
each gate is statistically independent. Therefore in the case of N NAND gates
in a sensor circuit, the mean (µ) and the variance (σ2) of the distribution is
given in Equation 7.

µSENSOR =

N∑
i=1

µNANDi
σSENSOR =

√√√√ N∑
i=1

σ2
NANDi

(7)

Similarly, a sensor circuit may contain several logic. But since the output
distribution of each gate is Gaussian in nature, the overall PDF of the sensor
will also be Gaussian in nature. For instance if X,Y...N are the Gaussian
output distributions of the logic gates in a sensor circuit, the overall PDF of
circuit = X + Y + ...+N ||X ∗ Y ∗ ∗N ||X ⊕ Y ⊕⊕N is also Gaussian
in nature. This curve has a µ=275.2 psec and σ=106.1 psec. As discussed
earlier, since the value of µ and σ is known, it is possible to compute the τ
for the sensor circuit for RV=16, 20 and 24. In a Gaussian distribution curve
this can be achieved using a Cumulative distribution function (CDF) given in
Equation 8.

CDF =
1

2
[1 + erf(

x− µ√
2σ2

)] (8)

Here erf stands for Error function that is typically used for measurement in
probability and statistics. For a random variable X, the CDF represents the
probability of X as - P (X) < x on the Gaussian curve. However, to calculate

14 Satyajeet Nimgaonkar et al.

τ we will fix the probability as - P (X) > x. Thus this probability will be (1 -
CDF). Therefore by applying to Equation 8, we will get Equation 9.

1− CDF = 1− 1

2
[1 + erf(

x− µ√
2σ2

)] =
1

2
[1− erf(

x− µ√
2σ2

)] (9)

Now for RV=16, the probability of a false positive occurring in the sensor’s
reading is: P(FP)= 1

216 . In order to compute the value of τ , we will fix this
probability. Hence consider that (1 - CDF) = P(FP) = 1

216 . Also the co-
ordinate “x” on the Gaussian curve will represent the value of tolerance - τ of
the sensor, where the false positives will occur. Hence given the values of RV,
µ and σ, the goal is to compute the value of τ .

1

216
=

1

2
[1− erf(

τ − µ√
2σ2

)] (10)

Hence by solving Equation 10, the value of τ can be computed. Therefore
solving Equation 10 gives us the value of τ as: τ = µ + 435.01 × 10−12 =
710.21 psec. Similarly the tolerance of the sensor can be computed for RV=20
and 24 as well. The tolerance value is a crucial parameter that indicates,
where on the Gaussian curve, a false positive reading might be recorded, based
on the µ, σ and RV. At this point it is important to understand that the
values of µ, σ and RV should be optimally selected during designing and
modeling the sensor circuit, so that the value of τ is low. A higher value of
τ may lead to severe issues. This is shown in Figure 8. This figure shows a

�o
�a

False Positive
False Negative

f
(x

)

Probability Density Function

Original PDF

Attacker PDF

�o �a�

Fig. 8 Tolerance of Sensor as compared to Attacker PDF

Gaussian distribution curve for a typical sensor circuit. It is represented as
an Original PDF with mean µo and standard deviation σo. Now consider that
an attacker is performing attacks on the system and the sensor is responsible
for measuring the fluctuations in the system. The attacker distribution also

MEM-DnP 15

Table 2 Cache Configurations

Cache Specifications

L1-D Cache 8KB, 2-way, 32B Line
L1-I Cache 16KB, 2-way, 32B Line
L2-D Cache None
L2-I Cache None

follows a Gaussian distribution, represented by an Attacker PDF with mean µa

and standard deviation σa. In such scenarios, the value of tolerance τ plays a
significant role in the overall security of the system. As the τ is closer to µo, the
probability of a false positives is more than the probability of false negatives.
But as the τ moves further away from µo, the overlap of Attacker PDF on
Original PDF increases and thus the probability of false negatives increases
than the probability of false positives. This is a critical security condition as
the sensor will fail to detect a legitimate attack measurement. Therefore the
value of τ should be optimally designed depending on the value of µo, σo and
RV.

6 Experimental Results

This section presents detailed analysis of the energy consumption involved in
traditional MIV process. This is compared to the energy consumption of the
proposed MEM-DnP Mechanism.

6.1 Simulation Framework

The simulation framework is based on Simplescalar Tool Set [4], which is con-
figured to execute ARM binaries. Since the primary goal of this paper is to
demonstrate the energy efficiency of the proposed MEM-DnP mechanism in
embedded systems, MiBench [20] embedded benchmark suite has been used,
that best replicates the variety of practical applications run on embedded de-
vices. The results obtained from different benchmark programs are presented,
to thoroughly demonstrate the efficiency of the proposed mechanism. All the
simulations performed are cache based simulations, using the sim-cache sim-
ulator in simplescalar. The Cache configurations used for the simulations is
given in Table 2. Here, the Level 1 Cache configurations are selected to match
the typical configurations of Embedded ARM processors [1].

16 Satyajeet Nimgaonkar et al.

6.2 Energy Consumption

6.2.1 Baseline Simulations

As described in Section 2, MIV is performed by constructing a Merkle Hash
Tree in the memory and storing the final hash, known as the root hash in
the on-chip memory storage. For every memory read, the Merkle hash tree
is re-constructed and the resulting root hash is compared with the one al-
ready present on-chip. If both the values match, then it is concluded that the
memory block is verified else it is infected. Typically, this is implemented by
partitioning the memory into fixed sized blocks (usually same as the cache
size) and generating multiple levels of hashes. Hence energy is consumed while
generating the hash from the memory all the way up to its root. To measure
this, we have presented Algorithm 1 in Section 4. Here the algorithm is used
to measure the number of hash invocations required per data miss in the Level
1 Data Cache. Hence, given that the energy consumption per hash invocation
is known, the results obtained from the algorithm can be used to calculate the
total energy consumption of the MIV mechanism.

Table 3 Basecase Simulations showing Total Hash Invocations and the Average Hash Rate

Benchmark DL1 Misses Total Hash Invocations Avg. Hash Rate

dijkstra small 1501134 21007122 13.99
fft large 6570198 91732597 13.96
jpeg large 2923393 40925500 14.00
lame large 39221353 549097030 14.00
patricia large 9138017 127930138 14.00
qsort large 7114792 99603844 14.00
math large 1318621 18090557 13.72
sha large 264246 3287898 12.44
stringsearch large 76794 1070293 13.94
susan large 109933 1537169 13.98
blowfish large 5074709 70618620 13.92
crc large 11237338 97672098 8.69

The Table 3 shows the DL1 Misses, Total Hash Invocations and the Average
Hash Rate for 12 embedded benchmark applications. The average hash rate is
calculated by dividing the total hash invocations by the DL1 Misses in each of
the benchmark applications. Since the average hash rate is directly related to
the total hash invocations, it is also directly related to the energy consumption
in the MIV mechanism. More the average hash rate, more are the total hash
invocations and thus more energy is consumed by the MIV mechanism and
vice versa. Thus in this paper, the emphasis is on reducing the average hash
rate by using a sensor module to detect possible attacks on the system. This
is explained in detail in Section 6.2.2 along with its results.

MEM-DnP 17

6.2.2 Energy Consumption in MEM-DnP Mechanism

The SM and the MIV module work together to detect and protect from phys-
ical attacks on the memory as explained in the discussion in Section 4.1. The
accuracy of sensors is responsible for precisely detecting the infected memory
blocks. The functioning of MEM-DnP mechanism results in two false positives.
The first false positive arises due the working of sensors. A typical non-ideal
sensor would manifest some abnormal fluctuations. This is modelled in the sim-
ulation framework by using a Random Value (RV), which is a random number
generator that can generate 16 bit, 20 bit, or 24 bit random numbers. The
RV represents the probability of occurrence of such fluctuations in the sensor
readings. For an N -bit RV the probability that an fluctuation occurs is given
by 1

2N
. It is important to stress, that these fluctuations may arise even if there

is no potential attack on the system. The second false positive again relates to
the working of the sensor. At the time of fluctuations in the readings, a sensor
typically has the capability to auto-correct itself and stabilize its readings. For
an ideal sensor the time required for auto-correction is 0. However, in practice
a finite amount of time is always required for the sensor to auto-correct itself.
This is modelled in the simulation framework through the use of Window Size.
The Window Size corresponds to the number of memory accesses required for
the sensors to stabilize. The Window Size can take 3 possible values — 2000,
8000, and 15000 memory accesses. Finally, the third parameter is the Disjoint
Trees which corresponds to the number of secrets or root hashes that can be
stored on-chip. It depends on the amount of memory available in the on-chip
storage. The number of Disjoint Trees are tested for three values — 16, 64,
and 128.

The simulation Algorithm 2 shows the steps involved in the simulation
of MEM-DnP mechanism. A predetermined Attack Seed of the same size as
that of the Random Value is embedded in the simulation framework. During
the simulations, when the values of Random Value and Attack Seed match, it
concluded that fluctuations in the sensor readings have exceeded VT and there
is an anomaly in the system. At this point, the MIV module generates the
Disjoint hash tree and computes the hash address and hash of the memory
blocks and proceeds with the verification process. This process is recursive
i.e. the Random Value and the Attack Seed are constantly checked to detect
if the match exists. If there is a match again, it indicates that the anomaly
persists and the hash verification process continues. If the sensor measurements
stabilize, the MIV module stops the hash verification process.

The MEM-DnP mechanism is tested for all possible combinations of the
two false positives — Random Value and Window Size and the parameter
Disjoint Trees. Using Algorithm 2, simulations were performed on the same
embedded benchmarks applications that are used in basecase simulations and
the new Average Hash Rate was recorded. The new average hash rate is com-
pared with the one in basecase simulations. Note, lower the average hash rate,
greater are the energy savings. Figures 9(a), 9(b) and 9(c) show the reduction
in average hash rate for Disjoint Trees = 16, 64, and 128 respectively. The

18 Satyajeet Nimgaonkar et al.

Algorithm 2 Simulation Algorithm
Require: Random Value, Window size, Disjoint trees.

1 SM monitors the system to detect an attack.
2 if Random attack seed = Random Block. (Fluctuations >VT . Hence there is an Anomaly)
3 Invoke MIV for given Window size and Generate disjoint trees.
4 During this keep repeating steps 2 & 3.
5 If there is match again. (Anomaly persists)
6 Extend the Window size; keep generating disjoint trees.
7 Else attack has subsided.
8 Stop the MIV process.
9 Keep repeating step 2.

reduction in average hash rate is plotted for all possible values of Window Size
and Random Value. Here the reduction in average hash rate is almost 1.00 i.e.
100% for Random Value - 24. This is expected as the probability that the ran-
dom number generator would generate a Random Value matching the Attack
is the least for value - 24 as compared to 16 and 20. Also except for Disjoint
Tree-128, the reduction in average hash rate is the least for Random Value-16
and Window Size-15000. This is due to fact that the Random Value-16 will
result in a higher probability of a match with the Attack seed and the number
of memory accesses (Window Size) for which MIV functions is significantly
higher. Hence the reduction in average hash rate will be lower.

Figures 10(a), 10(b), and 10(c) show the reduction in average hash rate for
Window Size = 2000, 8000 and 15000 respectively. The reduction in average
hash rate is plotted for all possible values of Disjoint Tree and Random Value.
Here again the reduction in average hash rate is almost 1.00 i.e. 100% for
Random Value - 24, whereas for Random Value - 16 it is the least.

Finally Figures 11(a), 11(b), and 11(c) show the reduction in average hash
rate for Random Value = 16, 20 and 24 respectively. The reduction in average
hash rate is plotted for all possible values of Window Size and Disjoint Trees.
Here the reduction in average hash rate is highest for Window Size-2000. This
is expected as the number of memory accesses for which the MIV functions is
significantly low and hence the average hash rate is low.

Based on the reduction in average hash rate, the Average Energy Savings
with regards to the basecase simulations, are calculated. Tables 4, 5 and 6 show
the Average Energy Savings for Disjoint Trees = 16, 64 and 128 respectively.
The energy savings are least for Disjoint Tree = 16, Window Size = 15000 and
Random Value = 16 with approximately 85.5%. While the energy savings are
the highest for Disjoint Trees = 64, Window Size = 2000, and Random Value
= 24 with 99.998%.

MEM-DnP 19

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

2000 8000 15000

R
ed

uc
tio

n
in

 A
ve

ra
ge

 H
as

h
R
at

e

Window Size

Disjoint Tree = 16

Random_Value=16 Random_Value=20 Random_Value=24

(a) for Disjoint Trees-16

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

2000 8000 15000

R
ed

uc
tio

n
in

 A
ve

ra
ge

 H
as

h
R
at

e

Window Size

Disjoint Tree = 64

Random_Value=16 Random_Value=20 Random_Value=24

(b) for Disjoint Trees-64

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

2000 8000 15000

R
ed

uc
tio

n
in

 A
ve

ra
ge

 H
as

h
R
at

e

Window Size

Disjoint Tree = 128

Random_Value=16 Random_Value=20 Random_Value=24

(c) for Disjoint Trees-128

Fig. 9 Reduction in Average Hash Rate for different Disjoint Trees.

20 Satyajeet Nimgaonkar et al.

 0.98

 0.985

 0.99

 0.995

 1

16 20 24

R
ed

uc
tio

n
in

 A
ve

ra
ge

 H
as

h
R
at

e

Random Value

Window Size = 2000

Disjoint_Trees=16 Disjoint_Trees=64 Disjoint_Trees=128

(a) for Window Size-2000

 0.9

 0.92

 0.94

 0.96

 0.98

 1

16 20 24

R
ed

uc
tio

n
in

 A
ve

ra
ge

 H
as

h
R
at

e

Random Value

Window Size = 8000

Disjoint_Trees=16 Disjoint_Trees=64 Disjoint_Trees=128

(b) for Window Size-8000

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

16 20 24

R
ed

uc
tio

n
in

 A
ve

ra
ge

 H
as

h
R
at

e

Random Value

Window Size = 15000

Disjoint_Trees=16 Disjoint_Trees=64 Disjoint_Trees=128

(c) for Window Size-15000

Fig. 10 Reduction in Average Hash Rate for different Window Sizes.

MEM-DnP 21

 0.8

 0.85

 0.9

 0.95

 1

16 64 128

R
ed

uc
tio

n
in

 A
ve

ra
ge

 H
as

h
R
at

e

Disjoint Trees

Random Value = 16

Window_Size=2000 Window_Size=8000 Window_Size=15000

(a) for Random Value-16

 0.8

 0.85

 0.9

 0.95

 1

16 64 128

R
ed

uc
tio

n
in

 A
ve

ra
ge

 H
as

h
R
at

e

Disjoint Trees

Random Value = 20

Window_Size=2000 Window_Size=8000 Window_Size=15000

(b) for Random Value-20

 0.8

 0.85

 0.9

 0.95

 1

16 64 128

R
ed

uc
tio

n
in

 A
ve

ra
ge

 H
as

h
R
at

e

Disjoint Trees

Random Value = 24

Window_Size=2000 Window_Size=8000 Window_Size=15000

(c) for Random Value-24

Fig. 11 Reduction in Average Hash Rate for different Random Value.

22 Satyajeet Nimgaonkar et al.

Table 4 Average Energy Savings for Disjoint Tree = 16

Disjoint Tree = 16

Window Size Random Value Average Energy Savings

2000

16 97.990
20 99.880
24 99.993

8000

16 92.394
20 99.475
24 99.971

15000

16 85.492
20 99.080
24 99.934

Table 5 Average Energy Savings for Disjoint Tree = 64

Disjoint Tree = 64

Window Size Random Value Average Energy Savings

2000

16 98.717
20 99.954
24 99.998

8000

16 93.995
20 99.543
24 99.989

15000

16 92.804
20 96.828
24 99.985

Table 6 Average Energy Savings for Disjoint Tree = 128

Disjoint Tree = 64

Window Size Random Value Average Energy Savings

2000

16 98.823
20 99.947
24 99.998

8000

16 92.461
20 99.837
24 99.989

15000

16 94.546
20 99.696
24 99.984

7 Conclusions

Security is a primary concern in embedded systems as they are vulnerable to
physical and software attacks. Hardware security architectures can be used
to provide a trusted and secure environment for embedded system. However,
the hardware security mechanisms implemented in these secure architectures

MEM-DnP 23

result in exorbitant energy consumption. An embedded system is highly energy
constrained and cannot afford to sacrifice speed and performance for security.
Hence the need arises to design new energy efficient security mechanism for
embedded systems.

In this paper, the focus is on reducing the energy consumed by the secure
Memory Integrity Verification mechanism. Hence it proposes the MEM-DnP
mechanism, a novel approach to achieve energy efficient memory integrity ver-
ification in embedded systems. This mechanism relies on a sensor module to
detect any discrepancies in the system. The memory integrity verification is
only done in an event of an anomaly i.e. the fluctuation exceed the threshold
value VT . Hence a lot of energy is saved by de-coupling the integrity verifi-
cation process during normal execution of the system. The simulation results
prove the average energy savings are in the range of 85.5% to 99.998% as
compared to the basecase simulations with traditional memory integrity veri-
fication techniques.

Currently, research is in progress to propose purely architecture specific
energy efficient mechanisms to achieve memory integrity verification in em-
bedded systems. In addition to this, the motivation is to measure the total
energy consumption of an embedded processor and compare it with the energy
consumption of the cryptographic memory integrity verification mechanisms.
This would give an exact measure of the energy savings that can be achieved
by the proposed energy efficient MIV techniques, with respect to the entire
embedded processor energy consumption.

Acknowledgements A shorter version of this research in the current archival journal is
presented in the blind-reviewed conference paper [24]. In this version, we have discussed
in detail the concept of Memory Integrity Verification (MIV) in Section 2, expanded the
architecture to include memory operations and the hash address computation algorithm in
Section 4.1, provided a theoretical basis for the optimal selection of VT in the sensor in Sec-
tion 5, added simulation framework details along with an elaborate simulation algorithm to
implement MEM-DnP mechanism and have presented new experimental evaluation results
using ARM architecture and MiBench benchmarks in Section 6.2.

References

1. ARM Architecture Reference Manual. http://www.altera.com/literature/

third-party/ddi0100e_arm_arm.pdf/ (2000)
2. Cyber Security Watch Survey. http://www.sei.cmu.edu/newsitems/cybersecurity_

watch_survey_2011.cfm (2011)
3. Mobile and Smart Device Security Survey 2011. http://

images.tmcnet.com/tmc/whitepapers/documents/whitepapers/2011/

4683-mobile-smart-device-security-survey-2011.pdf (2011)
4. Austin, T., Larson, E., Ernst, D.: Simplescalar: an infrastructure for computer system

modeling. Computer 35(2), 59 –67 (2002). DOI 10.1109/2.982917
5. Burch, R., Najm, F., Yang, P., Trick, T.: A monte carlo approach for power estimation.

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 1(1), 63 –71 (1993).
DOI 10.1109/92.219908

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer Verlag, Berlin, Heidelberg, New York (2002)

24 Satyajeet Nimgaonkar et al.

7. Elnahrawy, E., Nath, B.: Cleaning and querying noisy sensors. In: Proceedings of the
2nd ACM international conference on Wireless sensor networks and applications, WSNA
’03, pp. 78–87. ACM, New York, NY, USA (2003). DOI 10.1145/941350.941362. URL
http://doi.acm.org/10.1145/941350.941362

8. Gassend, B., Suh, G., Clarke, D., van Dijk, M., Devadas, S.: Caches and hash trees for
efficient memory integrity verification. In: High-Performance Computer Architecture,
2003. HPCA-9 2003. Proceedings. The Ninth International Symposium on, pp. 295 –
306 (2003). DOI 10.1109/HPCA.2003.1183547

9. Gebotys, C.: Low energy security optimization in embedded cryptographic systems.
In: Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.
International Conference on, pp. 224 – 229 (2004). DOI 10.1109/CODESS.2004.240744

10. Gelbart, O., Leontie, E., Narahari, B., Simha, R.: Architectural support for securing
application data in embedded systems. In: Electro/Information Technology, 2008. EIT
2008. IEEE International Conference on, pp. 19 –24 (2008). DOI 10.1109/EIT.2008.
4554261

11. Ghai, D., Mohanty, S., Kougianos, E.: Design of parasitic and process-variation aware
nano-cmos rf circuits: A vco case study. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on 17(9), 1339 –1342 (2009). DOI 10.1109/TVLSI.2008.2002046

12. Ghai, D., Mohanty, S., Kougianos, E.: Variability-aware optimization of nano-cmos ac-
tive pixel sensors using design and analysis of monte carlo experiments. In: Quality of
Electronic Design, 2009. ISQED 2009. Quality Electronic Design, pp. 172 –178 (2009).
DOI 10.1109/ISQED.2009.4810289

13. Gomathisankaran, M., Keung, K.M., Tyagi, A.: Rebel - reconfigurable block encryption
logic. In: SECRYPT, pp. 312–318 (2008)

14. Gomathisankaran, M., Lee, R.: Tantra : A fast prng algorithm and its implementation.
In: H.R. Arabnia, K. Daimi (eds.) Proceedings of the 2009 International Conference
on Security & Management, SAM 2009, July 13-16, 2009, Las Vegas Nevada, USA, 2
Volumes, pp. 593–598. CSREA Press (2009)

15. Gomathisankaran, M., Lee, R.B.: Maya: A novel block encryption function. In: In-
ternational Workshop on Coding and Cryptography (2009). URL http://viper.eng.

iastate.edu/gmdev/pubs/maya.pdf

16. Gomathisankaran, M., Tyagi, A.: Tiva : Trusted integrity verification architecture. In:
R. Safavi-Naini, M. Yung (eds.) DRMTICS : Technologies, Issues, Challenges and Sys-
tems, First International Conference, DRMTICS 2005, Sydney, Australia, October 31 -
November 2, 2005, Revised Selected Papers, pp. 13–31. Springer (2005). DOI 10.1007/
11787952 2. URL http://viper.eng.iastate.edu/gmdev/pubs/drmtics05.pdf

17. Gomathisankaran, M., Tyagi, A.: Architecture support for 3d obfuscation. Computers,
IEEE Transactions on 55(5), 497 – 507 (2006). DOI 10.1109/TC.2006.68

18. Gomathisankaran, M., Tyagi, A.: Architecture support for 3d obfuscation. IEEE Trans.
Computers 55(5), 497–507 (2006). DOI 10.1109/TC.2006.68. URL http://viper.eng.

iastate.edu/gmdev/pubs/ieeeTC06.pdf

19. Gordon-Ross, A., Vahid, F., Dutt, N.: Automatic tuning of two-level caches to embedded
applications. In: Design, Automation and Test in Europe Conference and Exhibition,
2004. Proceedings, vol. 1, pp. 208 – 213 Vol.1 (2004). DOI 10.1109/DATE.2004.1268850

20. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R.: Mibench:
A free, commercially representative embedded benchmark suite. In: Workload Char-
acterization, 2001. WWC-4. 2001 IEEE International Workshop on, pp. 3 – 14 (2001).
DOI 10.1109/WWC.2001.990739

21. Lie, D., Thekkath, C.A., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J.C., Horowitz,
M.: Architectural support for copy and tamper resistant software. In: Architectural
Support for Programming Languages and Operating Systems, pp. 168–177 (2000). URL
citeseer.nj.nec.com/lie00architectural.html

22. McGowen, R., Poirier, C., Bostak, C., Ignowski, J., Millican, M., Parks, W., Naffziger,
S.: Power and temperature control on a 90-nm itanium family processor. Solid-State
Circuits, IEEE Journal of 41(1), 229 – 237 (2006). DOI 10.1109/JSSC.2005.859902

23. Mohanty, S.P., Kougianos, E.: Simultaneous power fluctuation and average power min-
imization during nano-cmos behavioral synthesis. In: Proceedings of the 20th Interna-
tional Conference on VLSI Design [23], pp. 577–582

MEM-DnP 25

24. Nimgaonkar, S., Gomathisankaran, M.: Energy efficient memory authentication mech-
anism in embedded systems. In: Electronic System Design (ISED), 2011 International
Symposium on, pp. 248 –253 (2011). DOI 10.1109/ISED.2011.34

25. Oh, D., Kim, N.S., Chen, C., Davoodi, A., Hu, Y.H.: Runtime temperature-based power
estimation for optimizing throughput of thermal-constrained multi-core processors. In:
Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific, pp. 593
–599 (2010). DOI 10.1109/ASPDAC.2010.5419815

26. Potlapally, N.R., Ravi, S., Raghunathan, A., Jha, N.K.: Analyzing the energy consump-
tion of security protocols. In: Proceedings of the 2003 international symposium on Low
power electronics and design, ISLPED ’03, pp. 30–35. ACM, New York, NY, USA (2003).
DOI 10.1145/871506.871518. URL http://doi.acm.org/10.1145/871506.871518

27. Rogers, A., Milenkovic, M., Milenkovic, A.: A low overhead hardware technique for
software integrity and confidentiality. In: Computer Design, 2007. ICCD 2007. 25th
International Conference on, pp. 113 –120 (2007). DOI 10.1109/ICCD.2007.4601889

28. Rogers, B., Chhabra, S., Solihin, Y., Prvulovic, M.: Using address independent seed en-
cryption and bonsai merkle trees to make secure processors os- and performance-friendly.
In: Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM International Sym-
posium on, pp. 183 –196 (2007). DOI 10.1109/MICRO.2007.16

29. Shi, W., Lee, H.H., Ghosh, M., Lu, C.: Architectural support for high speed protection
of memory integrity and confidentiality in multiprocessor systems. In: Parallel Architec-
ture and Compilation Techniques, 2004. PACT 2004. Proceedings. 13th International
Conference on, pp. 123 – 134 (2004). DOI 10.1109/PACT.2004.1342547

30. Suh, G., Clarke, D., Gasend, B., van Dijk, M., Devadas, S.: Efficient memory integrity
verification and encryption for secure processors. In: Microarchitecture, 2003. MICRO-
36. Proceedings. 36th Annual IEEE/ACM International Symposium on, pp. 339–350
(2003). DOI 10.1109/MICRO.2003.1253207

31. Suh, G., O’Donnell, C., Devadas, S.: Aegis: A single-chip secure processor. Design Test
of Computers, IEEE 24(6), 570 –580 (2007). DOI 10.1109/MDT.2007.179

32. Vahedi, H., Gregori, S., Zhanrong, Y., Muresan, R.: Power-smart system-on-chip ar-
chitecture for embedded cryptosystems. In: Hardware/Software Codesign and System
Synthesis, 2005. CODES+ISSS ’05. Third IEEE/ACM/IFIP International Conference
on, pp. 184 –189 (2005). DOI 10.1145/1084834.1084883

33. White, S., Comerford, L.: Abyss: an architecture for software protection. Software
Engineering, IEEE Transactions on 16(6), 619 –629 (1990). DOI 10.1109/32.55090

34. Williams, D., Sirer, E.G.: Optimal parameter selection for efficient memory integrity
verification using merkle hash trees. In: Network Computing and Applications, 2004.
(NCA 2004). Proceedings. Third IEEE International Symposium on, pp. 383–388 (2004).
DOI 10.1109/NCA.2004.1347805

35. Yan, C., Rogers, B., Englender, D., Solihin, D., Prvulovic, M.: Improving cost, per-
formance, and security of memory encryption and authentication. In: Computer Ar-
chitecture, 2006. ISCA ’06. 33rd International Symposium on, pp. 179 –190 (2006).
DOI 10.1109/ISCA.2006.22

36. Zhang, C., Srivastava, A., Wu, H.C.: Hot-electron-induced effects on noise and jitter
in submicron cmos phase-locked loop circuits. In: Circuits and Systems, 2005. 48th
Midwest Symposium on, pp. 507–510 Vol. 1 (2005). DOI 10.1109/MWSCAS.2005.
1594149

37. Zhang, L., Bai, L., Dick, R., Shang, L., Joseph, R.: Process variation characterization
of chip-level multiprocessors. In: Design Automation Conference, 2009. DAC ’09. 46th
ACM/IEEE, pp. 694 –697 (2009)

38. Zhuang, X., Zhang, T., Pande, S.: Hide: an infrastructure for efficiently protecting in-
formation leakage on the address bus. SIGARCH Comput. Archit. News 32(5), 72–84
(2004). DOI 10.1145/1037947.1024403. URL http://doi.acm.org/10.1145/1037947.

1024403

