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Abstract

Fast optimization of CMOS circuits is needed to reduce design cycle time and chip cost and to enhance yield. Mature
electronic design automation (EDA) tools and well-defined abstraction-levels for digital circuits have largely auto-
mated the digital design process. However, analog circuit design and optimization is still not automated. Custom
design of analog circuits and slow analog in SPICE has always needed maximum efforts, skills and design cycle
time. In this paper, two novel design flows are presented for fast multiobjective optimization of nano-CMOS cir-
cuits: actual-value optimization and normalized-value optimization. The design flows consider two characteristics
for optimization i.e. power and frequency in a current-starved 50nm voltage-controlled oscillator (VCO). Accurate
polynomial-regression based models have been developed for power (including leakage) and frequency of the VCO to
speedup the design optimization. In the actual-value optimization flow, the power model is minimized using genetic
algorithm, while treating frequency ≥ 100 MHz as a constraint. The actual-value optimization flow achieved 21.67%
power savings, while maintaining a frequency ≥ 100 MHz. In the normalized-value optimization flow, the normalized
form of these models are subjected to a weighted optimization using genetic algorithm. The normalized-value opti-
mization flow achieved 16.67% power savings, with frequency ≥ 100 MHz. It is observed that while the actual-value
optimization approach provides a better exploration of the design space, the normalized-value optimization approach
provides a ≈ 5× speedup in the computation time.

Keywords: Circuit Optimization, Design Optimization, Polynomial Regression, Genetic Algorithm, Nanoscale
CMOS (Nano-CMOS), Voltage-Controlled Oscillator (VCO).

1. Introduction

Digital design exploration and optimization is highly
automated due to availability of large number of elec-
tronic design automation (EDA) or computer-aided de-
sign (CAD) tools. The digital design automation is
aided by the availability of well-defined abstractions for
digital circuits (such as system, architecture, and logic
levels). However, analog design optimization is still a
difficult and time intensive process [1]. For example,
the analog simulation time for a nano-CMOS phase-
locked loop is a matter of several days. So, debugging
such a design is time intensive and costly. This results in
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high-cost and longer design cycle time. If such analog
design are performed at nano-CMOS technology, the is-
sues are further complicated due to leakage and process
variation resulting in yield loss.

Most analog integrated circuit (IC) optimization
problems involve minimizing a cost function subject to
certain constraints. Due to the increasing complexity
of modern analog integrated circuits, analog sizing has
evolved into a “simulation and optimization” based ap-
proach from a “paper and pencil” based approach [2].
Analog sizing problems often require handling multiple
conflicting goals, such as power consumption and fre-
quency of a VCO [3]. Novel design/optimization flows
are needed, to help the circuit designers [4]. Multi-
objective optimization [5] is the process of simultane-
ously optimizing two or more conflicting design ob-
jectives while subjecting the design variables to con-
straints. During optimization, the baseline design is it-

Preprint submitted to Elsevier April 17, 2013



eratively tuned by adjusting a large number of design
parameters to vast amounts of different design possibil-
ities of the circuit to meet the target design objectives,
making it very tedious to do exhaustive design space
exploration for complex nano-CMOS circuits to find an
optimal solution. Also, the use of compact models [6]
with hundreds of parameters in nano-CMOS technology
further aggravates the situation.

Polynomial regression model is an abstract model of
the netlist which enables a fast design space search.
Polynomial regression models are useful for relative
functions to unknown and very complex nonlinear rela-
tionship [7, 8]. This model is a mathematical predictive
equation which may be used as a substitute for the ac-
tual circuit, leading to easier and faster simulations with
multiple iterations during optimization. For example, as
reported in current literature, simulated annealing used
on a circuit netlist in a simulator gives convergence in
order of minutes as compared to milliseconds, when
used over a polynomial regression model [9]. Hence,
it can be used as an alternative to the exhaustive search
of the design space of the actual circuits. The model can
also be used in a variety of tools, such as MATLAB, and
is language independent and can be used in a flexible
fashion.

To give an overview, the notations and definitions for
various terminologies used in this paper are given in
Table 1. The paper is organized in following manner:
Contributions of this paper is summarized in section 2.
Section 3 presents the prior related research. Section 4
discusses the proposed novel design flows. The design
and analysis of the 50nm VCO is presented in section
5. Polynomial models for actual-value and normalized-
value optimization are presented in sections 6 and 7, re-
spectively. Sections 8 and 9 highlight the optimization
step of the optimization flows, using genetic algorithm.
This is followed by conclusions and future research in
section 10.

2. Contributions of this Paper

This paper advances the state-of-the-art in design op-
timization of analog and mixed-signal circuit where op-
timization over netlist is time consuming. The novel
contributions of this paper are as follows:

1. Two novel fast design flows for multiobjective
cost function optimization over actual-value and
normalized-value in nano-CMOS analog circuits
are proposed. The speed up in the design flows is
achieved by the use of polynomial regression mod-
els and genetic algorithm based algorithms.

Table 1: Notations and Definitions used in this paper.
pwr : Power consumption of VCO
freq : Oscillation frequency of VCO
f̂pwr : Normalized polynomial model for

power consumption of VCO
f̂freq : Normalized polynomial model

for oscillation frequency of VCO
fpwr : Polynomial model for power

consumption of VCO
ffreq : Polynomial model for oscillation

frequency of VCO
RMSE : Root of Mean Square Error
R2 : Coefficient of Determination
FF : Fitness function of VCO to be optimized
GA : Genetic Algorithm
Vdd : Supply voltage of nano-CMOS circuit
Vin : Input voltage to nano-CMOS circuit
Vout : Output voltage to nano-CMOS circuit
Wp : Width of the PMOS transistor
Wn : Width of the NMOS transistor
g(x) : Cost function
h(x) : Non-linear inequality constraint

2. A method for polynomial regression based mod-
eling has been used for analog circuits. The
goodness-of-fit of the polynomial regression mod-
els is measured using SSE, RMSE and R2.

3. A genetic algorithm based optimization approach
is presented that considers power consumption
as objective and frequency as constraint for
the actual-value optimization approach, and a
weighted fitness function for the normalized-value
optimization approach.

4. A 50 nm CMOS based current starved VCO is sub-
jected to the proposed design methodology. We re-
port 21.67% power savings and frequency ≥ 100
MHz using the actual-value optimization flow, and
16.67% power savings and frequency ≥ 100 MHz
in the VCO using the normalized-value optimiza-
tion flow.

3. Related Prior Research

Multiobjective optimization problems [10, 11] are
used wherever optimal decisions need to be taken in
the presence of trade-offs between two or more con-
flicting objectives. For nontrivial multiobjective prob-
lems, one cannot identify a single solution that simul-
taneously optimizes each objective. While searching
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for solutions, one reaches points such that, when at-
tempting to improve an objective further, other objec-
tives suffer as a result. A comprehensive survey of re-
lated works on modeling for analog design has been pro-
vided in [12]. The technique for generation of posyno-
mial equation based performance estimation models for
analog circuits like multistage amplifiers, is described in
[13]. An automatic procedure for generation of posyn-
omial models using fitting technique is described in
[14]. Other modeling techniques, like pareto surfaces
[15] suffer from the issue of scalability. In order to ac-
commodate a larger design space with a higher number
of variables, we may use techniques such as artificial
neural networks [16], takagi-sugeno neuro-fuzzy logic
systems [17], support vector machines based regression
[18], Kriging [19] in the proposed design flow instead of
polynomial regression. Support vector machine (SVM)
has been used for modeling of performance parameters
for RF and analog circuits [18, 20].

A number of global optimization algorithms are
available in current literature for optimization of analog
circuits, such as genetic algorithm [10], simulated an-
nealing [19], particle-swarm optimization [21], and ar-
tificial bee-colony optimization [22]. These algorithms
are particularly effective in finding global optimal or
near-optimal solutions, as compared to local optimiza-
tion techniques like conjugate-gradient. Convex Opti-
mization has been explored in [13] where circuit designs
are expressed as posynomial models.

Table 2 shows a comparative perspective among some
of the existing optimization flows and proposed opti-
mization flows in the paper. The execution time is
highly dependent on the complexity of the circuits in-
volved, and also the algorithm being used. The execu-
tion times reported in this paper are comparable with
current literature involving fast optimization. It is not
possible to have a fair comparison as the circuits, mod-
els, and algorithms are different in each case. The
actual-value optimization tends to take longer, as it in-
volves constraints.

4. Proposed Fast Optimization Flows for Nano-
CMOS VCO

In this section, we discuss the two optimization flows
for multi-objective optimization in nano-CMOS cir-
cuits. A VCO is used as an example circuit for reducing
power dissipation, and increasing frequency. The design
flows are depicted in Fig. 1.

4.1. Actual-Value Optimization Flow

This section presents the proposed flow for actual-
value optimization in nano-CMOS based analog cir-
cuits. Although, a VCO is used as a case study for
reducing power consumption and increasing frequency,
the proposed optimization flow can be generalized for
other nano-CMOS analog circuits (like operational am-
plifiers, filters, and sense amplifiers) as well. The pro-
posed optimization flow over actual-value of character-
istics of the VCO is presented in Fig. 1(a). The input
to the proposed design flow is a baseline design of cir-
cuit. This is one time manual design step. At this stage
a netlist is sufficient for the design flow. For a schematic
design this netlist will have only active devices whereas
for a layout design full-blown parasitics (RCLK) are in-
cluded. In this paper, we have used a 50 nm CMOS
based circuit of a VCO. A baseline design is carried
out as per the specifications. The design objectives and
constraints are identified and measured for this baseline
VCO (power and frequency). In order to collect data for
building the regression-based models, exhaustive simu-
lations are performed to obtain the sample data points
in the space defined by the bounded design variables.
For this study, we consider 2 design variables i.e. Wp:
width of the PMOS transistors, and Wn: width of the
NMOS transistors in the current starved VCO. There-
after, a polynomial regression based model is developed
for each design objective (i.e. power and frequency) us-
ing these sample data points. Polynomial regression is
efficient, reliable and allows for very fast design explo-
ration [26] in a smaller design space.

At this stage of the design flow, the analog circuit de-
sign problem is formulated as an optimization problem.
For an example the following problem:

minimize
x

g(x)

subject to h(x) ≤ 0,

XL < x < XH .

(1)

Where g(x) is the cost function to be minimized and
the vector h(x) is the non-linear inequality constraint.
Vector x corresponds to the design variable set (x=
[Wn,Wp]

T ), and XL and XH are their lower and up-
per bounds, respectively. g(x) and h(x) are formed us-
ing the models, which are developed in the regression
step of the flow. We have considered power of the VCO
as the design objective and frequency of the VCO as
the design constraint. However, other VCO specifica-
tions like phase noise and tuning linearity may also be
considered in the set of design objectives: g(x) or de-
sign constraints: h(x). Cost function, constraints and
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Figure 1: The proposed design optimization flows.
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Table 2: Execution Time Comparison with Existing Optimization Flows

Reference Design Algorithm Execution Time
Garitselov [23] LC-VCO Simulated annealing 1.22 seconds
Okobiah [24] Sense amplifier Ant colony 1.36 seconds
Zheng [25] Folded cascode Op-amp Cuckoo Search 2.6 seconds
This paper- 21-stage Genetic 2.99

Actual-value optimization current starved VCO Algorithm seconds
This paper- 21-stage Genetic 0.6

Normalized-value optimization current starved VCO Algorithm seconds

bounds are formed for design variables which are the
inputs to the optimization algorithm. This formulation
is then fed to the optimization algorithm.

We have used the genetic algorithm (GA) to solve
our optimization problem, as it is easily transferred to
existing simulations and models. GA is a program-
ming technique that mimics biological evolution as a
problem-solving strategy. GA generates solutions to op-
timization problems using techniques inspired by natu-
ral evolution, such as inheritance, mutation, selection,
and crossover [5]. GA can handle arbitrary constraints
and objectives unlike other commonly used optimiza-
tion methodologies. The output of the algorithm is the
optimal values of the design variables. The circuit is
then re-simulated using these design variable values for
obtaining the design objectives. For example, power
and frequency for the VCO.

4.2. Normalized-Value Optimization Flow

In this section, we present the normalized-value opti-
mization flow for multi-objective optimization in nano-
CMOS circuits. The proposed design flow which op-
timizes over normalized-value of VCO characteristics
is shown in Fig. 1(b). The important differences be-
tween actual-value optimization (section 4.1), and the
normalized-value optimization flow are as follows:

1. The actual-value optimization flow works with ac-
tual values of figures-of-merit (FoMs), while the
normalized-value flow works with normalized val-
ues. Once the normalized-value flow is complete,
the values of the design variables are denormalized
and fed to the circuit simulator.

2. In the actual-value optimization flow, the optimiza-
tion problem involves developing a cost function, a
constraint function and the bounds for design vari-
ables. For the optimization problem in normalized-
value design flow, a cost function over normalized-

value (we call it fitness function) and the bounds
are developed.

Using the data points obtained in Section 4.1, a
normalized polynomial regression [26] based model is
developed for each design objective (power and fre-
quency). The models have been normalized by division
with the maximum value in its range, so the maximum
value that any design objective (or variable) can take is
1. The units of frequency are Hertz (Hz), and the units
of power are Watts (W). It is not possible to perform
meaningful arithmetic on the two quantities while re-
taining their units. Normalization renders the models
unit-less, so arithmetic operations may be performed, in
order to develop a weighted fitness function for multi-
objective optimization. Using a weighted version of
these normalized objective functions, we develop a fit-
ness function to be subjected to an optimization algo-
rithm. We have applied the genetic algorithm (GA) to
our fitness function. The output of the algorithm is the
optimal values of the design variables. The circuit is
then re-simulated using these design variable values for
obtaining the design objectives (power and frequency
for the VCO). We report 16.67% power savings, and
frequency ≥ 100MHz using the design flow.

5. Design and Modeling of 50nm CMOS VCO

The baseline 50 nm CMOS current-starved VCO is
shown in the figure 2. The supply voltage (Vdd) is 1 V.
The devices P1 and N1 form an inverter, while P2 and
N2 operate as current sources. The current sources (P2
and N2) limit the current available to the inverter (P1
and N1), hence starving the inverter for current. The
drain currents in the devices P11 and N11 are the same,
set by the input voltage. The currents in P11 and N11
are mirrored in each inverter/current source stage.

The oscillation frequency of the current-starved VCO
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Figure 2: Logical diagram for VCO with sizes for baseline circuit.

is given by the expression 2 [27]:

freqV CO =
ID

N × Ctot × Vdd
. (2)

Where ID=drain current, N=number of stages,
Ctot=total capacitance on the drains of P1 and N1= 5

2 ×
Cox′ × (Wp × L +Wn × L) and Vdd=supply voltage.
We have chosen N=21, ID=10µA and Ctot=4.7 fF for
a target frequency of 100 MHz. Frequency is measured
as 111.4 MHz for the baseline design. So, there is a
11.4% error between the prediction from equation 2 and
simulation. This long-channel equation is an approx-
imation at best and is useful only for baseline design.
Hence, equation 2 cannot be directly used for optimiza-
tion in an algorithm. For accurate design optimization,
we need a baseline design using which we obtain our
polynomial regression model which defines these rela-
tionships more accurately. Also, ID and Ctot are both
dependent on Cox′ (oxide capacitance per unit area). As
per equation 2 (ID in the numerator, and Ctot in the de-
nominator) their capacitive components get cancelled,
leaving freqV CO mainly dependent on device geome-
try and overdrive voltages. This happens, irrespective
of whether the device is in saturation or linear region
of operation. The VCO range characterization is pre-
sented in Table 3, where freqV CO-min and freqV CO-
max are the minimum and maximum frequencies. Fig-
ure 3 shows the frequency-voltage characteristics.

The average power consumption by the nano-CMOS

Table 3: Baseline Design VCO Range Characterization

Parameter Value
freqV CO-min 18.25 MHz
freqV CO-max 418.52 MHz

VCO range 400.27 MHz
Vin 0 to 1V

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

V
in

 (V)

F
re

qu
en

cy
 (

M
H

z)

Figure 3: Frequency-voltage characteristics of 50nm CMOS based
baseline VCO.

VCO is given by the following expression:

pwrV CO = Pdynamic + Psubthreshold + Pgate-oxide (3)
= NCtotV

2
ddfreqV CO

+ C exp

(
Vgs − VTh

Svtherm

)(
1− exp

(
−Vds

vtherm

))

+ αWL

(
Vox

Tox

)2

exp

−β

(
1−

(
1− Vox

ϕox

) 3
2

)
(

Vox

Tox

)
 . (4)

Where C =
(
µ0 ×

(
ϵoxW

ToxLeff

)
× v2therm × e1.8

)
, Tox

is the oxide thickness, ϕox is the barrier height for the
tunneling particle (hole or electron), and α and β are
physical parameters used in modeling. The Pdynamic

component of pwrV CO can be expressed as a function
of our design variable set x = [Wp,Wn]

T (using the
relationship between Ctot and x = [Wp,Wn]

T ). How-
ever, mathematical relationship between Psubthreshold,
Pgate and x = [Wp,Wn]

T are not clear, hence not us-
able. Hence we need a baseline design for obtaining our
polynomial regression model which defines these rela-
tionships more accurately. We report an average power
consumption of 60 µW for the baseline VCO design.
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For modeling power dissipation (including leakage)
and center frequency as function of the design variables
[Wp,Wn]

T , we use polynomial regression. The models
are expressed as follows:

f̂X =
n∑

i,j=0

pij ×W i
n ×W j

p . (5)

Where X is freq or pwr, n is the order of regression and
pij is the matrix of coefficients obtained during polyno-
mial regression. Polynomial regression based models
have the following advantages:

1. Polynomial models are well known and have a sim-
ple form.

2. They are a closed family. Changes of location and
scale in the raw data result in a polynomial model
being mapped to a polynomial model. That is,
polynomial models are not dependent on the un-
derlying metric.

3. Polynomial models are computationally easy to
use.

4. Lower degree polynomials have good interpolatory
properties. Provide good fits within the range of
data.

Polynomial models may have scalability issue. If one
wants to maintain the same density (accuracy) of the
model when more dimensions are added, then the sam-
ple size increases enormously (usually exponentially
with the number of dimensions). The model becomes
difficult to interpret as more explanatory variables are
included. Graphing the fitted values helps, but with
more than two predictors we cannot see the complete
regression surface. Despite these limitations, multiple
regression can be useful as long as a regression surface
can be built.

6. Polynomial Models for Actual-Value Optimiza-
tion

This section presents the polynomial models used for
actual-value optimization. The design space is explored
through parametric simulations for the values of Wn

and Wp ranging from the lower bound (100nm) to up-
per bound (1µm) and the data points are used to obtain
least squares fit polynomial. The regression surfaces for
power and frequency are shown in Fig. 4(a) and Fig.
4(b), respectively. The polynomial coefficients in a ma-
trix format is provided in Eqn. 6 and Eqn. 7. A poly-
nomial of the order 2 has been used, hence we obtain a
3×3 matrix.

pij(fpwr) = 5.409× 10−5 6.809× 10−6 −1.348× 10−6

6.569× 10−6 2.718× 10−6 0
−1.191× 10−6 0 0

 (6)

pij(ffreq) = 1.095× 108 1.613× 107 −1.022× 107

1.17× 107 8.572× 106 0
−8.409× 106 0 0

 (7)

For goodness-of-fit of the polynomial model, we an-
alyze the sum of squared error (SSE), root of Mean
Square Error (RMSE), and coefficient of determination
(R2) [8]. SSE is a measure of the discrepancy between
the data and an estimation model. If the estimation
model is well fitted, it results in predictive data values
close to observed values. A small SSE indicates a tight
fit of the model to the data. The formula used for calcu-
lating SSE is the following:.

SSE =

Nsamp∑
i=0

(f(xi)− f̂(xi))
2. (8)

Where Nsamp = 10 × 10 = 100 are uniformly dis-
tributed points of the parameters selected in the design
domain (x). Current literature [28, 9] shows that uni-
form sampling results in an even distribution, produces
more effective coverage than random sampling, pro-
vides superior accuracy to random sampling, can deal
with a large number of runs and input variables and are
computationally cheap to generate. Hence, we have de-
cided to go for uniform sampling. We report an SSE
of 56.55pW for the power model and 4.76 × 1015 Hz
for the frequency model. f(xi) and f̂(xi) are the re-
sponses at point (xi) of the data point observations and
the regression based model, respectively. One way to
calculate RMSE is obtained by substituting Eqn. 8 in
equation 9. Alternatively, RMSE is directly computed
as shown in Eqn. 10:

RMSE =

√
SSE

Nsamp
(9)

=

√√√√ 1

Nsamp

N∑
i=0

(f(xi)− f̂(xi))2.(10)

The RMSE estimates the difference between the ob-
served data points from simulations and the polynomial
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Figure 4: Surface plots for power and frequency during actual-value optimization.

regression model. A smaller RMSE value indicates an
accurate polynomial regression model [8]. We report
an RMSE of 0.2378µW for the power model and 2.184
MHz for the frequency model. Since we have used a
smaller number of samples (100) and lower order poly-
nomial regression (order=2) for the actual-value opti-
mization, a larger RMSE error (2.18% for frequency
model) is obtained [28]. The proposed flow can produce
results with further low RMSE if number of sample
points and order of polynomial regressions increased.

The coefficient of determination (R2) measures the
proportion of the variation of the data point observations
around the mean that is explained by the fitted regres-
sion model. Advantage of using R2 is that its scale is
intuitive, and an improvement in the regression model
results in proportional increase in R2. The closer R2

is to 1, the greater the degree of association between
variables x and the response. The expression used for
calculating R2 is the following:

R2 = 1−

(∑Nsamp

i=0 (f(xi)− f̂(xi))
2∑Nsamp

i=0 (f(xi)− f(xi))2

)
. (11)

Where f(xi) is the mean of the response at point (xi)
of the data point observations. We report an R2 value
of 0.9943 for the power model and 0.9953 for the fre-
quency model.

7. Polynomial Models for Normalized-Value Opti-
mization

For normalized-value optimization, we work with
normalized data. The data obtained in section 6 is nor-
malized (both the design variables and FoMs). The
normalization is carried out by dividing the entire data
range by the maximum value within that range. This
is followed by developing the normalized polynomial
model for power and frequency. We use f̂pwr and f̂freq
to denote normalized vales instead of actual values. The
regression plots for normalized power and frequency are
shown in Fig. 5(a) and 5(b), respectively. The coeffi-
cient matrix are presented in Eqn. 12 and 13. A poly-
nomial of the order 3 has been used, hence we obtain a
4×4 matrix.

pij(f̂pwr) =
0.4028 0.2884 −0.4526 0.2592
0.3025 0.8811 −0.3421 0
−0.4608 −0.06591 0 0
0.187 0 0 0

 (12)

pij(f̂freq) =
0.06758 1.538 −2.808 1.376
1.294 2.08 −0.7208 0
−2.666 −0.4581 0 0
1.294 0 0 0

 (13)
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Figure 5: Surface plots for normalized power and frequency during normalized-value optimization.

In the above specific case, Nsamp = 19 × 19 = 361
and order=3 for polynomial regression. The goodness-
of-fit is measured using RMSE and R2 described in
Eqn. 10 and 11, respectively. We report an RMSE of
0.003559 and R2 value of 0.9992 for the power model.
RMSE of 0.0151, and R2 of 0.9929 is reported for the
center-frequency model. Here, as the number of sam-
ples and the order of polynomial regression increases as
compared to the actual-value optimization, the RMSE
error is lesser (1.51%) [28].

8. Actual-Value Optimization using Genetic Algo-
rithm (GA)

This section discusses the development of the cost
function, constraint function and Genetic Algorithm
(GA) used for optimization. The pareto-front is
presented in figure 6 [29]. The feasible region
where PowerV CO will be minimized while keeping
FrequencyV CO ≥ 100MHz is encircled. From the fea-
sible region we can see that the minimum power con-
sumption would be in the neighborhood of 50µW.

We now formulate the optimization problem for
power minimization as follows:

minimize PowerV CO

such that FrequencyV CO ≥ 100MHz,

100nm ≤ [Wp,Wn]
T ≤ 1µm. (14)
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Figure 6: Pareto-front obtained using PowerV CO and
FrequencyV CO .

In order to make Eqn. 14 the same format as Eqn. 1, we
formulate the optimization problem as follows:

minimize g(x) = PowerV CO

such that 100× 106 − FrequencyV CO ≤ 0,

100nm ≤ x ≤ 1µm. (15)

Where cost function is g(x)=PowerV CO and constraint
function is h(x) = 100 × 106-FrequencyV CO. The
lower and upper bounds for the design variable set
x = [Wp,Wn]

T are 100nm and 1µm respectively. The
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cost function of a target VCO is minimized through a
Genetic Algorithm which is shown in Algorithm 1.

Algorithm 1 Proposed Genetic Algorithm (GA) for
Actual-Value Optimization.

1: Input: Cost function g(x), constraint function
h(x), 100nm ≤ x ≤ 1µm and design solution set
x.

2: Output: Optimal design solution xopt.
3: Generate initial population design variable x.
4: Initialize the number of iterations, gen=0.
5: while gen < maxgen-1 do
6: Select mating pool from the initial population

as x′ ⊂ x.
7: Initialize set of children x′′= ∅.
8: for i=0 to populationsize-1 do
9: Select individuals x′

a at random from x′.
10: Apply crossover to x′

a to produce child
x′
child.

11: Randomly mutate produced child x′
child.

12: x′′=x′′ ∪ x′
child.

13: end for
14: x′′′=x′′ ∪ x′.
15: Evaluate fitness using g(x′′′), h(x′′′) .
16: Increment the counter as gen=gen+1.
17: end while
18: The optimal solution is obtained: xopt=x′′′.
19: Assign xopt to transistors in VCO and recreate the

design using the new parameters.
20: Re-simulate VCO to characterize for freq and pwr.

The Genetic Algorithm has an advantage over most
of other techniques presented in current literature as it
helps in formulating the problem as a nonlinear opti-
mization with equality and inequality constraints [30].
The inputs to the Algorithm 1 are the cost function g(x),
the non-linear inequality constraint function h(x) and
the lower (XL) and upper (XH ) bounds to the design
solution set x. New candidates (children) for the de-
sign solution set are generated with a mechanism called
crossover (rate=0.8) which combines part of the genetic
material of each parent x′ and then applies a random
mutation. If the child x′

child inherits good characteris-
tics from its parents x′, it will have a higher probability
to survive. The values of child x′

child are stored in the
set of children x′′. The fitness of the child x′′and parent
x′ population is then evaluated using g(x), h(x) and the
survivors can be formed either by the fittest from x′′ ∪
the fittest from x′.

Genetic Algorithm first accepts a set of design solu-
tion set (statements 6 and 7 in algorithm 1), and then

constructs a set of child design solution set (statements
9 to 14 in algorithm 1). The stopping criterion is pro-
vided by the number of generations (maxgen) which as
fixed at maxgen=100. The algorithm converges before
the maxgen is reached (generations (iterations)=20) as
shown in Fig. 7(a). The final values of design variables
(best individuals) as shown in Fig. 7(b). 30 independent
trials were run for the actual-value optimization, and the
best solution from the pool of feasible candidates is re-
ported. The execution time for the best solution is also
reported as ≈ 2.99 seconds. This is higher compared to
current literature of VCOs because this is optimization
with constraints and a more complex circuit (VCO hav-
ing N=21 stages) is involved. Table 5 shows the final
design solution set obtained from proposed Genetic Al-
gorithm based optimization. The VCO circuit with op-
timized sizes for actual-value optimization is presented
in Fig. 8(a). The corresponding frequency-voltage char-
acteristic is shown in Fig. 8(b). The VCO range charac-
terization is presented in Table 4.

Table 4: VCO Range Characterization of the actual-value optimized
design

Parameter Value
freqV CO-min 16.63 MHz
freqV CO-max 367.84 MHz

VCO range 351.21 MHz
Vin 0 to 1V

9. Normalized-Value Optimization using Weighted
Genetic Algorithm (GA)

This section discusses the development of the fitness
function, and GA used for optimization. We formulate
the optimization problem as:

minimize FF =
1∑

i=0

wi × F (i)

where F = (f̂pwr, f̂freq)

such that 0.1 ≤ [Ŵp, Ŵn] ≤ 1,
1∑

i=0

wi = 1. (16)

Where FF is the fitness function (also called objective
set), F (i) is the ith objective function in the objective
set FF and wi is the weight assigned to the ith objec-
tive function. Since we are handling 2 objective func-
tions, F (0)=f̂pwr, F (1)=f̂freq . We assign a weight of
0.5 to each objective function, in order to maintain equal
priority. The lower and upper bounded constraints for
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Figure 7: GA algorithm converging for actual-value optimization and the optimal design variables (best individual).

Table 5: Comparison of design objectives in baseline and optimized VCO for actual-value optimization.
Design Wp Wn pwr freq Convergence Execution Time

Baseline 1µm 500nm 60µW 111.4 MHz – –
Optimized 482nm 434nm 47µW 105.4 MHz
Prediction 482nm 434nm 48.89µW 103.3 MHz 20 2.99

from Algorithm error=4.02% error=1.99% iterations seconds

(a) Optimized VCO circuit with sizes.
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(b) Optimal VCO characteristic.

Figure 8: Optimized VCO using actual-value optimization algorithm.
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the design variables [Wp,Wn] are 100nm and 1µm re-
spectively, which translate to 0.1 and 1 by normaliza-
tion. The fitness function is minimized through GA.
Since we wish to minimize power and maximize fre-
quency, we assign a negative sign to f̂freq . Optimiza-
tion problem of Eqn. 16 can be re-formulated as a new
optimization problem shown in Eqn. 17.

minimize FF = 0.5× f̂pwr − 0.5× f̂freq

such that 0.1 ≤ [Ŵp, Ŵn] ≤ 1. (17)

The coefficient matrix for FF as presented in Eqn. 18.

pij(FF ) =
0.1676 −0.6248 1.1777 −0.5584
−0.4958 −0.5995 0.1893 0
1.1026 0.1961 0 0
−0.5535 0 0 0

 (18)

The normalized-value optimization basically formulates
the multi-objective optimization problem as a single-
objective optimization problem, where the different per-
formance objectives are combined to form a single
scalar objective (called fitness function), which pro-
duces only one (and unique) solution for multiple in-
dependent trials [17, 31].

The pseudocode for the GA applied to VCO is shown
in Algorithm 2. The inputs to the algorithm are the fit-
ness function FF and the lower and upper bounds to
the design solution set [Wp,Wn]. Children for the de-
sign solution set are generated with crossover (rate=0.8)
which combines part of the genetic material of each
parent [Wpa,Wnb]

′ and then applies a random mu-
tation. The child [Wpchild,Wnchild]

′ which inherits
good characteristics from its parents [Wpa,Wnb]

′ has
a higher probability to survive. The values of child
[Wpchild,Wnchild]

′ are stored in the set of children
[Wp,Wn]

′′. The fitness of the child [Wp,Wn]
′′and par-

ent [Wp,Wn]
′ population is evaluated using FF and the

survivors can be formed by the fittest from [Wp,Wn]
′′

∪ the fittest from [Wp,Wn]
′. The execution time for the

normalized-value optimization is ≈ 0.6 seconds.
The number of iterations (generations=3) the algo-

rithm goes through before converging is shown in Fig.
9(a). The final values of design variables (best indi-
viduals) is shown in Fig. 9(b). Table 5 shows the fi-
nal design solution set obtained from GA. The VCO
circuit with optimized sizes for normalized-value opti-
mization is presented in Fig. 10(a). The correspond-
ing frequency-voltage characteristic is provided in Fig.
10(b). The VCO range characterization is presented in
Table 6.

Algorithm 2 Normalized-value optimization using
weighted GA.

1: Input: Fitness function FF , 0.1 ≤ [Wp,Wn] ≤ 1.
2: Output: Optimal design solution [Wp,Wn].
3: Generate initial population [Wp,Wn].
4: gen=0.
5: while gen < maxgen-1 do
6: Select mating pool [Wp,Wn]

′ ⊂ [Wp,Wn].
7: Initialize set of children [Wp,Wn]

′′= ∅.
8: for i=0 to populationsize-1 do
9: Select individuals [Wpa,Wnb]

′ at random
from [Wp,Wn]

′.
10: Apply crossover to [Wpa,Wnb]

′ to pro-
duce child [Wpchild,Wnchild]

′.
11: Randomly mutate produced child

[Wpchild,Wnchild]
′.

12: [Wp,Wn]
′′=[Wp,Wn]

′′ ∪
[Wpchild,Wnchild]

′.
13: end for
14: [Wp,Wn]=FF([Wp,Wn]

′,[Wp,Wn]
′′).

15: gen=gen+1.
16: end while
17: Assign [Wn,Wp] to transistors in VCO.
18: Re-simulate VCO to report freq and pwr.

Table 6: VCO Range Characterization of the normalized-value opti-
mized design

Parameter Value
freqV CO-min 17.21 MHz
freqV CO-max 375.86 MHz

VCO range 358.65 MHz
Vin 0 to 1V

The maximum error between the predicted results
from algorithm and simulation results in both the de-
sign flows is ≈ 4.02%. Normalized-value optimization
has higher accuracy than actual-value optimization be-
cause of more accurate models being used (more num-
ber of samples and higher order polynomial). It is
observed that while actual-value optimization (results
shown in Table 5) achieves higher power minimiza-
tion than normalized-value optimization (results shown
in Table 7), it takes longer than the normalized-value
optimization to converge. The normalized-value opti-
mization offers ≈ 5x speedup over the actual-value op-
timization. The reason is that in optimization theory,
the optimality conditions for interior points are usually
much simpler than the optimality conditions for bound-
ary points [32]. Boundary points appear more promi-
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Figure 9: GA algorithm converging for normalized-value optimization and the optimal design variables (best individual).

Table 7: Comparison of design objectives in baseline and optimized VCO for normalized-value optimization.
Design Wp Wn pwr freq Convergence Execution Time

Baseline 1µm 500nm 60µW 111.4 MHz – –
Optimized 515nm 458nm 50µW 105.4 MHz
Prediction 515nm 458nm 51.19µW 105.3 MHz 3 0.6

from Algorithm error=2.38% error=0.1% iterations seconds

(a) Optimized VCO circuit with sizes.
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Figure 10: Optimized VCO using normalized-value optimization algorithm.
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nently in constrained optimization, when one tries to
optimize a function, subject to several functional con-
straints. For this reason, the optimality conditions for
boundary points are generally discussed in actual-value
optimization, whereas the optimality conditions for in-
terior points are discussed in normalized-value opti-
mization. Also, unlike the normalized-value optimiza-
tion, the actual-value optimization’s search space com-
prises of the feasible and infeasible parts. Thereby, the
proportion of these two parts, the types of constraints
(inequality in our case), and the location of the opti-
mum (on the boundaries of the feasible region or within
the feasible region) concurrently add difficulties to the
search of the global optimum [33]. We get a num-
ber of feasible design solutions to choose from in the
case of actual-value optimization, whereas normalized-
value optimization converges to one unique solution in
every independent trial. Hence, for an analog circuit
like current-starved VCO, the actual-value optimization
would be preferred for a better exploration of the de-
sign space, whereas the normalized-value optimization
would be preferred for a faster solution.

10. Conclusions and Future Research

We have presented two design flows for polynomial
regression model assisted multiobjective optimization
on a 50 nm CMOS based VCO. The center frequency
and power dissipation have been considered for opti-
mization. A model-based approach is beneficial as it is
faster than optimizing the actual circuit. The proposed
approach leads to 21.67% power reduction for actual-
value optimization (which converges in 2.99 seconds)
and 16.67% power savings for normalized-value opti-
mization, which converges in 0.6 seconds. The error
introduced by the model based approach is very mini-
mal which is in the range of 0.1% to 4.0%. Thus, the
proposed research is a significant advancement of the
state-of-art in the analog design optimization. The pro-
posed research will help to reduce the design cycle time
and reduce the chip cost.

As part of future research, regression based models
will be developed, taking into account supply sensitiv-
ity, temperature sensitivity and parasitics. One possi-
ble way to study PVT variations effect on the VCO
could be to develop polynomial regression models for
the VCO while subjecting it to worst case process and
temperature corner. These regression models may then
be optimized for the worst case process, which will
work well for the nominal corner. Takagi-sugeno neuro-
fuzzy logic systems will also be explored for modeling.

VCO performance parameters other than power and fre-
quency, such as phase noise, tuning linearity will also be
considered. Also, the actual-value optimization prob-
lem presented in this paper will be solved using other
algorithms such as the Lagrange multiplier method and
artificial bee colony. The effects of process variation
will be incorporated in future statistical design flows.
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