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Abstract

Embedded systems are ubiquitous in this era of portable computing. These systems are empowered to access, store
and transmit abundance of critical information. Thus their security becomes a prime concern. Moreover, most of
these embedded devices often have to operate under insecure environments where the adversary may acquire physical
access. To provide security, cryptographic security mechanisms could be employed in embedded systems. However,
these mechanisms consume excessive energy that cannot be tolerated by the embedded systems. Therefore with the
focus on achieving energy efficiency in cryptographic Memory Integrity Verification (MIV) mechanism, we present
a novel energy efficient approach called Timestamps Verification (TSV) to provide memory integrity verification in
embedded systems. This paper elaborates the proposed approach along with its theoretical evaluation, simulation
results, and experimental evaluation. The results prove that the energy savings in the T'SV approach are in the
range of 36% to 81% when compared with traditional MIV mechanisms.
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1. Introduction

An embedded system, in contrast to a gen-
eral purpose computing system, is a dedicated
system designed to serve a specific task within
a larger system. They are high performance
systems, flexible enough to perform a variety
of computing tasks in a cost effective manner.
Due to technological advances in computing,
embedded systems have now evolved into com-
plex systems. The modern day embedded de-
vices are often small, portable and highly in-
terconnected. They are capable of tracking,
storing information and even transmitting es-
sential data over the Internet.

These characteristics have made embedded
systems pervade in all facets of human life.
They are being used everywhere from home
media systems, portable players, smart phones,
automobiles, embedded medical devices to mis-
sion critical defense systems. As the depen-
dence on these systems increase, so also does
the sensitivity of information accessed, stored
and communicated by these devices, increase.
This information may also include confiden-
tial personal data including secret passwords,
credit card information, and bank account de-
tails. Thus it has now become ever more im-
portant to secure the embedded systems from
leaking out this critical information to unau-
thorized entities.

Applications
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Figure 1: Threats to an Embedded System

To make matters worse, the operating en-
vironment of embedded systems allow the ad-
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versary to have complete control of the com-
puting node. For example, supervisory privi-
leges along with complete physical and archi-
tectural object observational capabilities. The
design phase of embedded systems often does
not provide for the security axis thus increas-
ing the security risks. Moreover, embedded
systems are physically dispersed to public lo-
cations that are available to potential attack-
ers. This makes them vulnerable to physical
attacks. In addition, the embedded systems are
also vulnerable to attacks on memory, network
based attacks, attacks from malicious applica-
tions and infected operating systems, as shown
in Figure 1.

Though these embedded systems are small
and flexible, their design is complex which adds
to their security issues. Despite these prob-
lems, embedded systems are deployed widely.
Hence motivated attackers can exploit these
vulnerabilities to extract confidential informa-
tion from these devices. For example, Mo-
bile and Smart Device Security Survey [1] con-
ducted by Mocana Corporation in Spring 2011,
revealed that 65% corporate personnel require
a regular attention from their information tech-
nology staff for mobile and smart phone based
device attacks.

Traditionally, researchers have implemented
software and hardware mechanisms for in-
tegrating security in embedded systems.
Software-only security solutions include soft-
ware obfuscation, software watermarking, soft-
ware encryption, privilege separation, intro-
spection, shepherding, and sandboxing, which
are aimed at different applications to incor-
porate security mechanisms at the application
and operating system (OS) level. Thus the
root of trust for the entire system is entrusted
in the security of the OS. However commod-
ity OS are significantly large with huge code
base and are often prone to security vulnera-
bilities. Moreover, the software solutions share
the memory with other softwares and the OS
that could potentially contain a vulnerability
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Table 1: Energy Consumption of Encryption Algorithms [2]

Algorithms

DES 3DES

IDEA CAST AES RC2 RC4 RC5

Energy Consumption (uJ/Byte) 2.08 6.04

1.47 1.21 1.73 3.93 0.79 0.89

Table 2: Energy Consumption of Hashing Algorithms [2]

Algorithms

MD2

MD4 MD5 SHA SHAI

HMAC

Energy Consumption (uJ/Byte)  4.12

0.52 0.59 0.75 0.76 1.16

and hence provide an entry point to an at-
tack. Thus the security they provide is in-
adequate. The most common software attack
that exploits the software vulnerabilities in ap-
plication code and OS is a Buffer Overflow
Attack [3, 4]. Hardware security approaches,
on the other hand, include secure proces-
sor architectures like, ABYSS [5], AEGIS [6],
Arc3D [7, 8, 9], XOM [10] and HIDE [11], that
propose modifications in the CPU architecture
to protect the confidentiality and integrity of
applications. Typically they employ hardware
Encryption [12, 13, 14, 15] and Memory In-
tegrity Verification (MIV) mechanisms to pre-
serve confidentiality and integrity of the appli-
cation and data running on the system.

Embedded systems are highly resource con-
strained. Most of these devices are battery
powered and it is essential to have minimal en-
ergy consumption to achieve high speed and
performance. The hardware security mecha-
nisms, though highly secure, are computation-
ally intensive and account for excessive energy
consumption. This degrades the performance
of the system and becomes a critical issue. As
a case study, Potlapally et. al. [2] present a
framework to analyze the energy consumption
of security mechanisms and protocols. Their
work primarily focuses on investigating the im-
pact of security processing on the battery-life
constraint of an embedded system. For bat-
tery powered embedded systems, the biggest

challenge is the trade-off between energy and
performance due to security processing. As
this trade-off increases, so also does the battery
gap in embedded systems. The Tables 1 and 2
show the energy consumption in uJ/Byte for
most commonly known and used encryption
and hashing algorithms. In order to provide
security in embedded systems, it is essential
to design energy efficient implementations of
these security mechanisms and protocols. Thus
their research becomes a backbone for address-
ing the challenges related to energy efficient se-
curity mechanisms in battery constrained em-
bedded systems.

The possible solutions to implementing secu-
rity mechanisms within the energy constraints
of the embedded systems is to optimize the
encryption and the memory integrity verifica-
tion mechanisms. In this research, the em-
phasis is specifically on optimizing the energy
consumption of memory integrity verification
module in embedded processors. The overhead
of the memory integrity verification mechanism
is several hashing operations, log N for N data
nodes. A large of amount of energy is spent
by the processor in computing the hashes for
all the data blocks it writes to the external
memory. Similary, energy is also spent while
verifying these hashes during a read operation.
While it may be unavoidable to save the en-
ergy spent during the write operation, a lot
of research is now focused towards making the
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verification process during the read operation
energy efficient.

Prior research [16], [17], [18], and [19],
present mechanisms to reduce energy overhead
in memory integrity verification mechanisms.
In our previous research [20], we have demon-
strated the use of sensors in an embedded sys-
tem to detect and protect against the attacks
on memory integrity. However, in this research
our goal is to present a mechanism that is inde-
pendent of any sensors and can be employed by
all the embedded systems. With this motiva-
tion, we present the Twmestamps Verification
(TSV) mechanism to provide energy efficient
memory integrity verification in embedded sys-
tems.

The rest of this paper is organized a follows.
The Section 2, first defines Memory Integrity
Verification and the possible attacks against it.
This is followed by the MIV Architecture in
Section 3. The Section 4 describes the pro-
posed scheme of Timestamps Verification fol-
lowed by their Experimental Evaluation in Sec-
tion 5. Section 6 presents a detailed Literature
Survey and finally Section 7 presents the Con-
clusion and Future Work of this research.

2. Memory Integrity Verification - MIV

The Memory Integrity Verification (MIV)
property can be defined as follows. A processor
communicates with memory M. Memory M
has two attributes, addresses A and contents
V. It maintains associations between addresses
and contents. A read of memory at address A
denoted by M|R, A] returns the value associ-
ated with A. A write into memory address A of
value V' is denoted by M[W, A, V]. A write of
A with value V immediately followed by a read
of address A must return value V. As mem-
ory reads and writes have a notion of time, the
model needs to associate time 7" with reads and
writes as M[R, A, T] and M[W, A,V,T).

Definition 1. (Memory Integrity) A read of
address A at time T should return the value

written to address A at time T' < T such
that no other write to A occurs between time
T' and T. In other words: M[R,A,T| =V
if an only if AIM[W, A, V,T'] for T' < T and
Vte[T'+1,T—1], AMIW,A,xt]. AtT =0
the entire memory is wnitialized with value
0.

The possible attacks on memory integrity are
splicing attack, spoofing attack and replay at-
tack. In splicing attack the adversary modifies
the associations between the memory addresses
and its values. For example, if value V, is as-
sociated with address A and value Vg is asso-
ciated with address A’, a splicing attack would
return the value Vyu for a memory read corre-
sponding to address A. In a spoofing attack
the adversary modifies the value V4 to a ran-
dom value V. In a replay attack the adversary
modifies the association between the value and
the time. For example, if value V, is associ-
ated with address A at time 7' and the value
V} is associated with address A at time T,
and T' < T, a replay attack would return the
value V4 when a memory read is performed at
time ¢t > T™*.

Root
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Figure 2: Merkle Hash Tree

In cryptography, a hash function — H, is used
to protect the integrity of a message. A sender
creates a message authentication code (MAC)
using a secret key K together with the mes-
sage m as MAC,, = H(m||K). It sends both
the message m and the corresponding M AC,,
to the receiver. The receiver, which shares
the secret key K with the sender, can verify
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the integrity of the message by recomputing
the MAC. The security properties, collision re-
sistance, pre-image resistance and second pre-
image resistance of the hash function H ensures
that any modification to message m or M AC,,
go undetected with negligible probability.

One solution for the memory integrity
problem is to use message authentication
codes. Processor generates a MAC hy g =
H(V||A||K) for every memory write that stores
a value V in address A. This MAC, hy, 4,
is stored in the memory. On every memory
read the processor computes the MAC hQ,’A
and verifies it against the MAC stored in the
memory. This solution can protect memory
integrity against splicing and spoofing attacks.
A replay attack will still succeed as the MAC
does not have any notion of time and hence the
adversary could replay both the value and its
corresponding MAC.

Protecting memory against replay attacks
requires the processor to have some memory
about the recentness of the value. A Merkle
Hash Tree, shown in Figure 2, provides an op-
timal solution for this problem, requiring least
amount of on-chip memory. A Merkle hash tree
of address range [A, A + k] creates a tree of
hashes with k£ + 1 leaves corresponding to ad-
dresses A, A+ 1,..., A+ k. Any write to an
address A + 2 in this address space can modify
all the hash values from the leaf node corre-
sponding to A + ¢ upto the root of the tree.
Any read from address A + ¢ needs to check
the hash values along the path from the leaf
node A + 7 upto the root of the tree. The root
of the tree is stored in the trusted processor
storage, so that it cannot be tampered. All the
other tree nodes along with the leaf nodes can
be kept in the untrusted memory.

3. Architecture of Memory Integrity
Verification

The motivation for proposing the Memory
Integrity Verification (MIV) architecture is to
simulate the behavior of the Merkle Hash Tree

based Memory Integrity Verification in a se-
cure processor architecture. This is essential
to determine the number of hash invocations
required per memory access. In this implemen-
tation, this process is being simulated by creat-
ing a custom Hash Cache with n levels to store
the hash addresses. This is a novel extension
to our previous research [20], where a proba-
bilistic model was proposed to estimate the av-
erage number of hash invocations required per
memory access, based on whether the hash of a
block of memory is present in the cache or not.
The total energy consumed during the hash
verification process is calculated using this En-
ergy Consumption Model. The configuration
of hash cache is similar to the Level 1 Data
cache configuration.

Figure 3a shows the working of memory in-
tegrity verification in a secure processor archi-
tecture. Both the read and write operation of
memory are considered. In the write operation,
shown in Figure 3b, for every write miss in
the level 1 data cache, the corresponding hash
and hash address are calculated. This hash is
stored in the Hash cache in the hash address.
If the hash address already exists in the cache,
then it is updated or else if it is not present
in the cache a suitable replacement block is se-
lected and evicted to store the hash. The data
is then encrypted through the memory encryp-
tion block before saving it to the off-chip un-
trusted memory. During a read operation, Fig-
ure 3c, the data is first decrypted and the hash
address of the data is recomputed. The hash
address is checked against all the addresses in
all the levels of the hash cache. If there is a
hit in the hash cache, the hash of the data is
checked against the hash that is stored in the
hash cache. If the hash matches then it is con-
cluded that the state of the data is valid, if
no then, it is concluded that the data is cor-
rupted and the CPU aborts any operation on
this data. If the hash is not present in the hash
cache then the CPU checks for the next level
hash in the hash cache until it reaches the root
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Figure 3: Memory Integrity Verification in Secure Processor Architectures

hash.

Algorithm 1  Function hash addr(level,
block addr, index) to compute Hash Address
at each Level in a Merkle Hash Tree
Require: hash _size; block size; tree size
Require: max hash levels; BlockOffset
Ensure: level < max hash levels
Ensure: index < tree size
block addr < block addr - BlockOffset|level]
if level == 0 then
block number < block addr/block size
else
block number < block addr/hash size
end if
block number < block number /tree size
block number < block number A index
hash addr &= BlockOffset[level+1] +
(block number x hash size)

return (hash addr)

The pseudo code of the function to compute
hash address at each level in a Merkle hash
tree is given in Algorithm 1. The function
takes three arguments — level of hash tree,
data block address and indez for the hash
level. The hash block size, data block size,
tree size, mazrimum levels of hash tree and

offset address for each level are pre-initialized.
At first, the block address is calculated based
on the level and its offset address. Depending
on the level, the block number is calculated
which is then computed with tree size and in-
dex to fetch the hash address.

The overhead of integrity verification archi-
tecture is several hashing operations, log N for
N leaf nodes. One can cache some of these hash
tree nodes to increase the efficiency. The gran-
ularity of a leaf node can be increased beyond
a single word to an entire cache block. Despite
these optimizations, such hash trees are expen-
sive primarily due to the cost of the underlying
hash function. The two types of cost associated
with hash function are performance cost and
energy cost. AEGIS [6] charges 160 cycles for
each hashing operation presumably at a cost of
2 cycles per round for 80 rounds of SHA [21].
This is a very high performance cost for a mem-
ory integrity architecture that spawns many
hash function instantiations for each read and
write. Hence, more efficient mechanisms for
memory integrity protection are required.
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4. Proposed Timestamps Verification

(TSV) Mechanism

As discussed in Section 3, the hash verifica-
tion process imposes severe performance and
energy costs on the entire system. This can-
not be tolerated in energy constraint embed-
ded systems like smart phones, network sen-
sors, network routers, etc. Hence it is impera-
tive to design novel energy efficient MIV mech-
anisms without compromising the security of
the system. With this motivation, the paper
proposes a novel memory integrity verification
mechanism using Timestamps, in this section.

4.1. Tvmestamps Mechanism

This approach exploits the principle of local-
ity. Most of the programs exhibit this behavior
of using a small set of addresses, called work-
ing set, during an epoch of execution. The in-
tuition is to make the processor remember the
timestamps of working set of addresses. The
proposed TSV architecture is shown in Fig-
ure 4a. In this approach the processor times-
tamps every value on a write operation and

the timestamp is stored with the data in en-
crypted form. The timestamps can be gener-
ated using any pseudorandom number genera-
tor such as block ciphers. These timestamps
are stored on-chip in a separate cache known
as the Timestamp cache with limited space.
When the cache is full, older timestamps are
evicted, hence only a limited set of timestamps
are stored. In this mechanism, there are two
operations — Write and Read as shown in Fig-
ures 4b and 4c respectively.

During a write operation, the CPU first con-
structs the hash tree and stores the hash in
the hash cache. Then, a unique timestamp
is generated for the memory block, which is
also stored in the Timestamp cache for later
verification. The memory block and the asso-
ciated timestamp are then encrypted through
the encryption module and saved in the main
memory. On a read operation, the CPU first
fetches the decrypted memory block and its
timestamp. It then compares the associated
timestamp with the ones already present in the
timestamp cache. If its a miss, then it performs
the Merkle hash tree verification to check for
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its integrity. On the other hand, if it is a hit
then it compares the value of the two times-
tamps. If both the values match, it is con-
cluded that the integrity of the data is intact
else it is concluded that there is an attack on
the system and the CPU aborts any further
operation on that data. The security of the
integrity protection is derived from the secu-
rity of the encryption function. Any splicing,
spoofing, and replay attack will be detected as
the decryption function will create a pseudo-
random timestamp which is very less likely to
match with the timestamp stored on-chip. The
security is proportional to the size of the times-
tamp. For an N-bit timestamp the probability
that any attack on memory will not be detected
(attack succeeds) is 2%,

The primary advantage of this approach is in
the hash verification phase. If the timestamp
is available in the timestamp cache then the
CPU is no longer required to re-construct the
hash tree to check the integrity of each memory
block it reads from the memory. Also, while
verifying the hash, the CPU has to spend en-
ergy in comparing the hash values at each level,
till there is a hit. This may be required until
the root hash is verified. Hence a lot of en-
ergy is spent by the processor in this process.
Thus the timestamps mechanism aims at mit-
igating both the performance cost and energy
cost during the verification phase.

The Timestamp Cache is an energy efficient
data cache, whose configuration is optimally
selected by performing a series of performance
simulations. This approach requires the mem-
ory to be modified to store the timestamps.
This modification is transparent to the proces-
SOr.

5. Experimental Evaluation

This section presents the details about the
simulation framework/test bench with some of
the specifics about the configurations used to
arrive at the given results. It then presents

the baseline simulations illustrating the perfor-
mance of traditional Merkle hash tree verifica-
tion followed by proposed TSV scheme. Fi-
nally the performance analysis section is con-
cluded with an elaborate comparison between
the baseline results and the TSV mechanism.

5.1. Stmulation Framework

The simulation framework is based on Sim-
plescalar Tool Set [22], which is configured
to execute ARM binaries. Since the primary
goal of this paper is to demonstrate the en-
ergy efficiency of the proposed memory in-
tegrity verification mechanism in embedded
systems, MiBench [23] embedded benchmark
suite has been used, that best replicates the
variety of practical applications run on embed-
ded devices. The results obtained from dif-
ferent benchmark programs are presented to
thoroughly demonstrate the efficiency of the
proposed TSV mechanism. All the simulations
performed are cache based simulations, using
the sim-cache simulator in simplescalar. The
cache configurations used for the simulations
are given in Table 3. Here, the configuration
of the Level 1 Data Cache is optimally selected
to complement the typical configurations of an
Embedded ARM processor [24]. Moreover, the
TSV mechanism is only implemented for data
and hence no emphasis is given to instructions
or the I-cache in the simulations.

Table 3: Cache Configurations

Cache Specifications

L1-D Cache 4KB, 1-way, 32B Line
L2-D Cache None

5.2. Basecase Simulations

The approach of Merkle hash tree in MIV
accounts to excessive energy consumption. To
measure this, a MIV architecture has been pro-
posed in Section 3. Here the algorithm is used
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to compute and count the number of hash in-
vocations required per data miss in the Level 1
Data Cache, to verify the integrity of the data.
This technique is a novel contribution of this
paper. Hence, given that the energy consump-
tion per hash invocation is known, the results
obtained from the algorithm can be used to
calculate the total energy consumption of the
MIV mechanism. For comparison, the config-
uration of hash cache is kept similar to the L1
Data cache configuration. Therefore the hash
cache is 1 way assoctative i.e. Direct Mapped
cache. At this point it should be noted that the
number of hash invocations grow incrementally
as the verification proceeds from the first level
to the root level.

Table 4 shows a relationship between the
DL1 misses and hash verification at each level,
for 14 embedded benchmark applications. The
Merkle hash tree constructed is a 4 — ary hash
tree with 14 levels. The hash level (HL) indi-
cates the number of times the hash verification
was invoked. Here the total DL1 misses are
distributed amongst 14 hash levels to indicate
in which level the miss was verified. Hence in
general, the total DL1 misses is equal to the
summation of misses verified at each hash level
as given in equation 1. Here n represents max-
imum hash level.

n
Total DL1 Misses = » _ Misses at each HL; (1)
i=1
For example, in the case of bitcount large ap-
plication, there are a total of 893 misses in DL1
cache (= HL1+ HL1 + HL2 + ..... + HI14).
Out of these misses, 113 are verified in Level 1.
The number of hash invocation in Level 1 are
113x1 = 113. Similarly, 719 misses are verified
in Level 14 accounting for 719x14 = 10066 hash
invocations. Hence the total number of hash
invocation for a particular benchmark can be
calculated using the equation 2.

Total Hash Invocations =

n
. 2
> Misses at each HL; x 1 (2)

=1

This can then be related to average energy
consumption of the integrity verification hash
function per invocation to calculate the total
energy consumption of the integrity verifica-
tion module as given in equation 3.

Total Energy =Total Hash invocations X

(3)

Energy per invocation

For instance, from Table 2, if it is assumed
that the energy consumed per hash invocation
by the SHA-1 algorithm is 0.76 wJ, then for
bitcount large application, the energy con-
sumption for hash verification will be 0.76 %
10066 = 7.65mJ at Level 14 alone. Hence the
total energy consumption is equal to the addi-
tion of energy consumption at each hash level.
From this discussion, it is evident that as the
verification process traverses up the levels, the
energy consumption increases rapidly. More-
over, for all the applications in the above simu-
lation, a majority of the DL1 misses are verified
in the last level-14, thus consuming maximum
energy possible. These statistics are used as
a baseline for comparisons with the proposed
Timestamps Verification mechanism.

5.3. EBwaluation of TSV mechanism

In the timestamps mechanism, a T'S cache is
created to store unique timestamps associated
with each memory block. This timestamp is
later used by the processor to verify integrity of
the block, before reverting to the conventional
approach of Merkle hash tree. The timestamps
generated are small in size and hence the size
of TS Cache is also small compared to DL1
cache. This is a significant advantage when re-
lated to embedded systems, that are stringent
with size and energy requirements. The times-
tamps stored in the T'S Cache may have a size
of either 8 Bytes or 16 Bytes. Therefore the
size of the TS cache may vary depending on
the size of the timestamps. The performance
of T'S cache is analyzed based on the number
of timestamps it can store. These can be 8, 16,
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Table 4: Hash Accesses at different Levels

Benchmarks HL1 HL2 HL3 HL4 HL5 HL6 HL7 HL8 HL9 HL10 HL1l HLI12 HL13 HL14
dijkstra_small 93 46 626 0 2 0 0 11 0 3 1 0 8 1500344
jpeg_large 65 3 5 10 0 0 0 0 0 0 7 0 0 2923220
lame large 66 21 44 12 15 6 0 1 0 0 0 4 1 30221183
lame small 66 21 44 12 15 6 0 1 0 0 0 4 1 3135942
patricia_large 130 19 9 4 1 0 0 0 0 0 6 8 0 9137840
patricia small 130 19 9 4 1 0 0 0 0 0 6 8 0 1529667
gsort small 61 14 21 18 0 0 121 0 0 0 0 0 8 1876005
math_large 74 30735 18 7 7 0 0 0 0 0 0 12 0 1287768
sha_large 31556 18 94 3 2 0 0 1 0 0 4 0 2 232566
sha_small 2950 18 94 3 2 0 0 1 0 0 4 0 2 23269
stringsearch small 125 140 21 0 0 0 0 3 0 0 1 198 0 1756
bitcount large 113 20 37 3 1 0 0 o0 o0 0 0 0 0 719
bitcount _small 112 21 38 3 1 0o 0 o0 o0 0 0 0 0 706
dijkstra large 93 46 626 0 2 0 0 11 0 3 1 0 8 7020003

32 and 64. For each type, four separate con- capable of storing 16 timestamps. Here, the

figurations are analyzed, based on the Num-
ber of Ways and Number of Sets in the TS
cache. The details about various configurations
is given in Table 5. The T'S cache size is equal
to product of Number of Timestamps stored
in the cache and the Size of each Timestamp.
Hence assuming the size of timestamps is 8
Bytes, the size of T'S cache storing 8 times-
tamps is 64 Bytes. Similarly the size of TS
cache storing 16, 32 and 64 timestamps is 128
Bytes, 256 Bytes and 512 Bytes respectively.

For each TS cache capable of storing dif-
ferent number of timestamps, detailed perfor-
mance results have been presented along with
their relative performance. Figure 5a, shows
the percentage of T'S hits w.r.t the DL1 misses
for a T'S cache capable of storing 8 timestamps,
for 15 embedded benchmark applications. Re-
call from the discussion in Section 4.1, a hit is
TS cache reduces the energy consumption of
integrity verification as the values in the TS
cache can be trusted and no Merkle hash tree
verification is required. In this case, the per-
centage of TS hits is highest for benchmark
application - susan with almost 81% and the
least for benchmark application patricia with
almost 8%. The average percent of TS hits
is 36.5%. Figure 5b, shows the percentage of
TS Hits w.r.t the DL1 misses for a T'S cache
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percentage of T'S hits is highest for benchmark
application - susan with 88% and the least for
benchmark application patricia with almost
17%. The average percentage of TS hits is al-
most 56%. Figure 5c, shows the percentage of
TS hits w.r.t the DL1 misses for a TS cache
capable of storing 32 timestamps. Here, the
percentage of T'S hits is highest for benchmark
application - susan with 91% and the least for
benchmark application sha with almost 18%.
The average percent of TS hits is almost 71%.
Finally, Figure 5d shows the percentage of T'S
hits w.r.t the DL1 misses for a T'S cache capa-
ble of storing 64 timestamps. Here, the per-
centage of TS hits is highest for benchmark
application - stringsearch with 96% and the
least for benchmark application sha with al-
most 18%. The average percent of TS hits is
almost 77%.

The results about the four individual con-
figurations of each timestamps - 8, 16, 32 and
64 are presented in detail. These give an idea
of which configuration could yield the best en-
ergy savings for a particular TS cache. Fig-
ure 6a, shows the relative performance of the
4 possible configurations of T'S cache capable
of storing 8 timestamps. Here, the configu-
ration 1Sets-8Ways results in higher TS hits
and thus greater energy savings for most of
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Table 5: T'S Cache Configurations

# Timestamps stored in TS Cache Configurations
8 1 Set-8 Ways; 2 Sets-4 Ways; 4 Sets-2 Ways; 8 Sets-1 Way
16 1 Set-16 Ways; 2 Sets-8 Ways; 4 Sets-4 Ways; 8 Sets-2 Way
32 1 Set-32 Ways; 2 Sets-16 Ways; 4 Sets-8 Ways; 8 Sets-4 Way
64 1 Set-64 Ways; 2 Sets-32 Ways; 4 Sets-16 Ways; 8 Sets-8 Way
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Figure 5: Average percentage of T'S Hits

the benchmark applications. For most of the
benchmarks, the configuration 2Set-4Ways
yields similar T'S hits as compared to 1Sets-
8Ways. On the other hand, the configuration
8Sets-1Ways, results in no TS hits and thus
no energy savings for any benchmark applica-
tions. The TS hits are greater for configuration
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2Sets-4Ways than 4Sets-2Ways. Therefore

it can be said that the impact of Number of
Ways on TS hits is more than Number of Sets
in case of T'S cache with 8 timestamps. The TS
hits and in turn energy savings increase with
an increase in Number of Ways.

Figure 6b, shows the relative performance
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Figure 6: Relative performance of various T'S cache configurations

of the 4 configurations of T'S cache capable
of storing 16 timestamps. Here, the configu-
rations 1Sets-16Ways and 2Sets-8Ways re-
sult in the highest T'S hits and thus highest
energy savings for most of the benchmark ap-
plications. Whereas, the configuration 8Sets-
2Ways results in the least T'S hits for most of
the benchmark applications. Here again, the
TS hits are more with an increase in the Num-
ber of Ways. Figure 6c, shows the relative per-
formance of the 4 configurations of T'S cache
capable of storing 32 timestamps. Here again,
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the configurations 1Sets-32Ways and 2Sets-
16Ways result in the highest T'S hits and thus
highest energy savings for most of the bench-
mark applications. On the contrary, the config-
urations 4Sets-8 Ways and 8Sets-4 Ways yield
similar results with lower T'S hits for most of
the benchmark applications. For the bench-
mark application of math large, the 3 config-
urations of 2Sets-16Ways, 4Sets-8 Ways and
8Sets-4 Ways result in similar T'S hits. There-
fore again in this case, the T'S hits are more
with an increase in the Number of Ways. Fig-
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ure 6d, shows the relative performance of the
4 configurations of T'S cache capable of storing
64 timestamps. Here, the configurations 1Sets-
64 Ways and 2Sets-32Ways provide similar
results with higher TS hits whereas the con-
figurations 4Sets-16Ways and 8Sets-8 Ways
provide similar results with lower TS hits. For
the benchmark application math large, all
the 4 configurations yield similar results. Here
again, the T'S hits are more with an increase in
the Number of Ways.

Based on the discussion in Sections 2
and 5.2, the percentage of T'S hits are directly
related to the energy savings. Recall, that for
each miss in the DL1 cache, a lot of energy is
consumed in re-constructing the Merkle hash
tree and verifying the root hash. But in the
case of Timestamp mechanism, for every hit
in the TS cache corresponding to a DL1 miss,
there is no need spend energy in Merkle hash
verification. Hence these hits directly relate to
energy savings in an embedded system. At this
point, it is important to emphasize that an in-
creasing amount of energy is lost during Merkle
hash verification as it moves from level 1 to
level 14. To show this effect, the hash invoca-
tions at each level are computed, for T'S cache
storing 8, 16, 32 and 64 timestamps using the
same approach described in Section 5.2. This is
used to calculate the weighted averages of all
the benchmarks in the timestamps simulation.
The geometric mean of these weighted averages
for T'S = 8, 16, 32 and 64 is compared with that
of basecase simulations. This is shown in Ta-
ble 6. Here, the geometric mean of weighted
averages of hash invocations steadily decreases
for timestamps configurations as compared to
basecase simulations. Thus fewer invocations
result in increased energy savings.

Table 6: Geometric Mean of Weighted Aver-
ages of Hash Invocations

Basecase TS =38 TS=16 TS =32 TS =64

48672.78 30537.76 27925.43 10106.65 7674.06
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Using the equation 3 and the values in Ta-
ble 6, we present a synopsis of average energy
savings in the TSV approach when compared
to basecase simulations. The energy savings
for TS cache with 8 timestamps is least with
36% and that for T'S cache with 64 timestamps
is the highest with 81%, as shown in Table 7.
The energy savings presented here are the av-
erages of all the configurations in a particular
T'S cache. The Section 5.3.2 presents a detailed
analysis of the energy savings in each config-
urations and its impact on the entire system.
Also, it is important to emphasize that the goal
of this research is to present a variety of options
using the TSV mechanism instead of just pre-
senting the best option. It is ultimately up to
the chip designer to evaluate all the possible
options and their impact on the system before
choosing the most suitable option.

Table 7: Energy Savings in Timestamps Ap-
proach

Timestamps (TS Cache) Energy Savings

8 timestamps 36%
16 timestamps 62%
32 timestamps 73%
64 timestamps 81%

5.3.1. Theoretical
Mechanism

Evaluation for TSV

In this section, we present a theoretical basis
for the TSV mechanism and aim at theoret-
ically justifying our results. There has been
significant prior research [25, 26, 27, 28, 29]
that is focused on modeling cache and its per-
formance. We leverage this previous research
to present a model that encapsulates T'S cache
and its performance. Similar to the cache or-
ganization described by Agrawal et.al [26], T'S
cache organization - T'S¢, is denoted as by (S,
A, B), where S is the number of sets, A is the
degree of associativity and B is block size. The
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TS cache size in bytes is the product of number
of sets, degree of associativity and the block
size. The number of blocks (i.e. the times-
tamps) and each block size (i.e. the timestamp
size) is fixed in the T'SV mechanism. Therefore
the number of sets and the degree of associativ-
ity manifests the working set of the TS cache.
Further, analysis is presented to show how al-
tering the size of the working set influences the
energy savings of the T'S cache.

The Working Set Model [30] was proposed
by Peter J. Denning, to model the behavior of
programs in a general purpose computer sys-
tem. It was observed in operating system, that
programs obey the principle of locality (i.e. a
program’s past referenced pages) may be used
as a good predictor for near future, to be re-
referenced pages. Thus the working set model
was proposed to provide a general resource al-
location solution in operating systems. From
the program’s standpoint, the working set of
information W(%, 7) of a process at time ¢ is
the collection of information referenced by the
process in time interval (¢ - 7,t), where 7 is
the working set parameter.

In terms of the TS cache, the working set
is dependent on the possible combinations of
number of sets and the degree of associativity.
This is represented by the T'S cache configura-
tions. Also, in the T'SV mechanism, the time
factor in the working set model is represented
by the total number of accesses. 1t is impor-
tant to note that the T'S cache configurations
resemble any general purpose cache configura-
tions - Direct Mapped, Fully Associative and
Set Associative. For instance 1 Sets - 8 Ways,
1 Sets - 16 Ways, 1 Sets - 32 Ways, 1 Sets
- 64 Ways resemble a fully associative cache.
Whereas 8 Sets - 1 Ways resembles a direct
mapped cache with the rest as set associative.

The Independent Reference Model [25] was
proposed by Rao to analyze the performance
of a cache. This model is analytically tractable
and presents miss rate estimates for direct-
mapped, fully-associative, and set-associative
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caches using the arithmetic and geometric dis-
tributions for page reference probabilities. The
effectiveness of the TSV mechanism is ana-
lyzed by the energy savings offered by the TS
cache. The energy savings are directly related
with TS cache hit rate (or 1 - TS cache miss
rate). Therefore the Independent Reference
Model serves best to analyze the T'S cache per-
formance in terms of its miss rate for varying
TS cache size.

With reference to [25], the miss rate or the
fault rate in a cache is written as

n

Fr= Z P:Qt

t=1

(4)

where F is the fault rate, f is the replace-
ment policy, n is the logical pages in the back-
ing store, p: is the page reference probability
and q; is the probability of not finding a page
in the cache.

1 T T T
Actual Miss Rate @
Fitted Curve

0.8 |- B

Miss Rate (%)

0 8 16 24 32 40 48 56 64 72

Cache Size w.r.t Number of Timestamps

Figure 7: Miss Rate vs. TS Cache Size in terms
of Number of Timestamps

If a graph of the fault rate/miss rate is to
be plotted versus the cache size, then it is ob-
served that the fault rate decreases exponen-
tially with an increase in the cache size. This
trend is also exhibited in the T'S cache and is
shown in Figure 7. This figure represents a
graph of miss rate vs. T'S cache size in terms of
number of timestamps. Since the block size is
kept constant at 8 bytes, the T'S cache increases
from 64 Bytes for 8 timestamps to 512 Bytes
for 64 timestamps. The miss rate shown in this
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figure is calculated by averaging the miss rates
obtained from all the configurations i.e. work-
ing sets in a particular T'S cache. It is therefore
evident that the miss rate decreases exponen-
tially as the size of the T'S cache increases.

5.8.2. Overhead Ewvaluation of TSV Mech-
anism

The proposed timestamps mechanism does
not require a unique timestamp to be stored in
the T'S cache for all the data blocks accessed
by the L1 Data Cache. A L1 Data cache of
size 4KB with 32 Byte block size contains a
total of 128 cache blocks. However, the TS
cache is configured to store only 8, 16, 32 or
64 timestamp blocks. Moreover, a timestamp
is unique data pertaining to a particular cache
block and hence its block size is significantly
smaller than the cache block size. The times-
tamp block size can be either 8 Bytes or 16
Bytes as compared to 32 Bytes in a L1 Data
cache. In this research, the timestamp block
size is set to 8 Bytes. Table 8 below presents
an analogy between the size of the T'S cache,
its energy savings and its area overhead with
respect to L1 Data cache of size 4KB. The area
overhead is calculated using the equation 5 be-
low.

TS Cache Area Overhead =
Area of TS Cache
Area of L1 Data Cache

Since the size of each TS block is fixed at 8
Bytes, the size (in bytes) of the TS cache stor-
ing 8, 16, 32 and 64 timestamps is 64, 128,
256 and 512 respectively. For each TS cache
mentioned above, the energy savings (in per-
centage) for every configuration and its area
overhead (in percentage) is presented. The
area overhead for the T'S cache of size 64, 128,
256 and 512 bytes is 1.56%, 3.12%, 6.23% and
12.50% respectively. Therefore the overhead of
the TS cache is significantly low as compared
to the energy savings it can offer.

The energy savings of T'S cache with 8 times-
tamps is in the range of 33.11% to 56.92% with

x 100 (5)
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an area overhead of 1.56%. The energy sav-
ings of T'S cache with 16 timestamps is in the
range of 46.91% to 74.10% with an area over-
head of 3.12%. The energy savings of T'S cache
with 32 timestamps is in the range of 57.46% to
89.57% with an area overhead of 6.25%. And
finally the energy savings of T'S cache with 64
timestamps is in the range of 68.84% to 92.36%
with an area overhead of 12.5%. It is important
to stress that the impact of number of ways
or associativity on the energy savings is much
more than that of number of sets. The energy
savings decrease as the associativity decreases.
This is expected as a general characteristic in
caches.

Table 9: Energy Savings/Area Overhead
(E/O) factor for TS Cache Configurations

TS Cache Configurations E/O Factor (%)

1 Sets-8 Ways 36.49
2 Sets-4 Ways 34.23
4 Sets-2 Ways 21.23
8 Sets-1 Ways 0.00
1 Sets-16 Ways 23.75
2 Sets-8 Ways 23.70
4 Sets-4 Ways 17.06
8 Sets-2 Ways 15.03
1 Sets-32 Ways 13.36
2 Sets-16 Ways 14.33
4 Sets-8 Ways 9.57
8 Sets-4 Ways 9.19
1 Sets-64 Ways 7.39
2 Sets-32 Ways 7.37
4 Sets-16 Ways 5.60
8 Sets-8 Ways BBl

To emphasize the importance of the energy
savings offered by the proposed TSV mecha-
nism and to provide a comparison between the
configurations of various TS caches, we cal-
culate a new parameter — the Energy Sav-
1ngs/Area Overhead factor, in short the E/O
factor. The value of the E/O factor is in the
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Table 8: Energy Savings vs. Area Overhead in TS Cache

Number of Size of TS Cache TS Cache Configu- Energy Sav- TS Cache Area Overhead
Timestamps  with Block Size =8 rations ings (%) w.r.t L1l Data Cache of size
Bytes 4KB (%)
1 Sets-8 Ways 56.92
2 Sets-4 Ways 53.40
8 64 4 Sets-2 Ways 33.11 1.56
8 Sets-1 Ways 0.00
1 Sets-16 Ways 74.10
2 Sets-8 Ways 73.94
16 128 4 Sets-4 Ways 53.23 3.12
8 Sets-2 Ways 46.91
1 Sets-32 Ways 83.50
2 Sets-16 Ways 89.57
32 256 4 Sets-8 Ways 59.78 6.25
8 Sets-4 Ways 57.46
1 Sets-64 Ways 92.36
2 Sets-32 Ways 92.10
64 512 4 Sets-16 Ways 70.02 12.50
8 Sets-8 Ways 68.84

range of 0% to 100% and it should be as high
as possible. The Table 9 below, shows the E/O
factor for all the TS cache configurations. The
E/O factor is the highest for the T'S cache con-
figuration of 1 Sets-8 Ways (Fully Associative)
with 36.49%. Whereas it is the lowest for T'S
cache configuration of 8 Sets-1 Ways (Direct
Mapped) with 0%. It shows that this config-
uration did not get any TS hits and hence re-
sulted in no energy savings. However if this
configuration is ignored, it can be seen that the
E/O factor decreases steadily with 5.51% as the
lowest for the T'S cache configuration of 8 Sets-
8 Ways. This trend suggests that the energy
savings offered by the T'S cache does not in-
crease at same rate at which its area overhead
increases. Since the impact of area overhead
is more, it pulls down the E/O factor down
gradually. This is shown in figure 8. This
figure presents the average E/O factor along
with its lower and upper bounds for T'S cache
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with 8, 16, 32 and 64 timestamps. The fitted
curve shows that the average E/O factor de-
creases exponentially with increase in the size
of the TS cache. The fluctuation in the up-
per and lower bounds, also known as the er-
ror fluctuation reduces as the size of the T'S
cache increases. This trend closely resembles
the Law of Diminishing Returns. It also im-
portant to stress that as the size of the TS
cache increases, the impact of associativity on
the energy savings, decreases. Hence a for a
smaller T'S cache, it is important to select the
fully associative cache configuration to achieve
higher energy savings. Whereas for a larger
TS cache, even the direct mapped configura-
tion could yield comparable energy savings as
the fully associative cache configuration.
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Figure 8: Average E/O factor for each T'S cache

6. State-of-the-Art in Memory Security
of Embedded Systems

It is conspicuous that security in embed-
ded systems is significant concern considering
the unsafe environment in which they have to
operate and the sensitivity of data they han-
dle. Conventional security mechanisms are
impeded due to severe energy constraints im-
posed by the limited resourced embedded sys-
tem. Hence considerable modifications to ex-
isting security solutions are required before
they can be deployed. It can be safely said
that software-only security approaches fail in
securing embedded systems as the adversary
can physically observe or tamper with the state
of applications. To achieve high level of se-
curity, the root of trust must be entrusted
on the hardware of these embedded systems.
Hence as seen in Section 1 a lot of research
has been done in developing secure processor
architectures to provide privacy and integrity
in embedded applications. Even though the
hardware approaches provide reliable security
against physical and software attacks, consider-
able modifications are needed to be done before
they can be adopted in an energy constrained
embedded system.

A substantial amount of research is dedi-
cated to come up with energy efficient architec-
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tures for embedded systems that aim at pro-
viding utmost security while consuming lim-
ited energy. For instance, Shi et al. in [31]
present a secure and fast architecture for au-
thenticating shared memory. To incorporate
memory authentication in their architecture,
the authors propose a new scheme of Authen-
tication Speculative Execution that not only
is efficient but also offers lower average perfor-
mance degradation of less than 5%. In another
research [32], the authors present a model for
key masking to achieve minimal energy over-
head in embedded systems. The experimental
results reveal that the technique supports up
to 2.5% energy overhead savings. Power-Smart
System-On-Chip Architecture [33], presents an
architecture for preventing sensitive informa-
tion leakage via timing, power and electro-
magnetic channels. This architecture depends
on a current sensing module to measure the
power and current consumption of the system.
They achieve significant success in measuring
the current consumption of the system while
limiting the power overhead to less than 12%
of the total power. In [34], Roger et al. describe
an efficient hardware mechanism to protect in-
tegrity of softwares by signing each instruction
block during program installation with a cryp-
tographically secure signature. This technique
serves as a secure and performance efficient
alternative to conventional memory integrity
verification module. While [35], presents an ar-
chitectural approach to address memory spoof-
ing attacks. The data protection techniques
proposed in this paper, achieves high level
of security with significantly low performance
overhead.

The research in energy efficient embedded
system security is directed in various other ar-
eas in computing. Along with architectural
techniques, there has been significant research
in improving the performance of existing cryp-
tographic memory integrity verification mech-
anisms. In [16], Gassend et al. combine caches
and hash trees to deliver a performance ef-
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ficient memory integrity verification scheme.
The paper presents CHash and LHash with
varying cache block sizes to analyze the perfor-
mance overhead of each configuration. While
in [19], an Address Independent Seed Encryp-
tion (AISE) is proposed along with Bonsai
Merkle Trees (BMT). Simulation results prove
that this technique reduces the overhead on the
system by 12% to 2% as compared to tradi-
tional approaches. Some other researches [36]
and [37], present new low overhead encryption
algorithms and cache level tuning to achieve
relatively low performance degradation.

Although, all the above papers, present new
and energy efficient mechanisms for embedded
system security, there are still new avenues to
improve energy efficiency in embedded system
security. This is the primary motivation of this
paper. The proposed TSV technique yield en-
ergy savings in the range of 36% to 81% for
integrity verification process. The architecture
and algorithms presented for both the schemes
make them plausible to be implemented in next
generation embedded devices.

7. Conclusions and Future Research

7.1. Summary and Conclusions

In designing computing systems there is al-
ways a trade-off between security and energy
consumption. A classic example of this are
the Embedded Systems. Embedded devices are
typically fast, miniaturized and specific to their
application and hence often have severe energy
constraints. As they now handle a lot of critical
information, security is of utmost importance
in them. Therefore the need arises to design
new security mechanisms so that their energy
consumption is minimal while still preserving
the security of the system.

In this paper, the focus is specifically on re-
ducing the energy consumption of Memory In-
tegrity Verification mechanisms in embedded
systems. The paper contains two novel con-
tributions. First, it presents a scheme to pre-
cisely measure the number of hash invocations
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per DL1 misses and compute the energy con-
sumption based on the hash levels. Then it
presents a novel energy efficient technique us-
ing Timestamps for integrity verification. The
results show that the energy savings with TSV
mechanism can range from 36% to 81%, com-
pared to basecase results, based on the num-
ber of timestamps that can be stored in the
TS cache.

7.2. Future Research

Currently, research is in progress to measure
the total energy consumption of an embedded
processor and compare it with the energy con-
sumption of the memory integrity verification
mechanisms. This would give an exact measure
of the energy savings that can be achieved by
the proposed energy efficient MIV techniques,
with respect to the entire embedded processor.
This is an intriguing as well as a challenging
prospect as the total energy consumption of an
embedded system processor is difficult to mea-
sure. This would usher new sets of designs and
challenges in energy efficient security mecha-
nisms for embedded systems.

References
[1] Mobile and Smart Device Secu-
rity Survey 2011, http://images.

tmcnet.com/tmc/whitepapers/
documents/whitepapers/2011/

4683-mobile-smart—-device-security-survey—2011.

pdf (2011).

N. R. Potlapally, S. Ravi, A. Raghunathan, N. K.
Jha, Analyzing the energy consumption of security
protocols, in: Proceedings of the 2003 interna-
tional symposium on Low power electronics and
design, ISLPED '03, ACM, New York, NY, USA,
2003, pp. 30-35. doi:10.1145/871506.871518.
URL http://doi.acm.org/10.1145/
871506.871518

C. Cowan, F. Wagle, C. Pu, S. Beattie, J. Walpole,
Buffer overflows: attacks and defenses for the vul-
nerability of the decade, in: DARPA Information
Survivability Conference and Exposition, 2000.
DISCEX ’00. Proceedings, Vol. 2, 2000, pp. 119
—129 vol.2. doi:10.1109/DISCEX.2000.821514.

Z. Shao, C. Xue, Q. Zhuge, M. Qiu, B. Xiao,
E.-M. Sha, Security protection and checking for

(2]

(3]

(4]



S. Nimgaonkar, M. Gomathisankaran, and S. P. Mohanty / Journal of System Architecture 00 (2013) 1-2019

(5]

(6]

[7]

(8]

(9]

[10]

(11]

(12]

13]

[14]

embedded system integration against buffer over-
flow attacks via hardware/software, Computers,
IEEE Transactions on 55 (4) (2006) 443 — 453.
doi:10.1109/TC.2006.59.

S. White, L. Comerford, Abyss: an architec-
ture for software protection, Software Engineer-
ing, IEEE Transactions on 16 (6) (1990) 619 -629.
doi:10.1109/32.55090.

G. Suh, C. O’Donnell, S. Devadas, Aegis:
A single-chip secure processor, Design Test of
Computers, IEEE 24 (6) (2007) 570 -580.
doi:10.1109/MDT.2007.179.

M. Gomathisankaran, A. Tyagi, Architecture Sup-
port for 3D Obfuscation, IEEE Trans. Computers
55 (5) (2006) 497-507. doi:10.1109/TC.2006.68.
URL http://viper.eng.iastate.edu/
gmdev/pubs/ieeeTC06.pdf

M. Gomathisankaran, A. Tyagi, Arc3d: A
3d obfuscation architecture, in: T. M. Conte,
N. Navarro, W. mei W. Hwu, M. Valero, T. Un-
gerer (Eds.), HIPEAC, Vol. 3793 of Lecture Notes
in Computer Science, Springer, 2005, pp. 184-199.
M. Gomathisankaran, A. Tyagi, Tiva: Trusted
integrity verification architecture, in: R. Safavi-
Naini, M. Yung (Eds.), DRMTICS, Vol. 3919
of Lecture Notes in Computer Science, Springer,
2005, pp. 13-31.

D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. C. Mitchell, M. Horowitz, Archi-
tectural support for copy and tamper resistant
software, in: Architectural Support for Program-
ming Languages and Operating Systems, 2000,
pp. 168-177.

URL citeseer.nj.nec.com/
lieOOarchitectural.html

X. Zhuang, T. Zhang, S. Pande, Hide: an
infrastructure for efficiently protecting infor-
mation leakage on the address bus, SIGARCH
Comput. Archit. News 32 (5) (2004) 72-84.
doi:10.1145/1037947.1024403.

URL http://doi.acm.org/10.1145/
1037947.1024403

J. Daemen, V. Rijmen, The Design of Rijn-
dael: AES - The Advanced Encryption Standard,
Springer Verlag, Berlin, Heidelberg, New York,
2002.

M. Gomathisankaran, R. B. Lee, Maya: A novel
block encryption function, in: International
Workshop on Coding and Cryptography, 2009.
URL http://viper.eng.iastate.edu/
gmdev/pubs/maya.pdf

M. Gomathisankaran, K.-M. Keung, A. Tyagi,
Rebel - reconfigurable block encryption logic, in:
E. Fernandez-Medina, M. Malek, J. Hernando
(Eds.), SECRYPT, INSTICC Press, 2008, pp. 312—
318.

19

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

23]

[24]

M. Gomathisankaran, R. Lee, Tantra : A fast
prng algorithm and its implementation, in: H. R.
Arabnia, K. Daimi (Eds.), Proceedings of the 2009
International Conference on Security & Manage-
ment, SAM 2009, July 13-16, 2009, Las Vegas
Nevada, USA, 2 Volumes, CSREA Press, 2009, pp.
593-598.

B. Gassend, G. Suh, D. Clarke, M. van
Dijk, S. Devadas, Caches and hash trees
for efficient memory integrity verification, in:
High-Performance Computer Architecture, 2003.
HPCA-9 2003. Proceedings. The Ninth Inter-
national Symposium on, 2003, pp. 295 — 306.
doi:10.1109/HPCA.2003.1183547.

G. Suh, D. Clarke, B. Gasend, M. van
Dijk, S. Devadas, Efficient memory integrity
verification and encryption for secure proces-
sors, in: Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM Interna-
tional Symposium on, 2003, pp. 339 - 350.
doi:10.1109/MICRO.2003.1253207.

M. Gomathisankaran, A. Tyagi, Relating boolean
gate truth tables to one-way functions, Integrated
Computer-Aided Engineering 16 (2) (2009) 141-
150, 10.3233/ICA-2009-0307. doi:10.3233/ICA-
2009-0307.

B. Rogers, S. Chhabra, Y. Solihin, M. Prvulovic,
Using address independent seed encryption and
bonsai merkle trees to make secure processors os-
and performance-friendly, in: Microarchitecture,
2007. MICRO 2007. 40th Annual IEEE/ACM In-
ternational Symposium on, 2007, pp. 183 —196.
doi:10.1109/MICRO.2007.16.

S. Nimgaonkar, M. Gomathisankaran, Energy ef-
ficient memory authentication mechanism in em-
bedded systems, in: Electronic System Design
(ISED), 2011 International Symposium on, 2011,
pp. 248 —253. doi:10.1109/ISED.2011.34.

Secure Hash Standard, National Institute of
Standards and Technology, Washington, 2002,
federal Information Processing Standard 180-2.
URL http://csrc.nist.gov/
publications/fips/

T. Austin, E. Larson, D. Ernst, Simplescalar:
an infrastructure for computer system mod-
eling, Computer 35 (2) (2002) 59 —67.
doi:10.1109/2.982917.

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,
T. Mudge, R. Brown, Mibench: A free, commer-
cially representative embedded benchmark suite,
in: Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop on, 2001, pp.
3 - 14. doi:10.1109/WWC.2001.990739.

ARM Architecture Reference Manual,
http://www.altera.com/literature/
third-party/ddi0100e_arm_arm.pdf/



S. Nimgaonkar, M. Gomathisankaran, and S. P. Mohanty / Journal of System Architecture 00 (2013) 1-2020

(28]

[26]

27]

28]

29]

(30]

(31]

(32]

(33]

34]

(2000).
G. S. Rao, Performance analysis of cache
memories, J. ACM 25 (3) (1978) 378-395.

doi:10.1145/322077.322081.
URL http://doi.acm.org/10.1145/
322077.322081

A. Agarwal, J. Hennessy, M. Horowitz, An analyt-
ical cache model, ACM Trans. Comput. Syst. 7 (2)
(1989) 184-215. doi:10.1145/63404.63407.

URL http://doi.acm.org/10.1145/63404.
63407

E. Rothberg, J. Singh, A. Gupta, Working sets,
cache sizes, and node granularity issues for large-
scale multiprocessors, in: Computer Architec-
ture, 1993., Proceedings of the 20th Annual In-
ternational Symposium on, 1993, pp. 14 -25.
doi:10.1109/ISCA.1993.698542.

A. Smith, A comparative study of set associa-
tive memory mapping algorithms and their use
for cache and main memory, Software Engineer-
ing, IEEE Transactions on SE-4 (2) (1978) 121 —
130. doi:10.1109/TSE.1978.231482.

G. E. Suh, S. Devadas, L. Rudolph, Analyt-
ical cache models with applications to cache
partitioning, in: Proceedings of the 15th in-
ternational conference on Supercomputing, ICS
'01, ACM, New York, NY, USA, 2001, pp. 1-12.
doi:10.1145/377792.377797.

URL http://doi.acm.org/10.1145/
377792.377797

P. J. Denning, The working set model for program
behavior, Commun. ACM 11 (5) (1968) 323-333.
doi:10.1145/363095.363141.

URL http://doi.acm.org/10.1145/
363095.363141

W. Shi, H.-H. Lee, M. Ghosh, C. Lu, Architec-
tural support for high speed protection of memory
integrity and confidentiality in multiprocessor sys-
tems, in: Parallel Architecture and Compilation
Techniques, 2004. PACT 2004. Proceedings. 13th
International Conference on, 2004, pp. 123 — 134.
doi:10.1109/PACT.2004.1342547.

C. Gebotys, energy security optimiza-
tion in embedded cryptographic systems,
Hardware/Software Codesign and System Syn-
thesis, 2004. CODES + ISSS 2004. Interna-
tional Conference on, 2004, pp. 224 - 229.
doi:10.1109/CODESS.2004.240744.

H. Vahedi, S. Gregori, Y. Zhanrong, R. Mure-
san, Power-smart system-on-chip architec-
ture for embedded cryptosystems, in: Hard-
ware/Software Codesign and System Synthesis,
2005. CODES+1ISSS '05. Third IEEE/ACM/IFIP
International Conference on, 2005, pp. 184 —189.
doi:10.1145/1084834.1084883.
A. Rogers, M. Milenkovic,

Low
in:

A. Milenkovic,

20

(35]

(36]

(37]

A low overhead hardware technique for soft-
ware integrity and confidentiality, in: Com-
puter Design, 2007. ICCD 2007. 25th Inter-
national Conference on, 2007, pp. 113 -120.
doi:10.1109/ICCD.2007.4601889.

O. Gelbart, E. Leontie, B. Narahari, R. Simha,
Architectural support for securing applica-
tion data in embedded systems, in: Elec-
tro/Information Technology, 2008. EIT 2008.
IEEE International Conference on, 2008, pp. 19
—24. doi:10.1109/EIT.2008.4554261.

C. Yan, B. Rogers, D. Englender, D. Solihin,
M. Prvulovic, Improving cost, performance, and
security of memory encryption and authentication,
in: Computer Architecture, 2006. ISCA ’06. 33rd
International Symposium on, 2006, pp. 179 —190.
doi:10.1109/1SCA.2006.22.

A. Gordon-Ross, F. Vahid, N. Dutt, Automatic
tuning of two-level caches to embedded appli-
cations, in: Design, Automation and Test in
BEurope Conference and Exhibition, 2004. Pro-
ceedings, Vol. 1, 2004, pp. 208 - 213 Vol.1.
doi:10.1109/DATE.2004.1268850.



