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Abstract—Fast simulation is a bottleneck for design space
exploration of complex nanoscale CMOS (nano-CMOS) Analog
and Mixed-Signal (AMS) circuits. This paper presents the use
of “metamodels” for fast and accurate AMS circuit design
exploration. A design process flow that uses metamodels is
introduced. Metamodel generation is the most time consuming
step of the design flow. Consequently, accurate and fast sampling
of the design space is essential for the creation of the metamodel.
Different sampling techniques are investigated to minimize the
number of samples required. This paper uses two nanoscale
CMOS analog circuits: a 45 nm Ring Oscillator (RO) and a 180
nm LC-VCO, as case studies. It is observed that the parasitics
generated from the physical design of the circuits have a drastic
effect on their performance metrics, such as frequency. Four
alternative sampling techniques, both random (Monte Carlo,
MC) and uniform (Latin Hypercube Sampling, LHS, Middle
Latin Hypercube Sampling, MLHS, and Design of Experiments,
DOE), are considered and compared for speed and accuracy.
This paper provides a thorough exploration of these sampling
techniques to determine which one is more suitable to minimize
sampling size for metamodel generation and optimize the design
cycle. Experiments show that LHS sampling is best for both
circuits, followed by MLHS, MC and DOE. In this paper it is
also shown that polynomial metamodels of order higher than two
(which are commonly used) provide best accuracy.

Keywords-Nanoscale CMOS, Mixed-Signal Circuits, Metamod-
eling, Statistical Sampling, Circuit Simulation

I. INTRODUCTION AND MOTIVATION

Today’s large analog circuits have very long design cycles
as accurate continuous time transistor-level simulation is very
computationally intensive. This situation is further exacerbated
due to the use of compact models with hundreds of parameters
in nano-CMOS technology and the need for accurate parasitic
estimation in the sign-off netlists [1], [2]. In the optimization
stage the original design is usually iteratively tuned by adjust-
ing design parameters of the circuit to meet the target design
specifications. Vast amounts of different design possibilities
are available due to the large number of design variables. It is
an impossible task to do exhaustive design space exploration
for complex nano-CMOS circuits to find an optimal solution.
Performing a fast search using a metamodel, which is an
abstracted model of a netlist, or surrogate model, can be used
as an alternative to the exhaustive search of the actual circuit’s
design space. Different levels of abstraction are already used
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in the hierarchy of models for typical circuit design. At the
lowest level, transistors are used to create netlists of small
design units which are further stitched into subsystems and
finally, into complete systems.

The model of a circuit typically includes parasitics which
are extracted from the final layout and thus is a very large,
hierarchical netlist. An accurate metamodel for that design can
be obtained by sampling data from the simulated circuit to find
optimal values for the design specifications. The metamodel
is a mathematical prediction model which acts as a substitute
(surrogate) for the original model [3], [4], [5]. It is vital to
generate the closest possible results for a given circuit that can
be manufactured with minimal tolerance of error since it is a
very expensive process to correct functional and design errors.
Circuit simulation tools are used in different design steps to
simulate circuits. Simulations for very complex circuits can
potentially take days to weeks to complete. Hence the need
to minimize the time of the design process and therefore the
amount of simulation iterations needed. Since metamodels
are mathematical models they introduce a simpler way of
understanding the behavior of the circuit and are easier and
faster to conduct simulations with multiple iterations, and
apply optimization techniques. A designer needs to sample
the response of the simulated circuit only a limited number
of times, sufficient to construct the metamodel. This work
is targeted towards investigating which sampling technique
works best for polynomial function metamodels using two dif-
ferent case study mixed-signal nano-CMOS circuits with full
parasitic extraction, constructed in two different technologies.

The rest of the paper is organized as follows: Section II
discusses the contributions of this paper. Section III discusses
prior research relevant to the current paper. Section IV dis-
cusses a metamodel-based design flow. Section V discusses a
45 nm CMOS ring oscillator and a 180 nm CMOS LC-VCO
which are used as case study circuits in this paper. Section VI
introduces the different sampling techniques along with the
derived metamodels. Section VII presents the conclusions of
this research along with directions for future research.

II. CONTRIBUTIONS OF THIS PAPER

The novel contributions of this paper are as follows:
1) Circuit simulator and language independent metamod-

eling techniques are proposed, which can be used to
accurately represent actual circuits.

2) Four distinct random and uniform sampling techniques
are investigated for data sampling for metamodel cre-
ation. They include Monte Carlo (MC), Latin Hypercube
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Sampling (LHS), Middle Latin Hypercube Sampling
(MLHS), and Design of Experiments (DOE), and are
applied to nano-CMOS circuits.

3) The use of these sampling techniques in metamodeling
is demonstrated for a 45 nm CMOS ring oscillator and
a 180 nm CMOS LC-VCO. The ring oscillator is char-
acterized for frequency, power and jitter, while the LC-
VCO is characterized for frequency, power and phase
noise. Full RCLK (resistance, capacitance, self and
mutual inductance) parasitic extractions are performed
and compared to the schematics for both oscillators. The
metamodels are generated on the parasitic netlist.

4) Metamodels of different order are generated and com-
pared for speed and accuracy.

III. RELATED PRIOR RESEARCH

Fast design exploration approaches can be essentially bro-
ken down into several distinct groups including macromodel-
ing and metamodeling [6]. Fig. 1 shows a taxonomy diagram
of previous published research in each one of these groups.
These are discussed in the rest of this section.
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Fig. 1. Techniques for fast CMOS circuit design exploration.

Neural networks have been used to tackle the complexity of
circuit optimization. A trained neural network preforms well
for a large number of parameters based on a limited amount of
simulation data points. In [7], the creation of neural networks
for the estimation of the output of operational amplifiers from
a high level perspective is given. However, this approach does
not account for parasitics which has serious impact on circuit
performance and hence can dramatically affect the estimation.
In [8], the use of neural networks in the automatic synthesis
of op-amps is explored. In [9], a feed-forward dynamic neural
network model is introduced for amplifier and mixer circuits
directly from input-output large-signal measurements.

Intelligent algorithms have also been explored for optimiza-
tion over actual circuits. In [10], the artificial bee colony
optimization algorithm is investigated considering the transient
performance of a CMOS circuit. In [11], a hierarchical particle
swarm optimization algorithm is proposed that performs au-
tomatic sizing of analog circuits in order to obtain low-power
designs. In [12], a novel genetic algorithm is proposed for
floor planning for gigascale complexity that simultaneously
minimizes the total wire length and silicon area.

Macromodeling has been extensively investigated as a
method to reduce circuit complexity in which a simpler circuit
model is developed. The design process is still closely coupled
to the circuit simulator and hence exhaustive Monte Carlo
simulations can be still very time consuming. In [13], a

variation-aware performance macromodeling technique is pre-
sented for analog building blocks for faster convergence during
synthesis. In [14], performance macromodeling is presented
using a sequential design space decomposition technique. In
[15], macromodels for the feasible design regions (instead of
the entire design space) are hierarchically generated, until the
desired accuracy was achieved.

Metamodeling is recently becoming a popular alternative
to macromodeling as an approach that represents the circuit
using mathematical functions (contrary to circuit simulator
specific simplified models as is the case of macromodels).
In [16], a surrogate modeling approach for expensive circuit-
level simulation is presented that uses support vector machine
(SVM)-based machine learning. In [17], an automated creation
technique for surrogate multivariate mathematical models is
proposed for microwave components. In [18], a surrogate
modeling approach is also used for statistical wire-length
estimation.

IV. THE PROPOSED METAMODEL BASED SIMULATION
AND OPTIMIZATION FLOW

In order to obtain an optimal design, a designer can optimize
the actual circuit model (a SPICE netlist). This optimization
on the actual circuit (Fig. 2(a)) is very slow and may be
even impossible for complex and nanoscale circuits with large
numbers of transistors and interconnects. For fast, yet accurate
design optimization of analog circuits this paper proposes
the approach demonstrated in Fig. 2(b). In this approach,
metamodels of the circuit model are first generated. The circuit
optimization is then performed on the metamodels instead of
the actual circuit. This makes the design exploration fast and
accurate. It may be noted that metamodeling is not macromod-
eling [19], [8]. Macromodels are reduced complexity models
but they rely on the same type of modeling and simulator
as the original models (e.g., SPICE). In the metamodeling
approach, the underlying system is completely decoupled from
the simulator and the resulting metamodel (i.e., mathematical
model of the circuit) is more general, flexible and easier
to simulate and optimize than macromodels. In summary,
a metamodel has the following distinct features over the
macromodels:

1) It is a mathematical representation of the circuit output.
2) It is a prediction equation.
3) Metamodels can be used in a variety of tools, such as

MATLAB, and are language independent.
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Fig. 2. Fast design space exploration of analog circuits through accurate
metamodeling. Comparing different statistical sampling techniques and meta-
models is the scope of this paper.
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The proposed design flow is shown in Fig. 3. In this
flow, first the logical design is performed and tuned to meet
the required specifications. At this point the initial physical
design is implemented (this is the 1st manual layout step).
The physical design is then subjected to Design Rule Check
(DRC), Layout vs. Schematic (LVS) comparison and parasitic
(RCLK) extraction. If the specifications are not met, the
parasitic netlist is then parameterized with design variables
that can be considered in the circuit. This netlist is then
used by our automated process to create a metamodel by
applying sampling techniques as described in this paper. Once
the metamodel is created, it can be further optimized to find
the parameter set for the variables that were chosen before.
The parameters that are generated in the optimization stage
are then used to adjust the initial physical layout resulting in
the final product (this is the 2nd manual layout step).
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Fig. 3. The Proposed metamodel-based design (simulation and optimization)
flow. It requires only two manual layouts and hence results in significantly
faster design cycle.

Designers only need to create the physical design two times,
the initial design to sample the data and the final design
after the optimization of the metamodel. In this approach,
for the algorithm to work properly, the key element is the
generation of a very accurate metamodel. Hence this paper

covers metamodel sampling techniques and their accuracy, as
indicated in Fig. 3.

V. DESIGN AND CHARACTERIZATION OF THE CASE
STUDY CIRCUITS

Two circuits are considered as case studies. They are de-
signed for 45 nm and 180 nm CMOS technologies, depending
on the library components available for their physical design.

A. 45 nm CMOS Ring Oscillator (RO)

A Ring Oscillator (RO) consists of an odd amount of
inverters with a feedback loop. The feedback loop creates
oscillations that are derived from the propagation delay of each
inverter. ROs are useful in die and new technology testing and
are commonly used to find the delay times of logic gates. They
are also the main element in temperature sensors.

1) Logical Design of the 3 Inverter Ring Oscillator: Fig.
4 shows the schematic diagram of a three inverter RO. For a
given technology node, the designer can adjust the widths of
the NMOS and PMOS to obtain the desired frequency. The
design space is spanned by the two widths in the identical
inverters of the RO. Assuming that all inverters in RO have
the appropriate size transistors, their fall and rise times are
identical. The frequency of oscillation is calculated as follows
[20]:

f =

(
1

2Ntp

)
, (1)

where N is the number of inverters, which is odd, and tp is
the propagation delay of each inverter.
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Fig. 4. Transistor-level schematic of the ring oscillator.

The design variables chosen for this design are: width of
NMOS Wn = 120 nm and width of PMOS Wp = 240 nm at a
nominal operating voltage Vdd = 1V and minimal technology
length of L =45 nm. The ambient temperature of 27 ◦C is
assumed to be constant for all simulations since temperature
can affect the output dramatically. Temperature analysis for
self-heating effects is not taken into account in this paper.

2) Physical Design of the 3 Inverter Ring Oscillator: As
shown later in this section, the parasitics in analog nano-
CMOS circuits have a very dramatic effect on performance. It
is difficult to estimate these effects without actually performing
the physical layout, which is shown in Fig. 5. The full
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SPICE netlist is generated from RCLK parasitic extraction
from this layout. The physical design which involves tedious
labor-intensive work, particularly for complex circuits, can be
shortened by using the proposed metamodeling design flow
will only needs two layout steps: once for the initial design
and one final time, after obtaining the optimized data from
the metamodel. This is a major outcome of the proposed
metamodel-based design flow. It may be noted that in a
convectional flow, multiple layouts may be needed to meet
design closure. Comparison for the number of components
between the regular schematic and the parasitic netlist is shown
in Table I.

Fig. 5. Ring oscillator physical design for a 45 nm CMOS technology.

A dramatic decrease in frequency is observed in simula-
tions using the parasitics from this layout versus the regular
schematic simulations. For this simple circuit the simulation
run time has increased by a factor of 3 due to the presence of
parasitics. Contemporary complex circuit with thousands of
transistors can have simulation times in days, if not weeks,
depending on the complexity of the circuit. The change
between the schematic and parasitic results is of the order
of 40%. It is observed that the total power consumption has
not been altered, and only changed by merely 1%. Table II
shows a comparison between the simulation results with and
without parasitics. From these results we can conclude that the
extraction of parasitics is necessary to calculate the desired
output such as the frequency for this circuit. On the other
hand, when adjusting the widths of the CMOS components
to Wn = 360nm and Wp = 720nm in the physical layout no
drastic effect on the output frequency was observed.

TABLE II
RING OSCILLATOR CHARACTERIZATION FOR WIDTHS OF NMOS=120 NM

AND PMOS=240 NM.

Design Power Frequency
Schematic (no parasitics) 27.17µW 16.21 GHz
Physical (with parasitics) 26.96µW 9.88 GHz

The eye diagram of the physical design of the ring oscillator
is shown in Fig. 6. It is evident that the jitter effect of physical
design for a 100 ns period is negligible, even when full
parasitics are taken into account. Hence this paper will address
frequency as it is the most important performance metric of
the ring oscillator.
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Fig. 6. Eye diagram of the physical design of the ring oscillator.

B. 180 nm CMOS LC-VCO

In this paper, a conventional complementary NMOS and
PMOS cross-coupled VCO circuit is used as a case study.

1) Logical Design of LC-VCO: The physical design is
shown in Fig. 7. For the LC-VCO the frequency is obtained
using the following expression:

fosc =
1

2π
√
LtankCtank

, (2)

where Ltank is the inductor and Ctank is the capacitor. Ctank

is calculated using the following expression:

Ctank = C1 + C2 + Cother , (3)

where C1 and C2 are the capacitances of the varactors, and
Cother is the summation of the NMOS and PMOS gate to
drain/source and other parasitic capacitances of the circuit.
The inductor tank is chosen to be as large as possible with
a corresponding capacitor tank, which leaves transistor sizing
to minimize the power dissipation. Since the LC-VCO has
to be a symmetric circuit, all the components mirror each
other to produce Voutp and Voutn with the same frequency.
Therefore the couples of PMOS and NMOS transistors should
have identical geometries and are denoted as parameters Wp

and Wn, respectively.
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Fig. 7. LC-VCO schematic representation.
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TABLE I
NUMBER OF COMPONENTS IN EXAMPLE CIRCUITS: RING OSCILLATOR AND LC-VCO.

Simulation Transistors Capacitors Resistors Inductors Total

Ring Oscillator Without parasitics 6 0 0 0 6
With parasitics 6 82 19 0 107

LC-VCO Without parasitics 4 2 0 1 7
With parasitics 4 108 600 14 726

2) Physical Design of the LC-VCO: The physical design
of the LC-VCO is shown in Fig. 8. The symmetry of the
layout provides even-order distortion in the differential output
waveform and up-conversion [21]. The wire width is maxi-
mized to minimize wire resistance and it also provides space
for future size change of the devices after the optimization
physical design generation step, as discussed in section IV.

Fig. 8. LC-VCO physical layout for 180 nm CMOS technology node.

The simulation on the parasitic extracted netlist with the
same sizing of the devices as in the schematic shows the
impact of parasitics on the circuit. The netlist that is gen-
erated from the physical layout is parameterized for further
simulations. For simplification of the analysis it is assumed
that performing minor modifications on some devices will not
have drastic effects on the parasitics of the future layout. In
this way the optimization on the sizing of the devices for this
circuit can be performed with extracted parasitics and only
considering the parasitics in the final layout.

The LC-VCO was designed with schematic target in the
middle tuning range of a frequency of 2.7 GHz, as shown
in Fig. 9, but the frequency has decreased to approx. 2.15
GHz when parasitic effects are taken into account. The extra
components that have to be taken into account for this circuit
are presented in Table I. The simulation time has also increased
by a factor of 3. The phase noise is shown in Fig. 10 for the
center frequency of the parasitic extracted netlist. Phase noise
at 1 MHz offset from the carrier is -117 dBc/Hz.

VI. METAMODEL GENERATION THROUGH STATISTICAL
SAMPLING TECHNIQUES

Metamodeling generation has two distinct steps: genera-
tion of data through sampling, and accurate mathematical
function fitting. An accurate metamodel can provide a good
understanding of the circuit performance characteristics as
the design space is traversed. The design development time
and circuit generation is minimized given the constraint that
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Fig. 9. Frequency tuning characteristic of the LC-VCO.
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Fig. 10. Phase noise of LC-VCO output at 2.6 GHz.

metamodels should generate accurate results with a small
number of samples. Hence the design can be optimized to
the needed specifications with an accurate metamodel.

The sampling techniques investigated are divided into three
different categories: random, uniform and Design of Experi-
ments (DOE). Many different metamodels can be generated
from the sample data. In addition, the choice of the fitting
algorithm can have diverse effect on the accuracy of the
metamodel. For comparison purposes, all sample data are fitted
into polynomial linear regression models of order 4 except
the DOE samples which are fitted to order 2 due to the small
number of samples. Thus the metamodel for two parameters
(Wn for NMOS and Wp for PMOS) has the following form
[3], [22]:

y =

k∑
i,j=0

(
αijW

i
nW

j
p

)
, (4)

where y is the response being modeled (frequency in the RO
case), Wn and Wp are variables and αij are the coefficients
determined by the polynomial regression. k = varies from 1
to 5 except in the case of DOE where it is fixed at k =2.

Of course, the actual response of the circuit is typically
unknown as a limited number of samples is available at
any point of time. However, the selected test circuits are
intentionally simple to allow exhaustive sampling for accurate
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capturing of the data for the purpose of research validation.
An extremely accurate “golden” response surface with 10,000
sampling points is used for validation and evaluation of the
various metamodels. The golden response will be taken as the
true circuit response in the following discussion. The actual
verification will probably use under 100 sample points in
more complex circuits and substantially fewer points for very
large circuits. The square Root of Mean Square Error (RMSE)
shown in Eqn. 5 is used to compare the prediction values of
the metamodel generated using sampling points, to the “true”
response. The RMSE estimates the difference between the
metamodel and the true model. The smaller the RMSE value,
the more accurate the metamodel [3]. As overall accuracy of
the metamodel is also of interest, the standard deviation (σ) is
calculated for all 10,000 points of the “true” response. This is
calculated using the expression shown in Eqn. 6. For a given
RMSE a small σ value shows that the metamodel has fewer
values deviating from the mean error which otherwise could
result in a large error in the constraint area of the metamodel.

RMSE=

√√√√ 1

MN

M∑
i=1

N∑
j=1

(y(Wni
,Wpj

)−ŷ(Wni
,Wpj

))
2
,

(5)

σ=

√√√√ 1

MN

M∑
i=1

N∑
j=1

(|y(Wni ,Wpj )− ŷ(Wni ,Wpj )|−RMSE)
2
.

(6)
(MN) =10,000 are randomly distributed points of the Wn

and Wp parameters and are selected in the design domain T
for metamodel evaluation. These points are checked to ensure
that they are not the same points used in the generation of the
golden model. This would generate artificially small values of
the RMSE. y and ŷ are the responses at point Wni

,Wpj
of

the golden model and the metamodel, respectively.
The generation of the sampling points, SPICE runs and

post-processing calculations are done automatically using a
combination of commercial and in-house tools.

A. Exhaustive Sampling

If the simulation time is not an issue, exhaustive sampling
could be used. With m as the number of variables and n as
the number of runs for each variable, the amount of samples
required to create a metamodel will be mn. The RMSE for a
large m is very small. In this paper, taking in consideration
the width of PMOS and NMOS as variables and running
the simulation for these two variables 100 different times
each, 10,000 simulation results are obtained for the case study
circuits. The RMSE for a metamodel with that number of
runs is minimal. Fig. 11(a) and 11(b) show the surfaces of the
frequency output on the z-axis with Wn and Wp on the x- and
y-axis, respectively. As the calculated RMSE is very small for
this metamodel, it is concluded that the generated metamodel’s
data can be used as the golden model for a comparison for
future simulations. Running this many simulations to receive
an almost perfect metamodel is usually not practical in the

design process. Hence other sampling techniques are explored
to minimize the sampling amount for these two variables to
generate the best metamodel that fits the design for the given
circuit.
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Fig. 11. Exhaustive surfaces for RO and LC-VCO.

B. Random Sampling: Monte Carlo

Monte Carlo or random sampling is a technique which
samples the data for each variable by picking n random data
points with a given probability distribution with mean at the
center of each variable in the design constraint domain T .
Fig. 12 shows the results for the creation of multiple meta-
models with different numbers of samples and their RMSE
results. Note that the RMSE and its standard deviation will
both change each time if the simulation is performed with
the same number of data points, since the data could have
some areas of unsampled points or an over-abundant number
of points in one area which is caused by the uneven distribution
of sampling points in the domain T .
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Fig. 12. RMSE data for Monte Carlo sampling of the Ring Oscillator. The
error bars have unequal lengths due to the logarithmic scale.
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C. Uniform Sampling

Latin Hypercube Sampling (LHS) and Middle Latin Hy-
percube Sampling (MLHS) techniques are common uniform
sampling techniques. There are also many variations which
are derived from these two, such as orthogonal array-based
LHS, symmetric LHS, orthogonal column LHS, and optimal
LHS. Uniform sampling results in more even distribution
which usually has a large effect if the number of samples
is small. Given that the points are more evenly spaced in
the domain T this dispersal of points produces more efficient
coverage than random sampling. Uniform sampling techniques
can deal with a large number of runs and design parameters.
They also are computationally cheap to generate. As shown
in the comparative discussion section, on average both LHS
and MLHS RMSE results are smaller than simply random
sampling technique such as Monte Carlo.

Both LHS and MLHS sampling approaches divide the
domain T into n amount of Latin squares, and a data point is
then sampled from each square. The drawback for both designs
is that the smallest possible variance for the sample mean can
never be reached [3].

1) Latin Hypercube Sampling: Latin Hypercube Design
produces a random point within the generated n amount
of Latin squares on the domain T . This technique provides
more evenly distributed sampling points than random sampling
techniques, but the samples can still be clustered together as
the samples are taken randomly from each Latin square and
they can be adjacent to each other. Considering the same
number of points as the Monte Carlo generated samples,
Fig. 13 shows the RMSE results for LHS metamodels for the
RO.

10
1

10
2

10
3

10
4

106

10
7

10
8

Number of Simulations

F
re

q
u
en

cy
 (

H
z)

RMSE for LHS

Fig. 13. RMSE data for LHS sampling of the ring oscillator circuit.

2) Middle Latin Hypercube Sampling: The Middle Latin
Hypercube Sampling (MLHS) technique is very similar to
regular LHS. It divides the domain T into n amount of
Latin squares, but instead of randomly sampling from each of
those squares, it picks the middle value from each one. This
technique is more uniform than the LHS. The main drawback
is that it is not able to sample the regions close to the edge of
the design space. Considering the same number of points as
the Monte Carlo generated samples, Fig. 14 shows the RMSE
results for LHS metamodels for RO.

D. Design of Experiments Sampling

Design of Experiments (DOE) is a technique that is used
with a large number of variables to profile and generate
a predictive function of the model. A three level DOE
metamodel was created from 9 points, 3 per axis and their
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Fig. 14. RMSE data for MLHS sampling of the ring oscillator circuit.

intersection. The metamodel can only be fitted using a 2nd
degree polynomial function, instead of the 4th as used in the
other examples, due to the small amount of samples. Therefore
the RMSE that was calculated for the DOE metamodel is
considerably larger in comparison to the other techniques.
The RMSE for the RO from the DOE sample was 750 MHz
with a standard deviation of 410 MHz. The highest variance
for the error was 2.11 GHz2, while the RMSE for the LC-
VCO was 193.4 MHz and the standard deviation was 219.4
MHz. The data from both circuits indicates that DOE is not a
competitive sampling technique in terms of accuracy even for
a small number of variables.

E. Comparative Discussion of Sample Data

The resulting response surfaces for the four sampling tech-
niques discussed previously are shown in Fig. 15 for the RO
and in Fig. 16 for the LC-VCO.

Table III shows a quantitative comparison of the RMSE
performance for each method. MC sampling produces higher
RMSE than uniform sampling because it is random and might
not cover the full spectrum of the design space. It is clear
from the data provided in Table III that uniform sampling
provides superior accuracy to random sampling. Designers
should choose LHS or MLHS over MC but the trend in typical
design environments is the opposite. This is probably due to
the simplicity of running MC versus LHS or MLHS. Most
commercial simulators can perform MC with a simple direc-
tive. Uniform sampling, on the other hand, requires extensive
setup and if halted it takes extra effort to recover the design.
However, the improved accuracy is well worth the extra effort.

The RMSE (µ) value is slightly higher for few samples
in LHS and MLHS vs. MC due to the uneven distribution of
points, but as the number of samples increases, the distribution
of samples does not have a large effect. Fig. 17 and 18 show
the results from multiple simulation runs for MC and LHS
techniques in comparison to MLHS. It is shown that the
results are very close to each other, within 1% of the output
frequency for RO. Based on the average RMSE and standard
deviation of errors (σ) data from Table III, it is observed that
LHS performed slightly better than MC and MLHS for both
circuits. The additional random effect for these two techniques
(LHS and MC) provides a slight advantage for a better fitted
metamodel than MLHS.
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Fig. 15. Sampling of the Ring Oscillator Circuit.

F. Comparative Discussion of Metamodels

In this section the metamodels obtained as 1st to 5th
polynomial order are compared. The sampling technique that
was selected for metamodel creation was LHS. This was based
on the observation from the previous section for the best
performing sampling technique. During the design process it
is necessary to allocate time for sampling and verification
of the the data to assess how accurate the metamodel is.
The exhaustive sampling points which were generated in the
previous section were used to verify the accuracy of the
metamodel. As an empirical rule of thumb, approx. 30% of the
sampled data need to be allocated for verification. Table IV
shows the metamodeling generation results for both circuits
using an LHS sample of 100 points. The error distribution is
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Fig. 16. Sampling of the LC-VCO Circuit.

also shown to compare the metamodels.

From the data observed in Table IV we can infer that
for these two circuits, higher polynomial functions show
best results. The generation of metamodels to perform linear
regression only takes seconds so we did not provide the
generation times.

The polynomial metamodel functions are generated for
power and frequency for both circuits. The polynomials inves-
tigated are from 1st order to 5th order. However, for brevity
they are presented for 1st and 2nd order and for the oscillating
frequency only in the following:
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TABLE III
RMSE COMPARISON FOR DIFFERENT SAMPLING TECHNIQUES

Samples MC LHS MLHS
Ring Oscillator

N µ σ µ σ µ σ
(MHz) (MHz) (MHz) (MHz) (MHz) (MHz)

25 57.5 42.9 35.6 19.1 36.0 26.2
50 24.0 12.9 35.2 19.1 27.4 14.8

100 22.1 9.7 20.0 10.7 24.8 14.7
200 15.9 7.3 14.9 9.0 20.5 11.2

1000 14.1 7.2 11.7 7.8 15.4 9.4
5000 8.2 5.6 12.0 5.8 5.9 3.0

Average 23.6 14.3 21.6 11.9 21.7 13.2
LC-VCO

N µ σ µ σ µ σ
(MHz) (MHz) (MHz) (MHz) (MHz) (MHz)

25 35.5 33.4 38.2 36.7 45.0 39.7
50 51.1 41.9 40.5 39.9 38.0 31.9

100 36.6 28.9 30.5 29.3 42.5 38.8
200 37.8 32.7 30.8 36.8 40.3 36.2

1000 28.2 25.9 29.1 26.3 29.8 24.8
2000 27.8 25.3 28.0 24.9 27.9 24.6

Average 36.2 31.4 32.9 32.3 37.3 32.7
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Fig. 17. RMSE comparison of the sampling techniques.

TABLE IV
METAMODEL POLYNOMIAL ORDER COMPARISON

Case Study Polynomial µ error σ error
Circuits Order (in MHz) (in MHz)

Ring Oscillator

1 571.0 286.7
2 195.4 78.1
3 37.2 18.0
4 20.0 10.7
5 17.1 9.6

LC-VCO

1 42.3 40.1
2 39.4 37.8
3 35.4 33.9
4 30.5 29.3
5 26.5 25.2
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Fig. 18. STD Comparison of the sampling techniques.

Ring oscillator – Order 1:

f(Wn,Wp) = 7.94× 109 + 1.1× 1016Wn

+1.28× 1015Wp. (7)

Ring oscillator – Order 2:

f(Wn,Wp) = 6.38× 109 + 2.2× 1016Wn

+6.1× 1015Wp − 5.03× 1022W 2
n (8)

+3.28× 1022WnWp − 1.52× 1022W 2
p .

LC-VCO – Order 1:

f(Wn,Wp) = 2.38× 109 − 3.49× 1012Wn

−6.66× 1012Wp. (9)

LC-VCO – Order 2:

f(Wn,Wp) = 2.3× 109 + 6.25× 1011Wn

+1.45× 1011Wp − 4.16× 1016W 2
n (10)

−2.01× 1017WnWp − 1.02× 1017W 2
p .

This paper only considers polynomial functions for the
metamodel. Once the sample data are generated, there can be
many other forms of functions that can be used for fitting, such
as exponential functions, logarithmic functions, trigonometric
functions, power functions, Gaussian function, and Lorentzian
curves. Since the target of this paper is sampling, they are
not covered here. The metamodels will be used for fast
design optimization and verification of complex circuits. It
is observed that the optimization over metamodels can have
significant speed-up over the actual circuit netlists [23].

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, a novel design flow using metamodels is
introduced. The most important aspect of the flow, the cre-
ation of a metamodel using statistical sampling is thoroughly
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presented. A comparison is presented for commonly used
sampling techniques using a nano-CMOS ring oscillator in
45 nm technology and an LC-VCO in 180 nm technologies as
case studies. The presented design flow can be used to speed
up the design process of nanoscale circuits in general. The
frequencies of the RO and LC-VCO were used as objective
functions for target specifications. It was shown that the
parasitic effects play a major role in the circuit’s response.
A thorough analysis for various sampling data rates and
methods demonstrates that uniform sampling techniques have
better overall performance (in terms of accuracy) than the
randomized and DOE sampling techniques. Whether LHS or
MLHS is more appropriate for a particular design depends on
whether edge effects are important or not. It is observed that
LHS is typically preferable over MLHS because it covers the
design space uniformly, while, at the same time, providing for
a small amount of randomness in the samples. Also LHS has
a chance to cover the edges of the design space while MLHS
does not. It is worthy to note that during this study it is shown
that both sampling techniques and metamodeling generation
are technology independent. The second part of the study
concentrated on how to select a more accurate metamodel
using already sampled data. For two different circuits, it
was determined that higher order polynomials provide better
overall fit and smaller mean error and error distribution.

Our future research will include specific optimization tech-
niques as part of the proposed design flow. Future research
will also involve analysis of other functional forms for meta-
modeling. Extensive study of metamodeling-based optimiza-
tion for a large number of design variables for more com-
plex nano-CMOS circuits will be performed. Process-Voltage-
Temperature (PVT) variation analysis and mitigation during
the design process using metamodels will be also investigated.
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