
1

Enhanced Statistical Blockade Approaches for Fast
Robustness Estimation and Compensation of

Nano-CMOS Circuits
Luo Sun1, Jimson Mathew2, Dhiraj K. Pradhan3, and Saraju P. Mohanty4

Department of Computer Science, University of Bristol, Bristol, UK.1,2,3

NanoSystem Design Laboratory (NSDL), University of North Texas, Denton, TX 76203, USA.4

E-mail ID: sun@compsci.bristol.ac.uk1, jimson@compsci.bristol.ac.uk2,
pradhan@compsci.bristol.ac.uk3, and saraju.mohanty@unt.edu4

Abstract

The challenges to design engineers have been complicated due to the introduction of nanoscale process variation into the
design phase. One of the ways to analyze the circuit behaviors under process variation is to determine the rare events that may
be originated due to such process variation. A method called Statistical Blockade (SB) had been investigated to estimate the rare
events statistics especially for high-replication circuits [1]. An enhanced statistical blockade method is proposed in this paper which
is shown to be much faster compared to the traditional exhaustive Monte Carlo simulation. In SB, the classification threshold
determination is quite important for different tail regions which is related to the number of rare events simulation. This paper
presents the values of classification thresholdtc for different tail regions of typical circuits and the training samples sizen required
for correspondingtc. It offers both fastest speed of simulation and highest accuracy forthe proposed Statistical Blockade method.
It is also proven that the obtainedtc can be used for all the technology corners. The enhanced statistical blockade method thus
performs fast estimate the robustness for different designs. In the proposed method, the tail part of the whole distribution is used
in estimation; thereby saving time. It shows 7.3× faster than traditional evaluation methods. Furthermore, for the design which
is proved to be robust even in worst-case, the optimal body bias voltage isapplied to improve the performance and power while
reducing the variability with Adaptive Body Bias (ABB) technique.

Index Terms

Statistical Blockade Method, Robustness Circuits, Nanoscale CMOS, Arithmetic Circuits, Monte Carlo, Rare Event

I. I NTRODUCTION

The CMOS technology continues to scale down to nanoscale domain achieve higher performance and higher level of inte-
gration. The impact of process variations on performance has been increasing with each semiconductor technology generation.
The technology scaling has resulted in significant deviations from the nominal values of transistor parameters, such aschannel
length and threshold voltage [2]. For example, variation ingate length increases from35% in 130 nm technology to almost
60% in 65 nm technology. The parameter variations result in the large variation in leakage and performance of the designed
circuit. Traditional corner model based analysis and design approaches provide guard-bands for parameter variations. Therefore,
these approaches are prone to introducing pessimism in the design [3]. Computer-Aided Design (CAD) tools have traditionally
use for handling corner analysis, under the assumption of fixed or deterministic circuit parameters. However, in nano-CMOS
circuits small variations due to inaccuracies in the manufacturing process can cause large relative variations in the behavior of
the circuit. For example, 10,000 runs of a Monte Carlo simulation for delay variation in a 16-bit adder for 20% variation in
threshold voltage and gate oxide thickness is shown in Fig. 1.

The process variations in the nano-CMOS technology are classified into the following two types: inter-die variations are the
variations from die to die and intra-die variations correspond to variability within a single chip. Inter-die variations affect all the
devices on the same chip in the same way, e.g., making the transistor gate lengths of devices on the same chip all larger or all
smaller. On the other hand, the intra-die variations may affect different devices differently on the same chip, e.g., making some
devices have smaller transistor gate lengths and others larger transistor gate lengths [4]. In the past, the inter-die variations
dominated intra-die variations, so that the latter could besafely neglected. However, in modern nanoscale technologies, intra-die
variations are rapidly and steadily growing and can significantly affect the variability of performance parameters on achip.
The increase in intra-chip parameter variations is due to the effects such as microloading in the etch, variation in photoresist
thickness, and optical proximity effects. Intra-die variation is spatially correlated. It is locally layout dependent and circuit
specific, i.e., devices with similar layout patterns and proximity structures tend to have similar characteristics. Itis globally
location dependent, i.e., devices located close to each other are more likely to have the similar characteristics than those placed
far away [4].
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Fig. 1. 10,000 MC Simulation for Delay variation in 16-bit adder for 20% variation in gate oxide thickness and threshold voltage

The novel contributions of this paper to the state-of-the art are as follows:

1) The Statistical Blockade [1] is investigated as a faster Monte Carlo technique.
2) The enhanced Statistical Blockade algorithms are proposed to obtain the minimal classification thresholdtc for different

tail portions and optimal training samples size for the correspondingtc. These guarantee the fastest speed and highest
accuracy of the prediction.

3) The obtained minimal classification thresholdtc of each tail part can be applied to all the technology cornersfor both
high-performance applications and low-power applications.

4) A novel method is proposed for estimating the robustness of different nano-CMOS Arithmetic Circuits. This method is
combined with an implementation of Statistical Blockade toachieve significant reduction in the computational costs.

5) After picking up the design with worst tolerant ability under process variation, a method is used to compensate the yield
loss of the design with Adaptive Body Bias (ABB) technique.

The rest of this paper is organized as follows. Section II describes the related previous related research. In Section III,
the basic definitions and notations of Statistical Blockademethod is presented. Section IV describes the improved Statistical
Blockade algorithms for minimal thresholdtc and optimal training samples sizen. In Section V, a novel method based on
improved Statistical Blockade algorithms is proposed to evaluate the design robustness. Section VI shows the basic simulation
approach. Section VII shows the experimental results. The conclusions are drawn in Section VIII.

II. RELATED PRIOR RESEARCH

Recently developed statistical static timing analysis (SSTA) tools have recognized these unavoidably random aspectsof
manufacturing variations and have attempted to account forthem using simple models that are computationally inexpensive.
In [5], the authors use a linear model for the gate delay as a function of varying gate parameters. In [4], [6], the authors
recognize the impact of spatial correlation between gates and use simple grid-based models to represent this correlation. Also
use Principal Components Analysis (PCA) to extract uncorrelated parameters from this correlation model, and builds the gate
timing models using these uncorrelated components. Several analytical and semi-analytical approaches have been suggested to
model the behavior of SRAM cells and digital circuits in the presence of process variations. All suffer from approximations
necessary to make the problem tractable Monte Carlo analysis (MC) is one of the standard techniques used for statistical
modeling. Standard Monte Carlo techniques are, by construction, most efficient at sampling the statistically likely cases. When
used for simulating statistically unlikely or rare events,these techniques are extremely slow. In [1], authors proposed Statistical
Blockade (SB) as a Monte Carlo technique that allows us to efficiently filter to block unwanted samples insufficiently rarein the
tail distributions. The method imposes almost no a priori limitations on the form of the statistics for the process parameters,
device models, or performance metrics. The key observationbehind Statistical Blockade is that generating each sampleis
not expensive as the parameters for a circuit are created on the fly. The current archival journal paper is based on a shorter
conference publication with significantly more materials [7].

III. T HE STATISTICAL BLOCKADE METHOD

The statistical blockade method has been used to efficientlygenerate samples in the tail of the distribution of the performance
metric of a circuit [1]. Standard Monte Carlo that generatessamples using the complete distribution is not suitable forthis
purposes. A flow chart for the Statistical Blockade method isshown in Fig. 2.
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Fig. 2. Flow chart for the Statistical blockade method.

The key idea is to define a region in the design parameter spacethat results in the circuit performance values greater than
threshold (t). Then only those Monte Carlo samples that lie in the tail region are simulated while blocking the body samples.
For example, if the tail threshold is the99% point of the distribution then only one out of 100 simulations is useful; thus
resulting in an immediate speedup of 100× over standard Monte Carlo. A small Monte Carlo sample set (e.g. 1000 points) is
used to train a classifier to identify the tail points. However, it is difficult to classify all the tail points to build the accurate
tail model for high-dimensional data. Thus, a relaxed boundary of the classifier which is denoted as classification threshold
(tc) is applied to block most unwanted points. A specific example, tc is the97th percentile to extract1% tail samples (i.e.t
= 99%), based on empirical analysis of the tradeoff between classifier accuracy, simulation time, and tail model fit [8].

The classifier used in the current paper is named Support Vector Machine (SVM) [9], which is implemented using LIBSVM
[10], SVMlight [11] or WEKA [12]. The simulated data are divided into two classes: body region and tail region. Therefore, the
C-Support Vector Classifier is chosen [13], [14]. The four basic kernels of SVM are as follows: linear, polynomial, radial basis
function (RBF), and sigmoid. The RBF kernel is a good choice as it can non-linearly map samples into a higher dimensional
space. One important modification for the classifier is the increment of the tail weight. The number of body points is much
more than the tail samples. The classification error is very low as long as all the body points have been classified correctly no
matter whether the tail points are misclassified. So the classifier is biased to the body points by default. Thus, the classification
error should be reversed by increasing the weight of the tail. Training of an aforementioned classifier using a small set of
2-dimensional samples (n = 1000) by varying threshold voltages for a NAND gate is shown in Fig. 3. Then the randomly
generated samples are classified by the trained SVM classifier into two categories shown in Fig. 4.
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Fig. 3. Initial Training Samples for a Classifier.

The tail circuits do not follow the Gaussian statistics after the classification is performed. An important observationthat can
be used is that the conditional distribution of the events inthe tail region trend toward a generalized Pareto distribution (GPD)
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Fig. 4. Classification of Monte Carlo Generated Samples.

from the extreme value theory (EVT) [15],. Thus, the fitting of a generalized Pareto distribution (GPD) is required to build the
tail model for calculating the coefficients of GPD, shape parameterα, and scale parameterβ. The tail model is the cumulative
distribution function (CDF) of the GPD. Statistical blockade filtering and generalized Pareto distribution (GPD) modeling is
performed using the following steps [16]:

1) Perform initial sampling to generate data to build a classifier. This initial sampling can be standard MC or importance
sampling. Also estimatet and tc < t from this data.

2) Build a classifier using the classification thresholdtc.
3) Generate more samples using MC, following the CDFF , but simulate only those that are classified as tail points. Update

the estimate oft.
4) Fit GPD model to the simulated tail points.

There are significant practical problems with the techniqueproposed originally. Extensions to make statistical blockade
practically usable in common scenarios is proposed in [17].In statistical blockade, the classification threshold selection becomes
very important for different tail regions which is related to the number of rare events simulation. The classification threshold
and number of training samples may result in inaccurate tailmodel and slow simulation speed. Thus, the following research
questions need to be answered for an efficient statistical blockade method that can be practically useful:

1) What is the minimal value of classification threshold that can ensure all the true tail points be covered in a loosely
defined boundary?

2) What is the minimum number of initial sampling required to cover the given tail points?

An effective way to the problem of finding the minimum threshold of classifiertc for the given tail part and the minimum
number of samplesn required for corresponding classification threshold will be described in the next section. There are two
main problems focussed:

1) One is the appropriate classification thresholdtc for different tail regions - 3%, 2% and 1%.
2) The other one is the minimal training samples size for given classification thresholdtc.

IV. I MPROVED STATISTICAL BLOCKADE ALGORITHMS

The proposed steps to measure the thresholdtc of the classifier for the corresponding tail region is shown in Algorithm 1.
The training samples size used is 2000. The function Fsim(N ) runs 10,000 Monte Carlo simulation.Y is a vector of output
values; e.g. delay of an adder. The function percentile (Y , t) calculates the value of delayV for the corresponding tail threshold
t. The function size (Ytail) is used to count the number of tail points afterY compared withV . These steps are also used
to select tail points from full Monte Carlo simulation by empirical method. If thresholdt is defined as 99% point in 10,000
points, tail count should be approximately 100. The values of V and S for different tail thresholdst in the test case of an
8-bit adder is listed in Table I.

TABLE I

THE TAIL POINTS SIZE AND DELAY OF CORRESPONDINGTHRESHOLD FORDIFFERENTTAIL REGIONS IN 10,000 MC POINTS OF8-BIT ADDER.

Tail Threshold (t) 97% 98% 99%

Delay for Corresponding 6.1180ns 6.1740ns 6.2890ns
Threshold (V )

Tail Points Size (S) 299 204 100
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Algorithm 1 For choosing minimal classification thresholdtc for given tail thresholdt.
1: Assume: training sample sizen0 (e.g.,n0 = 2,000); total sample sizeN (e.g.,N = 10,000). // Generate 10,000 MC points in statistical

parameter space.
2: Y = Fsim(N ) // Simulate 10,000 MC samples.
3: V = Percentile(Y , t) // Find the valueV for the tail thresholdt according to the measurement data.
4: Ytail = {Yi ǫ Y : Yi > V } // Count the number of the tail.
5: S = Size(Ytail) // S is the tail size of the 10,000 MC samples.
6: for all tc = t do
6: // Initially let tc equal tot, therefore no safety margin given.
7: x = MonteCarlo(n0) // Randomly pick 2000 MC samples up from 10,000 points as training set.
8: y = Fsim(x) // Simulate 2000 training samples.
9: Vc = Percentile(y, tc) // Find the valueVc for the tail thresholdtc.

10: C = BuildClassifier(x, y, Vc) // Train a classifierC using training setx and classification threshold valueVc.
11: ytail = Fsim(Filter(C, N )) // Extract the tail points by the classifierC from the same 10,000 MC samples.
12: ytail,true = {yi ǫ ytail: yi > V } // Select the true tail points.
13: Sc = Size(ytail,true) // Sc is the number of the classified tail points from 10,000 samples.
14: if Sc < S then
14: // If Sc < S, it means the classifierC is not able to extract all the tail points.
15: t = t -1% // Increase the safety margin by 1% each cycle.
16: Repeat
17: else
18: tc = t
19: end if
20: end for

The step-7 to step-12 of the algorithm is the typical Statistical Blockade method [18]. The function Monte Carlo (n0)
randomly picks up 2000 training samples fromN . For an 8-bit adder,x is a 2000× 4 matrix, since there are 4 variables to
be varied. Each row of matrixx is a point in 4 dimensions.y is a vector of output values from simulation of training samples.
Vc is the value of delay for classification thresholdtc. It is computed fromy. The function BuildClassifier (x, y, Vc) trains
and returns the SVM classifierC using training data packagey and classification thresholdtc. First it is assumed thattc = t.
The function Filter(C, N ) filters out the non-tail points inN by the classifierC. Only the tail points classified byC will be
simulated using the function Fsim(Filter(C, N )). Since classification thresholdtc is usually smaller than the real tail threshold
t, there are some safety margin withtc. The current tail points are not the real tail points we want.Then the false tail points
are eliminated by comparing withV , the value of output metric for the given tail thresholdt in full MC simulationN . Finally,
the tail points sizeSc is obtained by Statistical Blockade method from the same 10,000 samples.Sc is compared with the real
size of tail pointsS which is obtained in step-5. IfSc < S, that means not all the tail points can be collected usingtc as the
classification threshold. Then the safety margin fortc is increased. For each cycle, safety margin is increased 1% till Sc is
equal toS to get all tail points. At last,tc is the minimal classification threshold for the corresponding tail region.

The minimal number of training samplesn for the fixed classification thresholdtc is chosen using Algorithm 2. The number
of training samples can not be less thann for a giventc when SB method is applied to build the tail model. Otherwise the
tail model will not be accurate enough, since not all the tailpoints are considered. The full tail points sizeS is obtained from
Step-2 to Step-5 in Algorithm 2 which are the same with Algorithm 1. The cycle (Step-6∼ Step.15) is used to collect values
of Si (i = 1, 2, ... , 20) when the training sample sizen is 100, 200, 300, ... , 2000, respectively (n = i × 100). Si is the
number of selected tail points when SB method is applied. Thefunction Find(Si = S andSi+1 = Si+2 = ... = S20 = S) gets
the value ofi whenSi = Si+1 = Si+2 = ... = S20 = S. It implies that full tail pointsS can be classified through classifierC

when initial training sample sizen is i × 100. And with increasing of training samples sizen, the number of extracted tail
points (Si+1 ∼ S20) remain stable - all equal toS. Finally the minimal number of training samplesn for the fixed threshold
tc is n = i × 100.

V. THE INTELLIGENT STATISTICAL BLOCKADE APPROACHFOR TOLERANT ABILITY ESTIMATION

In this section, an intelligent method with improved Statistical Blockade algorithm is proposed to estimate tolerant ability
of different FA cells based 16-bit ripple-carry adders (RCAs).

A. The Example Arithmetic Circuit: Full Adder For Alternative Logic Styles

There are varieties of static CMOS logic styles which have been proposed to implement 1-bit full adder cells [19]. These
designs can be mainly divided into two categories: complementary CMOS logic and pass transistor logic circuits.

A complementary CMOS FA (C-CMOS) cell is shown in Fig. 5(a). It is based on the regular CMOS structure with PMOS
pull-up and NMOS pull-down. The advantage of C-CMOS FA is itsrobustness against the supply voltage scaling and transistors
sizing. The FA cell in Fig. 5(b) is the complementary pass transistor logic full adder cell (CPL). The difference betweenpass
transistor logic and C-CMOS logic is the source of the pass transistor connects to the input signal instead of connectingto
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Algorithm 2 For choosing minimal number of training samplesn for the fixed thresholdtc.
1: Assume: Initial training sample sizen0 (e.g., n0 = 100); total sample sizeN (e.g., N = 10,000). // Generate 10,000 MC points in

statistical parameter space.
2: Y = Fsim(N ) // Simulate 10,000 MC samples.
3: V = Percentile(Y , t) // Find the valueV for the tail thresholdt according to the measurement data.
4: Ytail = {Yi ǫ Y : Yi > V } // Count the number of the tail.
5: S = Size(Ytail) // S is the tail size of the 10,000 MC samples.
6: for all (i = 1; n0 ≤ 2000; i++) do
6: // Initially set 100 training points.
7: x = MonteCarlo(n0) // Randomly pickn0 MC samples up from 10,000 points as training set.
8: y = Fsim(x) // Simulate these training samples.
9: Vc = Percentile(y, tc) // Find the valueVc for the tail thresholdtc.

10: C = BuildClassifier(x, y, Vc) // Train a classifierC using training setx and classification threshold valueVc.
11: ytail = Fsim(Filter(C, N )) // Extract the tail points by the classifierC from the same 10,000 MC samples.
12: ytail,true = {yi ǫ ytail: yi > V } // Select the true tail points.
13: Si = Size(ytail,true) // Si is the number of the classified tail points from 10,000 samples.
14: n0 = n0 + 100 // Increase the training set size by 100 each cycle.
15: end for
16: Find(Si = S andSi+1 = Si+2 = ... = S20 = S) // Obtain the value ofi.
17: n = i * 100 // The minimum number of training samples is equal toi * 100.
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the power lines. A single pass transistor can implement the logic function resulting in smaller count transistors and smaller
input load. However, the pass transistor logic meets a threshold voltage drop problem. Thus, the inverters have to be employed
to ensure the drivability. Fig. 5(c) shows a transmission-function full adder (TFA) by using 16 transistors. Fig. 5(d) is a 20
transistors transmission gate full adder (TGA). Both of them belong to pass transistor logic circuit. This type design employs
PMOS and NMOS in parallel and the signal can pass though the transistors when they are on simultaneously. Therefore, this
design has nothing to do with the voltage drop problem. Moreover, less number transistors designs have been proposed as
well, for example 10-transistor full adder as shown in Fig. 5(e).

B. The Proposed SB Method Using Improved Algorithms

The steps of the proposed statistical blockade approach using and improved approach are shown in Algorithm 3:

Algorithm 3 Intelligent Statistical Blockade for Robustness Estimation.
1: Compute the delay times of 5 RCAs with their nominal values for a single run.
2: Make the delay times to the target value through transistor sizing.
3: Use improved SB method to pick up1% tail points from10, 000 generated MC points and simulate the extracted tail

points.
4: Extract true tail points to the Conditional Cumulative Distribution (CDF).
5: Calculate the coefficientsα andβ for Generalized Pareto Distribution (GPD) approximationGα,β with the above.
6: Compare the CDFs of 5 RCAs for the robust abilities estimation.

In the 1st step of proposed algorithm, it shows how to adjust the delay time using transistor sizing approach:

1) Set all the transistors (NMOS and PMOS) to the minimum size. (45 nm for channel length and90 nm for channel
width in 45 nm BPTM)

2) Simulate5 16-bit RCA designs for a single run with nominal values of variables to measure the initial delays. Set a
target delay time according to the measured nominal delays.

3) Figure the transition with the highest delay (from1st bit carry in to16th bit carry out) and mark the transistors in that
are involved.

4) Change the channel width of the transistors which are involved in the critical path to adjust the5 initial delay times to
the target value.

The channel widths of the marked transistors in the criticalare listed in the Table II for 5 RCAs.

TABLE II

CHANNEL WIDTH OF TRANSISTORS INVOLVED IN CRITICAL PATH AFTERTRANSISTORSIZING .

RCA C-CMOS CPL TFA TGA 10T

Channel Width (nm) 83.2 90 239.3 206.3 178.9

In the2nd step, the Support Vector Machine (SVM) classifier presentedin [20] is considered as the classification tool in SB
implementation. To achieve the fastest simulation speed and highest accuracy, the algorithm proposed in Section IV is applied
to find out the minimal classification thresholdtc and the optimal number of training samplesn. The SB method withtc andn

is used to extract 1% tail points from the generalized MC points. Then the true tail points can be selected after the simulation
of extracted tail points. The values oftc andn are shown in Table III.

TABLE III

M INIMUM CLASSIFICATION THRESHOLDtc AND OPTIMAL TRAINING SAMPLE SIZE n FOR 1% TAIL SELECTION

RCA C-CMOS CPL TFA TGA 10T

Minimum Classification 2% 2% 2% 2% 2%
Thresholdtc

Optimal Training 700 900 1300 1300 1100
Sample Sizen

In Step-3, the maximum likelihood estimation (MLE) is used to fit GPD to the 1% tail data to build the CDF tail model.
For fitting the GPD model, two GDP coefficientsα andβ need to be computed by MATLAB function. After building the tail
models, the comparison can be done in Step-4 and the detailedanalysis will be described in the following section.

VI. EXPERIMENTAL RESULTSOF THE PROPOSEDALGORITHMS AND METHOD

In this section, the details of the experiments and the experimental results are presented.
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A. Experiments And Results For The Improved Statistical Blockade Algorithms

In this experiment, an 8-bit adder in 45nm BPTM is consideredas the test case. Monte Carlo simulation of 10,000 runs
were performed with global, Gaussian distributed threshold voltage and gate oxide thickness with 20% variation. The metric
measured is the delay time for the 8-bit adder.

Fig. 6 shows the number of 1% tail points (tail thresholdt = 99%) collected in casestc is equal to 99%, 98% and 97%
with training sample size increasing from 100 to 2000 for the8-bit adder. The full 1% tail size of 10,000 samples is 100 as in
Table I. From Fig. 6, it is evident that it is unable to pick up all the tail points whentc = 99% no matter how many samples
have been used for training. In casetc = 98%, 100 tail points can be obtained as well astc = 3%. The principle of how to
choosetc in Algorithm 1 is to make the safety margin as small as possible. Otherwise the number of the simulation for tail
points will increase significantly. For example, for a million MC points, if the selectedtc has 1% more safety margin, it means
about 10,000 more simulations will be needed. Thus, the bestvalue of tc is 98% to select 1% tail points.
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Fig. 6. True Tail Points obtained with 100∼2000 Training Samples for Different Classification Threshold.

After tc is chosen, the minimal training sample size fortc = 98% is needed. Fig. 7 indicates when full tail points can be
extracted in casestc = 99%, 98% and 97%. All 100 tail points are collected from the points (arrow in Fig. 7), and the following
extracted tail points sizes all equal to full tail size - 100 in casetc = 98%. The training sample size in that point is 900. So
the minimal number of training points is 900. The overall results are in Table IV.
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The conditional Cumulative Distribution (CDFs) of tail points between empirical method and statistical blockade using the
values from Table IV is compared in Fig. 8. It shows a good match of two CDFs. The empirical method needs 10,000 Monte
Carlo runs. In statistical blockade method, 344 tail pointsare picked up after classification (tc = 98%). Another 900 runs are
used to train the classifier. Totally it needs 1244 (344 + 900)Monte Carlo simulations. Note that, iftc = 97% is chosen here,
the total number of simulation, 865 (565 + 300), is even fewer. Since it is only for 10,000 Monte Carlo samples, which is
impossible in industry. For large quantities of Monte Carlopoints, the simulation size oftc = 98% is significantly fewer thantc
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TABLE IV

M INIMAL CLASSIFICATION THRESHOLD AND M INIMAL NUMBER OF TRAINING SAMPLES REQUIRED FOR1% TAIL OF 8-BIT ADDER.

Tail Threshold (t) 99%

Minimal Classification
Threshold (tc) 98%

Minimal Training
Samples Size (n) 900

= 97%. For 10,000 Monte Carlo simulation, it shows 10× speedup compared with empirical method. While it can demonstrate
much higher speedup for millions or billions of Monte Carlo samples.
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Fig. 8. Adder Delay Analysis: Empirical versus Statistical Blockade.

Then values oftc and n are obtained by repeating above processes for 2% and 3% tailsfor an 8-bit adder. Thetc and n

for the test case are indicated in Table V. The minimum classification thresholdtc is 98% and at least 900 training samples
are needed to build 1% tail model (tail thresholdtc = 99%). For extracting 2% tail,tc is no larger than 97% and 800 samples
should be used for training. When tail thresholdt is 97%, the appropriatetc is 96% and minimum initial training samples size
is 1200.

TABLE V

M INIMAL CLASSIFICATION THRESHOLD AND M INIMAL NUMBER OF TRAINING SAMPLES REQUIRED FORDIFFERENTTAILS OF 8 BITS ADDER.

Blocks Tail Threshold (t) 99% 98% 97%

8-bit Minimal Classification Thresholdtc 98% 97% 96%
Adder Minimal Training Sample Sizen 900 800 1200

Then the improved statistical blockade algorithms are tested by another typical high-replicated circuit, 6-transistor SRAM
shown in Fig. 9 to check if the obtainedtc andn can be used for all technology corners. The 6-transistor SRAM is designed
in 45nm, 32nm, 22nm and 16nm models for both high-performance applications and low-power applications. The values of
tc andn for each technology corner is shown in Table VI. As can be seenfrom Table VI, the classification thresholdstc of
different tail regions, 1%, 2% and 3%, are the same for all thelisted technology corners. However, the number of training
samplesn required for corresponding classification threshold are fluctuated.

B. Experimental Evaluation For Proposed Statistical Blockade Approach

The test platform [21] for the delay measurement of five 16-bit RCAs is shown in Fig. 10. The shown 4-bit ripple-carry
adder in Fig. 10 is cascaded by 4 FA cells, with the carry output of the current full adder connecting to the next bit full adder
input in the chain. It starts fromX0 andY0 which represent the least significant bits of the numbers to be added and the output
is sum0, sum1, sum2 andsum3. The 16-bit RCA is based on the same principle.

The buffers which consist of two cascaded inverters are connected to the input signals and outputs. The inputs are fed from
buffers to give more realistic signals. The outputs are loaded with buffers to provide proper loading conditions to ensure the
fairness of the comparison. The attached buffers for the outputs can be also used to solve the threshold voltage drop problem
caused by the pass transistor logic, thus, to enhance the driven capability.

During the Monte Carlo simulation, the variables to be varied are threshold voltage (Vth) and gate oxide thickness (Tox)
for NMOS and PMOS transistors. Thus, there are 4 variables involved in the simulation. The output metric to be measured is
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Fig. 9. Schematic of a 6T SRAM cell

TABLE VI

M INIMAL CLASSIFICATION THRESHOLD AND M INIMAL NUMBER OF TRAINING SAMPLES REQUIRED FORDIFFERENTTECHNOLOGY CORNERS OF6T

SRAM.

Technology Corners Tail Threshold (t) 99% 98% 97%

45nm Minimal Classification Thresholdtc 98% 97% 96%
HP Minimal Training Sample Sizen 800 900 800

32nm Minimal Classification Thresholdtc 98% 97% 96%
HP Minimal Training Sample Sizen 1000 900 800

22nm Minimal Classification Thresholdtc 98% 97% 96%
HP Minimal Training Sample Sizen 900 1100 1000

16nm Minimal Classification Thresholdtc 98% 97% 96%
HP Minimal Training Sample Sizen 1200 1300 1100

45nm Minimal Classification Thresholdtc 98% 97% 96%
LP Minimal Training Sample Sizen 700 800 900

32nm Minimal Classification Thresholdtc 98% 97% 96%
LP Minimal Training Sample Sizen 900 800 900

22nm Minimal Classification Thresholdtc 98% 97% 96%
LP Minimal Training Sample Sizen 1000 900 1100

16nm Minimal Classification Thresholdtc 98% 97% 96%
LP Minimal Training Sample Sizen 1100 1300 1200

the delay time (Td) of the 16-bit RCA. In each run, the delay time is measured from 50% of input voltage swing (carry in of
1st bit) to 50% of output voltage swing (carry out of16th bit). The variations of the variable parameters are considered to be
Gaussian distributed with10% variation and a deviation of±3σ around their nominal values.

In statistical blockade based estimation,1% tail points have been extracted from 10,000 generated MonteCarlo points.
Fig. 11 is the distribution of the delay time for1% true tail points of 16-bit C-CMOS RCA. As shown in the distribution, the
threshold of delay for1% is 7.2 ns. i.e., for 1% tail, the threshold of99% delays is7.2 ns. It also can be seen clearly that
the tail points are no longer Gaussian distributed. The extracted tail data are required to fit of GPD, since GPD is a highlyleft
skewed distribution and especially suitable for the tail data fitting.

After the simulation of extracted tail points, the true oneswill be selected and used to compute the coefficientsα andβ of
GPD to build the CDF tail model. The coefficients are calculated by the MATLAB function. The conditional CDFs of1% tail
points plotted by empirical method and statistical blockade method are compared in Fig. 12. It shows a good match between
two CDFs. The value of horizontal axis is the exceedance of delay, i.e., the values of the delays for1% tail points. For the tail
points which delay time is7.4 ns, the exceedance is0.2 ns. The vertical axis is the predicted possibilities for the tail points
from the model.

Fig. 10. Test Bench used to perform the experimental evaluations.
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Fig. 11. Delay distribution of 1% tail for 16-bit C-CMOS.
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Fig. 12. CDFs for tail points: Empirical Method vs. SB approach.

The comparison of CDFs between 16-bit C-CMOS and 16-bit 10-transistor RCA is shown in Fig. 13. The tail model with
full curve is C-CMOS FA based 16-bit RCA and the dashed curve is 10-transistor based. As shown in the diagram, for the tail
points which exceedance of delay time is less than or equal to0.2 ns, the possibilities are 60% for C-CMOS RCA and 43%
for 10-transistor. For the tail points which exceedance is over 0.2 ns, their possibilities are 40% and 57%, respectively. Thus,
the delay distribution of 10-transistor RCA has a longer tail than C-CMOS and the distribution of C-CMOS is more tighten.
Obviously, for a given delay threshold, the 10-transistor RCAs yield loss due to violation of timing requirement is higher than
C-CMOS. Then, we can say the C-CMOS based 16-bit RCA is robustbetter than 10-transistor based RCA.

The improved SB method is applied to pick up 1% tail points to build the CDF tail models for 5 considered RCAs. Fig. 14
shows the comparison of 5 tail models. Through the analysis of the tail models, the sequence of tolerant ability is: C-CMOS
> TFA > TGA > 10T > CPL.

To prove the correctness of SB method based estimation, two other variability estimation approaches have been applied to
the same 5 RCAs. First, the full MC simulation based robustness estimation has been done by computing the standard deviation
and variance of the simulated 10,000 MC points. The standarddeviation and variance for the 5 designs is listed in Table VII.
As can be seen from the table, the result is the same with the proposed SB method based estimation.

The approach proposed in [22] has been used to show the robustness under process variation of the 5 different RCAs.
The impact of process variability was evaluated through MC simulations performed on 10,000 samples under different supply
voltagesVDD. The ratio between the maximum spread3σ and the mean valueµ (i.e., 3σ/µ) was considered as a measure
of tolerant ability of each design. As can be easily observedin Fig. 15, the delay variability is reduced for higher power
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supply voltages. The CCMOS based RCA is the less PV delay sensitive circuit. (its delay variability ranges from 5.6%@0.8V
to 3.5%@1.2V). In contrast, the CPL based RCA is the most PV delay sensitive structure. Its delay variability ranges from
9.7%@0.8V to 5.2%@1.2V. This is resulting from 1.50× to 1.73× more delay sensitive with respect to CCMOS based RCA
structure. Also, the estimation result is the same as the twoprevious results.

For the above mentioned approaches, both of them require totally 50,000 MC simulations for the robustness estimation of
5 RCAs (10,000 simulation for each RCA). And for proposed SB based estimation method, the number of simulations for
each design is the sum of training sample size listed in TableIII and the number of extracted tail points through classification
shown in Table VIII.

From Table VIII, the total number of MC simulations requiredby proposed SB based estimation method is 6845. It is up to
7.3× faster than the other two methods. In other words, it only takes 13.89% running time of two aforementioned approaches.

TABLE VII

STANDARD DEVIATION AND VARIANCE FOR 5 RCAS

RCA C-CMOS CPL TFA TGA 10T

Standard 3.6002 7.7530 4.6593 5.7400 6.6522
Deviation e-010 e-010 e-010 e-010 e-010

1.2962 6.0109 2.1709 3.2947 4.4251
Variance e-019 e-019 e-019 e-019 e-019
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TABLE VIII

NUMBER OF MC SIMULATIONS REQUIRED BY PROPOSEDSB BASED ESTIMATION APPROACH

RCA C-CMOS CPL TFA TGA 10T

Extracted tail Points 321 313 295 306 310
Total MC Size 1021 1213 1595 1606 1410

VII. A DAPTIVE BODY BIAS (ABB) FOR Y IELD COMPENSATION

Through the comparison of robust ability for different designs, the design which is robust worst has been picked up. How
to reduce the variability and improve performance subject to a power constraint, and thus, improve the yield loss for a chosen
design?

Adaptive Body Bias (ABB) is used to compensate for parametervariation, which reduce variability and improve performance
and power consumption. The bias for PMOS transistor trends to be forward biased to improve the circuit performance with the
threshold voltage increasing. While the bias for NMOS transistor is reverse biased to reduce the leakage current, thus reduce
the power consumption with the threshold voltage decreasing. However, ABB has its own drawback: it requires an additional
on-power distribution networks for body voltage, and thus,occupy additional silicon area.

In above experiments, CPL RCA is proved to be the robust worst. Thus, ABB is applied to improve its tolerant ability
under process variation and also enhance the circuit performance. All the bulks of PMOS transistors in 16-bit CPL PCA are
connected to the body bias voltageVp and all the NMOS bulks are connected toVn. In this paper, the optimum combination
for Vp and Vn has been selected to achieve the best performance and power consumption for a trade off and improve its
robustness. [23] suggests the range of the body bias voltagebeing±20% of the nominal supply voltage (1.1V) mainly due to
the fact that we would like to provide enough noise margin forbody bias voltage signal in order not to allow the possibility
of crossing the forward threshold of the transistor junctions by the body bias voltage. The exhaustive combinations forVp and
Vn has been simulated, then the optimum pair has been found out as Vp = 1.3V andVn = -0.2V. As shown in the Table IX,
the circuit performance and power consumption has been improved with less variability when optimal body bias voltage has
been applied.

TABLE IX

COMPARISON BETWEEN WITH AND WITHOUTABB FOR CIRCUIT PERFORMANCE ANDPOWER CONSUMPTION

Vp=1.3V Mean Std Var Mean Std Var
Vn=-0.2V (Delay) (Delay) (Delay) (Power) (Power) (Power)

Without 6.5909 4.6618 2.1732 7.1623 4.6007 2.1167
ABB e-0009 e-010 e-019 e-005 e-006 e-011
With 6.3544 4.6255 2.1395 6.9692 4.3726 1.9128
ABB e-0009 e-010 e-019 e-005 e-006 e-011
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VIII. C ONCLUSIONS

Statistical Blockade is an efficient approach for rare events analysis. However, the classification threshold and number of
training samples are still major issues which may result in inaccurate tail model and slow simulation speed. This paper presented
an effective way to the problem of finding the minimum threshold of classifiertc for the given tail part and the minimum
number of samplesn required for corresponding classification threshold. Based on proposed improved algorithms, the values
of tc andn are derived for high-replication block. When the values are applied to Statistical Blockade method, the resulting
tail model shows a good match with empirical model. It offersboth the fastest speed of simulation and highest accuracy for
Statistical Blockade. The experimental results also indicates that the obtained minimum classification thresholdtc for 3%, 2%
and 1% tails can be applied to all the latest technology corners from 45nm to 16nm in both HP and LP models. Additionally,
a novel method combined with improved SB has been proposed tofast evaluate the tolerant ability under process variationfor
different designs. It can make computation time much shorter compared with full MC simulation method. Furthermore, the
circuit delay and power consumption as well as its variability has been reduced for the chosen design using ABB techniqueby
applying optimum body bias voltage. However, it may not significantly improve the yield loss of the products since there is still
a distribution tail which may not meet the accepted requirement. Thus, ABB technique can be explored further to compensate
the yield loss.
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