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Abstract

The challenges to design engineers have been complicated due to theigtitddf nanoscale process variation into the
design phase. One of the ways to analyze the circuit behaviors unatgzsgrvariation is to determine the rare events that may
be originated due to such process variation. A method called Statistical&ledlSB) had been investigated to estimate the rare
events statistics especially for high-replication circuits [1]. An enhantitical blockade method is proposed in this paper which
is shown to be much faster compared to the traditional exhaustive Momte §iulation. In SB, the classification threshold
determination is quite important for different tail regions which is related &rtimber of rare events simulation. This paper
presents the values of classification threshpltbr different tail regions of typical circuits and the training samples sizequired
for corresponding.. It offers both fastest speed of simulation and highest accuradhéoproposed Statistical Blockade method.
It is also proven that the obtaingd can be used for all the technology corners. The enhanced statistickbtde method thus
performs fast estimate the robustness for different designs. Inrtipged method, the tail part of the whole distribution is used
in estimation; thereby saving time. It shows X.3aster than traditional evaluation methods. Furthermore, for the dedigzhw
is proved to be robust even in worst-case, the optimal body bias voltaggpled to improve the performance and power while
reducing the variability with Adaptive Body Bias (ABB) technique.

Index Terms
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I. INTRODUCTION

The CMOS technology continues to scale down to nanoscaleaitoathieve higher performance and higher level of inte-
gration. The impact of process variations on performansebien increasing with each semiconductor technology ggoer
The technology scaling has resulted in significant dewistivom the nominal values of transistor parameters, sudhasnel
length and threshold voltage [2]. For example, variatioryate length increases frof%% in 130 nm technology to almost
60% in 65 nm technology. The parameter variations result in the largatian in leakage and performance of the designed
circuit. Traditional corner model based analysis and deapgproaches provide guard-bands for parameter variafltresefore,
these approaches are prone to introducing pessimism inetbigrd[3]. Computer-Aided Design (CAD) tools have tradiabdy
use for handling corner analysis, under the assumption el for deterministic circuit parameters. However, in nanddis
circuits small variations due to inaccuracies in the magtuféng process can cause large relative variations in diavior of
the circuit. For example, 10,000 runs of a Monte Carlo simatefor delay variation in a 16-bit adder for 20% variation i
threshold voltage and gate oxide thickness is shown in Fig. 1

The process variations in the nano-CMOS technology arsifiled into the following two types: inter-die variationseahe
variations from die to die and intra-die variations cor@ggpto variability within a single chip. Inter-die variatie affect all the
devices on the same chip in the same way, e.g., making thgistangate lengths of devices on the same chip all largel or a
smaller. On the other hand, the intra-die variations magcafflifferent devices differently on the same chip, e.gkinasome
devices have smaller transistor gate lengths and othagsrlaransistor gate lengths [4]. In the past, the inter-digations
dominated intra-die variations, so that the latter could&fely neglected. However, in modern nanoscale techregogitra-die
variations are rapidly and steadily growing and can sigaifity affect the variability of performance parameters ochip.
The increase in intra-chip parameter variations is due ¢oefffiects such as microloading in the etch, variation in @fesist
thickness, and optical proximity effects. Intra-die véida is spatially correlated. It is locally layout depentemd circuit
specific, i.e., devices with similar layout patterns andxprity structures tend to have similar characteristicssIglobally
location dependent, i.e., devices located close to eadr atle more likely to have the similar characteristics thesé placed
far away [4].
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Fig. 1. 10,000 MC Simulation for Delay variation in 16-bit @&idor 20% variation in gate oxide thickness and thresholtage

The novel contributions of this paper to the state-of-the art are as follows:

1) The Statistical Blockade [1] is investigated as a fastentd Carlo technique.

2) The enhanced Statistical Blockade algorithms are pexgpés obtain the minimal classification thresholdfor different

tail portions and optimal training samples size for the espondingt.. These guarantee the fastest speed and highest
accuracy of the prediction.

3) The obtained minimal classification thresheldof each tail part can be applied to all the technology corfierdoth

high-performance applications and low-power application

4) A novel method is proposed for estimating the robustnésifierent nano-CMOS Arithmetic Circuits. This method is

combined with an implementation of Statistical Blockadeathieve significant reduction in the computational costs.

5) After picking up the design with worst tolerant abilityder process variation, a method is used to compensate tlie yie

loss of the design with Adaptive Body Bias (ABB) technique.

The rest of this paper is organized as follows. Section licdbss the related previous related research. In Section Il
the basic definitions and notations of Statistical Blockatkthod is presented. Section IV describes the improvedstitat
Blockade algorithms for minimal threshotd and optimal training samples size In Section V, a novel method based on
improved Statistical Blockade algorithms is proposed @mwate the design robustness. Section VI shows the basidation
approach. Section VIl shows the experimental results. Tmelosions are drawn in Section VIII.

Il. RELATED PRIOR RESEARCH

Recently developed statistical static timing analysisT@®Stools have recognized these unavoidably random aspects
manufacturing variations and have attempted to accounthfemn using simple models that are computationally inexgens
In [5], the authors use a linear model for the gate delay asnatifan of varying gate parameters. In [4], [6], the authors
recognize the impact of spatial correlation between gatésuse simple grid-based models to represent this cowalatilso
use Principal Components Analysis (PCA) to extract untated parameters from this correlation model, and builésghte
timing models using these uncorrelated components. Seseadytical and semi-analytical approaches have beenestied to
model the behavior of SRAM cells and digital circuits in theegence of process variations. All suffer from approxiorai
necessary to make the problem tractable Monte Carlo asa(¥C) is one of the standard techniques used for statistical
modeling. Standard Monte Carlo techniques are, by cortginjanost efficient at sampling the statistically likelyses. When
used for simulating statistically unlikely or rare everitese techniques are extremely slow. In [1], authors prgb&tatistical
Blockade (SB) as a Monte Carlo technique that allows us toiefily filter to block unwanted samples insufficiently rarehe
tail distributions. The method imposes almost no a prianitiations on the form of the statistics for the process patans,
device models, or performance metrics. The key observdiginnd Statistical Blockade is that generating each satisple
not expensive as the parameters for a circuit are createtieofiyt The current archival journal paper is based on a shorte
conference publication with significantly more materiais. [

I11. THE STATISTICAL BLOCKADE METHOD

The statistical blockade method has been used to efficigetigrate samples in the tail of the distribution of the penfmnce
metric of a circuit [1]. Standard Monte Carlo that generatamples using the complete distribution is not suitabletliis
purposes. A flow chart for the Statistical Blockade methodhiswn in Fig. 2.
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Fig. 2. Flow chart for the Statistical blockade method.

The key idea is to define a region in the design parameter gpateesults in the circuit performance values greater than
threshold ¢). Then only those Monte Carlo samples that lie in the tailaegre simulated while blocking the body samples.
For example, if the tail threshold is tH#9% point of the distribution then only one out of 100 simulasois useful; thus
resulting in an immediate speedup of X00ver standard Monte Carlo. A small Monte Carlo sample set (000 points) is
used to train a classifier to identify the tail points. Howeveis difficult to classify all the tail points to build thecaurate
tail model for high-dimensional data. Thus, a relaxed baumpadf the classifier which is denoted as classification tihwkek
(t.) is applied to block most unwanted points. A specific examplas the 97" percentile to extract% tail samples (i.et
= 99%), based on empirical analysis of the tradeoff between iflaisaccuracy, simulation time, and tail model fit [8].

The classifier used in the current paper is named Supporbivitachine (SVM) [9], which is implemented using LIBSVM
[10], svmlight [11] or WEKA [12]. The simulated data are divided into two &as: body region and tail region. Therefore, the
C-Support Vector Classifier is chosen [13], [14]. The fousib&ernels of SVM are as follows: linear, polynomial, rddiasis
function (RBF), and sigmoid. The RBF kernel is a good choigét @an non-linearly map samples into a higher dimensional
space. One important modification for the classifier is therdment of the tail weight. The number of body points is much
more than the tail samples. The classification error is vewyds long as all the body points have been classified coyraotl
matter whether the tail points are misclassified. So thesiflasis biased to the body points by default. Thus, the diaaton
error should be reversed by increasing the weight of the Tadining of an aforementioned classifier using a small $et o
2-dimensional samples:(= 1000) by varying threshold voltages for a NAND gate is shown in.R3g Then the randomly
generated samples are classified by the trained SVM clasisif@etwo categories shown in Fig. 4.
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Fig. 3. Initial Training Samples for a Classifier.

The tail circuits do not follow the Gaussian statistics aftee classification is performed. An important observatiat can
be used is that the conditional distribution of the eventthetail region trend toward a generalized Pareto disiobufGPD)
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Fig. 4. Classification of Monte Carlo Generated Samples.

from the extreme value theory (EVT) [15],. Thus, the fittifgaogeneralized Pareto distribution (GPD) is required tddbthie
tail model for calculating the coefficients of GPD, shapeapatere, and scale parametgr The tail model is the cumulative
distribution function (CDF) of the GPD. Statistical blockafiltering and generalized Pareto distribution (GPD) ntindeis
performed using the following steps [16]:

1) Perform initial sampling to generate data to build a dfeess This initial sampling can be standard MC or importance

sampling. Also estimaté and¢. < t from this data.

2) Build a classifier using the classification threshgld

3) Generate more samples using MC, following the CBFout simulate only those that are classified as tail poingidte

the estimate of.

4) Fit GPD model to the simulated tail points.

There are significant practical problems with the techniqueposed originally. Extensions to make statistical béatek
practically usable in common scenarios is proposed in [h7Atatistical blockade, the classification threshold&@e becomes
very important for different tail regions which is relateml the number of rare events simulation. The classificatioestiold
and number of training samples may result in inaccuratentaidlel and slow simulation speed. Thus, the following regear
questions need to be answered for an efficient statisticakbde method that can be practically useful:

1) What is the minimal value of classification threshold thah @nsure all the true tail points be covered in a loosely
defined boundary?
2) What is the minimum number of initial sampling required tiver the given tail points?
An effective way to the problem of finding the minimum threkhof classifiert. for the given tail part and the minimum
number of samples required for corresponding classification threshold wdl described in the next section. There are two
main problems focussed:

1) One is the appropriate classification threshldor different tail regions - 3%, 2% and 1%.
2) The other one is the minimal training samples size for migkassification threshold..

IV. I MPROVED STATISTICAL BLOCKADE ALGORITHMS

The proposed steps to measure the thresholaf the classifier for the corresponding tail region is showrAlgorithm 1.
The training samples size used is 2000. The functign,&V) runs 10,000 Monte Carlo simulatiolr. is a vector of output
values; e.g. delay of an adder. The function percentilet] calculates the value of deldy for the corresponding tail threshold
t. The function size Y;4:;) is used to count the number of tail points aftércompared withV’. These steps are also used
to select tail points from full Monte Carlo simulation by emgal method. If threshold is defined as 99% point in 10,000
points, tail count should be approximately 100. The value$ cand S for different tail thresholdg in the test case of an
8-bit adder is listed in Table I.

TABLE |
THE TAIL POINTS SIZE AND DELAY OF CORRESPONDINGTHRESHOLD FORDIFFERENT TAIL REGIONS IN10,000 MC BINTS OF8-BIT ADDER.

[ Tail Threshold ¢) [ 97% [ 98% [ 9% |
Delay for Corresponding 6.1180ns| 6.1740ns| 6.2890ns
Threshold ¥)

Tail Points Size §) 299 204 100




Algorithm 1 For choosing minimal classification threshdaldfor given tail threshold.

1: Assume: training sample size, (e.g.,no = 2,000); total sample siz& (e.g., N = 10,000). // Generate 10,000 MC points in statistical
parameter space.

2:'Y = Fsim(N) /I Simulate 10,000 MC samples.

3: V = PercentileY’, t) // Find the valueV for the tail thresholdt according to the measurement data.

4: Yiau ={Y; € Y: Y; > V} /Il Count the number of the tail.

5: S = Size(:qa) /' S is the tall size of the 10,000 MC samples.

6: for all t. =t do

6: // Initially let ¢. equal tot, therefore no safety margin given.

7.  x = MonteCarlofy) // Randomly pick 2000 MC samples up from 10,000 points as training set.

8: y = Fsm(x) /I Simulate 2000 training samples.

9: V. = Percentileg, t.) // Find the valueV, for the tail threshold..

10:  C = BuildClassifier, y, V) // Train a classifietC' using training set: and classification threshold valié.

110 yiai = Fsim(Filter(C, N)) /I Extract the tail points by the classifi€f from the same 10,000 MC samples.

120 Yrail,true = {Yi € Yyraa: yi > V'} Il Select the true tail points.

13: S = SizeWtait,true) Il Sc is the number of the classified tail points from 10,000 samples.

14: if S. < S then

14: II'f S, < S, it means the classifief' is not able to extract all the tail points.
15: t =t -1% /I Increase the safety margin by 1% each cycle.

16: Repeat

17:  dse

18: te =t

19:  end if

20: end for

The step-7 to step-12 of the algorithm is the typical StiaaétBlockade method [18]. The function Monte Carlag)
randomly picks up 2000 training samples fra¥h For an 8-bit addery is a 2000x 4 matrix, since there are 4 variables to
be varied. Each row of matrix is a point in 4 dimensiong; is a vector of output values from simulation of training séesp
V. is the value of delay for classification threshald It is computed fromy. The function BuildClassifiera(, y, V) trains
and returns the SVM classifiér' using training data packageand classification threshold. First it is assumed thdt = t.
The function Filter(C, N) filters out the non-tail points iV by the classifielC'. Only the tail points classified bg' will be
simulated using the function,f, (Filter(C, N)). Since classification threshoid is usually smaller than the real tail threshold
t, there are some safety margin with The current tail points are not the real tail points we wditen the false tail points
are eliminated by comparing withi, the value of output metric for the given tail thresheloh full MC simulation N. Finally,
the tail points size5. is obtained by Statistical Blockade method from the sam8QiDsamplessS. is compared with the real
size of tail pointsS which is obtained in step-5. I§. < S, that means not all the tail points can be collected usings the
classification threshold. Then the safety margin ffoiis increased. For each cycle, safety margin is increasedilll%.tis
equal toS to get all tail points. At lastt. is the minimal classification threshold for the correspagdiail region.

The minimal number of training samplesfor the fixed classification threshotd is chosen using Algorithm 2. The number
of training samples can not be less tharfor a givent. when SB method is applied to build the tail model. Otherwlse t
tail model will not be accurate enough, since not all the aihts are considered. The full tail points sigas obtained from
Step-2 to Step-5 in Algorithm 2 which are the same with Algori 1. The cycle (Step-6- Step.15) is used to collect values
of S; (i =1, 2, ..., 20) when the training sample sizdés 100, 200, 300, ... , 2000, respectively £ i x 100). .S; is the
number of selected tail points when SB method is applied. flihetion Find©; = .S and S;+1 = S;+2 = ... = 59 = S) gets
the value ofi whenS; = S; 11 = S;12 = ... =55 = 5. It implies that full tail pointsS can be classified through classifiér
when initial training sample size is ¢ x 100. And with increasing of training samples sizethe number of extracted talil
points (S;11 ~ Sy) remain stable - all equal t§. Finally the minimal number of training samplesfor the fixed threshold
t.ism =14 x 100.

V. THE INTELLIGENT STATISTICAL BLOCKADE APPROACHFOR TOLERANT ABILITY ESTIMATION

In this section, an intelligent method with improved State Blockade algorithm is proposed to estimate tolerdnilitg
of different FA cells based 16-bit ripple-carry adders (RGA

A. The Example Arithmetic Circuit: Full Adder For Alternative Logic Styles

There are varieties of static CMOS logic styles which havenbgroposed to implement 1-bit full adder cells [19]. These
designs can be mainly divided into two categories: compiearg CMOS logic and pass transistor logic circuits.

A complementary CMOS FA (C-CMOS) cell is shown in Fig. 5(a)isl based on the regular CMOS structure with PMOS
pull-up and NMOS pull-down. The advantage of C-CMOS FA igdisustness against the supply voltage scaling and transist
sizing. The FA cell in Fig. 5(b) is the complementary passdistor logic full adder cell (CPL). The difference betweqmss
transistor logic and C-CMOS logic is the source of the paassistor connects to the input signal instead of connedting



Algorithm 2 For choosing minimal number of training sampledor the fixed threshold..

1: Assume: Initial training sample size, (e.g.,no = 100); total sample sizé&v (e.g., N = 10,000). // Generate 10,000 MC points in
statistical parameter space.
Y = Feim(N) /I Simulate 10,000 MC samples.
. V = PercentileY, t) // Find the valuel” for the tail threshold according to the measurement data.
Yiei = {Y: € Y:Y; > V} // Count the number of the tail.
S = Size{i.a) /I S is the tail size of the 10,000 MC samples.
for all (i =1; no < 2000; i++)do
/I Initially set 100 training points.
x = MonteCarlofo) // Randomly pickno MC samples up from 10,000 points as training set.
y = Fsim(x) /I Simulate these training samples.
9: V. = Percentileg, t.) // Find the valueV. for the tail threshold..
10:  C = BuildClassifierg, y, V) // Train a classifietC' using training set: and classification threshold valié.
110 yiaiu = Fsim(Filter(C, N)) /I Extract the tail points by the classifiéf from the same 10,000 MC samples.
120 Yrqil,true = {Yi € yraa: yi > V'} Il Select the true tail points.
13:  S; = Sizelytair,true) I Si is the number of the classified tail points from 10,000 samples.
14:  ng =no + 100 // Increase the training set size by 100 each cycle.
15: end for
16: Find(S; = S and S;41 = Si42 = ... =S20 = S) // Obtain the value of.
17: n. =4 * 100 // The minimum number of training samples is equat t0100.
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the power lines. A single pass transistor can implement algée Ifunction resulting in smaller count transistors andaken

input load. However, the pass transistor logic meets atioids/oltage drop problem. Thus, the inverters have to bel@yep

to ensure the drivability. Fig. 5(c) shows a transmissianetion full adder (TFA) by using 16 transistors. Fig. 5(d)a 20
transistors transmission gate full adder (TGA). Both ofthieelong to pass transistor logic circuit. This type desigpleys
PMOS and NMOS in parallel and the signal can pass though éimsistors when they are on simultaneously. Therefore, this
design has nothing to do with the voltage drop problem. Meegoless number transistors designs have been proposed as
well, for example 10-transistor full adder as shown in Fi(g)5

B. The Proposed SB Method Using Improved Algorithms
The steps of the proposed statistical blockade approaciy @sid improved approach are shown in Algorithm 3:

Algorithm 3 Intelligent Statistical Blockade for Robustness Estiorati
1. Compute the delay times of 5 RCAs with their nominal valuesa®ingle run.
2: Make the delay times to the target value through transishimgs
3: Use improved SB method to pick uio tail points from10,000 generated MC points and simulate the extracted tail
points.
4: Extract true tail points to the Conditional Cumulative Ditstition (CDF).
5: Calculate the coefficients and 3 for Generalized Pareto Distribution (GPD) approximat@g s with the above.
6: Compare the CDFs of 5 RCAs for the robust abilities estinmatio

In the 1°* step of proposed algorithm, it shows how to adjust the ddétag using transistor sizing approach:

1) Set all the transistors (NMOS and PMOS) to the minimum.sfz& nm for channel length and0 nm for channel
width in 45 nm BPTM)

2) Simulate5 16-bit RCA designs for a single run with nominal values ofiables to measure the initial delays. Set a
target delay time according to the measured nominal delays.

3) Figure the transition with the highest delay (frami bit carry in to 16! bit carry out) and mark the transistors in that
are involved.

4) Change the channel width of the transistors which arelnedbin the critical path to adjust th&initial delay times to
the target value.

The channel widths of the marked transistors in the critégal listed in the Table Il for 5 RCAs.

TABLE Il
CHANNEL WIDTH OF TRANSISTORS INVOLVED IN CRITICAL PATH AFTERTRANSISTORSIZING.

| RCA [ C-CMOS [ CPL [ TFA | TGA | 10T |
[ Channel Width gm) | 832 | 90 | 239.3] 206.3 ] 178.9 |

In the 2"¢ step, the Support Vector Machine (SVM) classifier presemd@0] is considered as the classification tool in SB
implementation. To achieve the fastest simulation speedh@ghest accuracy, the algorithm proposed in Section I\pjdiad
to find out the minimal classification threshdldand the optimal number of training samplesThe SB method witlt,. andn
is used to extract 1% tail points from the generalized MC {iifhen the true tail points can be selected after the sifonla
of extracted tail points. The values 6f andn are shown in Table lIl.

TABLE Il
MINIMUM CLASSIFICATION THRESHOLDt. AND OPTIMAL TRAINING SAMPLE SIZE n FOR 1% TAIL SELECTION

[ RCA [ C-CMOS [ CPL [ TFA [ TGA [ 10T |
Minimum Classification 2% 2% 2% 2% 2%
Thresholdt,
Optimal Training 700 900 | 1300 | 1300 | 1100
Sample Sizen

In Step-3, the maximum likelihood estimation (MLE) is usedfit GPD to the 1% tail data to build the CDF tail model.
For fitting the GPD model, two GDP coefficientsand 5 need to be computed by MATLAB function. After building thelta
models, the comparison can be done in Step-4 and the detaildgsis will be described in the following section.

V1. EXPERIMENTAL RESULTSOF THE PROPOSEDALGORITHMS AND METHOD
In this section, the details of the experiments and the éxmtal results are presented.



A. Experiments And Results For The Improved Statistical Blockade Algorithms

In this experiment, an 8-bit adder in 45nm BPTM is considemsedhe test case. Monte Carlo simulation of 10,000 runs
were performed with global, Gaussian distributed thredhvoltage and gate oxide thickness with 20% variation. Thérime
measured is the delay time for the 8-bit adder.

Fig. 6 shows the number of 1% tail points (tail threshold 99%) collected in cases. is equal to 99%, 98% and 97%
with training sample size increasing from 100 to 2000 for &Heit adder. The full 1% tail size of 10,000 samples is 100nas i
Table I. From Fig. 6, it is evident that it is unable to pick upthe tail points whert. = 99% no matter how many samples
have been used for training. In case= 98%, 100 tail points can be obtained as welltas 3%. The principle of how to
chooset,.. in Algorithm 1 is to make the safety margin as small as possiBtherwise the number of the simulation for tail
points will increase significantly. For example, for a naiti MC points, if the selectet]. has 1% more safety margin, it means
about 10,000 more simulations will be needed. Thus, the \@se oft. is 98% to select 1% tail points.

1% Tail Points of 8—bit Adder
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B [o)] (0]
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Fig. 6. True Tail Points obtained with 18@000 Training Samples for Different Classification Threshol

After t. is chosen, the minimal training sample size fpr= 98% is needed. Fig. 7 indicates when full tail points can be
extracted in cases = 99%, 98% and 97%. All 100 tail points are collected from tbéfs (arrow in Fig. 7), and the following
extracted tail points sizes all equal to full tail size - 1@0ciaset, = 98%. The training sample size in that point is 900. So
the minimal number of training points is 900. The overallutesare in Table IV.
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Fig. 7. Method for Obtaining Minimal Training Sample Size willifferent Classification Threshold.

The conditional Cumulative Distribution (CDFs) of tail pté between empirical method and statistical blockadeguia
values from Table IV is compared in Fig. 8. It shows a good matctwo CDFs. The empirical method needs 10,000 Monte
Carlo runs. In statistical blockade method, 344 tail poars picked up after classification. (= 98%). Another 900 runs are
used to train the classifier. Totally it needs 1244 (344 + 9@0hte Carlo simulations. Note that, if = 97% is chosen here,
the total number of simulation, 865 (565 + 300), is even fev@&nce it is only for 10,000 Monte Carlo samples, which is
impossible in industry. For large quantities of Monte Cartants, the simulation size @f = 98% is significantly fewer that.



TABLE IV
MINIMAL CLASSIFICATION THRESHOLD AND MINIMAL NUMBER OF TRAINING SAMPLES REQUIRED FOR1% TAIL OF 8-BIT ADDER.

[ Tail Threshold {) | 99% |

Minimal Classification
Threshold €.) 98%
Minimal Training
Samples Sizen) 900

= 97%. For 10,000 Monte Carlo simulation, it shows<18peedup compared with empirical method. While it can dematest
much higher speedup for millions or billions of Monte Carbkorgples.

1
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Delay Time % 107°

Fig. 8. Adder Delay Analysis: Empirical versus Statisticdbdkade.

Then values of. andn are obtained by repeating above processes for 2% and 3% fdrits1 8-bit adder. The. andn
for the test case are indicated in Table V. The minimum diassion threshold. is 98% and at least 900 training samples
are needed to build 1% tail model (tail threshold= 99%). For extracting 2% taik,. is no larger than 97% and 800 samples
should be used for training. When tail thresholid 97%, the appropriate. is 96% and minimum initial training samples size
is 1200.

TABLE V
MINIMAL CLASSIFICATION THRESHOLD AND MINIMAL NUMBER OF TRAINING SAMPLES REQUIRED FORDIFFERENTTAILS OF 8 BITS ADDER.

[ Blocks | Tail Threshold ¢) [ 99% | 98% | 97% |

8-bit Minimal Classification Threshold. | 98% | 97% | 96%
Adder Minimal Training Sample Sizex 900 | 800 | 1200

Then the improved statistical blockade algorithms areetefily another typical high-replicated circuit, 6-tramsisERAM
shown in Fig. 9 to check if the obtained andn can be used for all technology corners. The 6-transistor @RAdesigned
in 45nm, 32nm, 22nm and 16nm models for both high-performaapplications and low-power applications. The values of
t. andn for each technology corner is shown in Table VI. As can be $emn Table VI, the classification thresholds of
different tail regions, 1%, 2% and 3%, are the same for alllisted technology corners. However, the number of training
samplesn required for corresponding classification threshold aretdlated.

B. Experimental Evaluation For Proposed Satistical Blockade Approach

The test platform [21] for the delay measurement of five I6RCAs is shown in Fig. 10. The shown 4-bit ripple-carry
adder in Fig. 10 is cascaded by 4 FA cells, with the carry audpuhe current full adder connecting to the next bit full add
input in the chain. It starts fronX; andY, which represent the least significant bits of the numberstadded and the output
is sum0, suml, sum2 and sum3. The 16-bit RCA is based on the same principle.

The buffers which consist of two cascaded inverters are @cted to the input signals and outputs. The inputs are fed fro
buffers to give more realistic signals. The outputs are éoadith buffers to provide proper loading conditions to emsthe
fairness of the comparison. The attached buffers for thputsitcan be also used to solve the threshold voltage dropepnob
caused by the pass transistor logic, thus, to enhance thendcapability.

During the Monte Carlo simulation, the variables to be v@r@e threshold voltagel{;,) and gate oxide thicknesdf,)
for NMOS and PMOS transistors. Thus, there are 4 variabhesviad in the simulation. The output metric to be measured is
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Fig. 9. Schematic of a 6T SRAM cell

TABLE VI
MINIMAL CLASSIFICATION THRESHOLD AND MINIMAL NUMBER OF TRAINING SAMPLES REQUIRED FORDIFFERENTTECHNOLOGY CORNERS OB T
SRAM.
[ Technology Corners] Tail Threshold €) [ 99% | 98% | 97% |
45nm Minimal Classification Threshold,. 98% | 97% | 96%
HP Minimal Training Sample Size: 800 900 800
32nm Minimal Classification Threshold. 98% 97% 96%
HP Minimal Training Sample Size: 1000 | 900 800
22nm Minimal Classification Threshold,. 98% 97% 96%
HP Minimal Training Sample Size: 900 1100 | 1000
16nm Minimal Classification Threshold. 98% 97% 96%
HP Minimal Training Sample Size: 1200 | 1300 | 1100
45nm Minimal Classification Threshold,. 98% 97% 96%
LP Minimal Training Sample Sizex 700 800 900
32nm Minimal Classification Threshold,. 98% 97% 96%
LP Minimal Training Sample Sizex 900 800 900
22nm Minimal Classification Threshold. 98% 97% 96%
LP Minimal Training Sample Sizex 1000 | 900 1100
16nm Minimal Classification Threshold, 98% | 97% | 96%
LP Minimal Training Sample Sizex 1100 | 1300 | 1200

the delay time T'd) of the 16-bit RCA. In each run, the delay time is measurechf&% of input voltage swing (carry in of
1%t bit) to 50% of output voltage swing (carry out ®6*" bit). The variations of the variable parameters are comsitléo be
Gaussian distributed with0% variation and a deviation of-:30 around their nominal values.

In statistical blockade based estimatidry; tail points have been extracted from 10,000 generated MGatdo points.
Fig. 11 is the distribution of the delay time faf% true tail points of 16-bit C-CMOS RCA. As shown in the distriion, the
threshold of delay foi % is 7.2 ns. i.e., for 1% tail, the threshold 0D9% delays is7.2 ns. It also can be seen clearly that
the tail points are no longer Gaussian distributed. Theaeted tail data are required to fit of GPD, since GPD is a hi¢gfly
skewed distribution and especially suitable for the tathditing.

After the simulation of extracted tail points, the true omab be selected and used to compute the coefficientnd 5 of
GPD to build the CDF tail model. The coefficients are caladaby the MATLAB function. The conditional CDFs af% tail
points plotted by empirical method and statistical bloekatethod are compared in Fig. 12. It shows a good match between
two CDFs. The value of horizontal axis is the exceedance lafydee., the values of the delays fb% tail points. For the tail
points which delay time i§.4 ns, the exceedance 2 ns. The vertical axis is the predicted possibilities for thi paints
from the model.

X1 Y1 X2Y2 X3Y3

X0 >0 > Sum3
FA || Fa || FA || FA D>
Yo->o—>o cell [ Gell [ Cell [ Cel
Cout3[> [>
Cin—[>o—[>o—

Sum0 Sumi  Sum2

Fig. 10. Test Bench used to perform the experimental evalusiti
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Fig. 11. Delay distribution of 1% tail for 16-bit C-CMOS.
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Fig. 12. CDFs for tail points: Empirical Method vs. SB approac

The comparison of CDFs between 16-bit C-CMOS and 16-bitrdfsistor RCA is shown in Fig. 13. The tail model with
full curve is C-CMOS FA based 16-bit RCA and the dashed cusvEOitransistor based. As shown in the diagram, for the tail
points which exceedance of delay time is less than or equaltas, the possibilities are 60% for C-CMOS RCA and 43%
for 10-transistor. For the tail points which exceedancevisr 6.2 ns, their possibilities are 40% and 57%, respectively. Thus,
the delay distribution of 10-transistor RCA has a longel ttean C-CMOS and the distribution of C-CMOS is more tighten.
Obviously, for a given delay threshold, the 10-transist@AR yield loss due to violation of timing requirement is hégtthan
C-CMOS. Then, we can say the C-CMOS based 16-bit RCA is rdbetser than 10-transistor based RCA.

The improved SB method is applied to pick up 1% tail pointsuddbthe CDF tail models for 5 considered RCAs. Fig. 14
shows the comparison of 5 tail models. Through the analyfsthentail models, the sequence of tolerant ability is: C-CMO
> TFA > TGA > 10T > CPL.

To prove the correctness of SB method based estimation, tixer @ariability estimation approaches have been appbed t
the same 5 RCAs. First, the full MC simulation based robisstr@stimation has been done by computing the standard ideviat
and variance of the simulated 10,000 MC points. The standavéhtion and variance for the 5 designs is listed in Table VI
As can be seen from the table, the result is the same with thoped SB method based estimation.

The approach proposed in [22] has been used to show the nelsgstinder process variation of the 5 different RCAs.
The impact of process variability was evaluated through M@utations performed on 10,000 samples under differenplsup
voltagesVpp. The ratio between the maximum spredd and the mean valug (i.e., 30/u) was considered as a measure
of tolerant ability of each design. As can be easily observe#fig. 15, the delay variability is reduced for higher power
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Fig. 14. The tail models (CDFs) for 5 RCAs.

supply voltages. The CCMOS based RCA is the less PV delaytisensircuit. (its delay variability ranges from 5.690.8V
to 3.5%21.2V). In contrast, the CPL based RCA is the most PV delayisemstructure. Its delay variability ranges from
9.7%620.8V to 5.2%01.2V. This is resulting from 1.50 to 1.73x more delay sensitive with respect to CCMOS based RCA
structure. Also, the estimation result is the same as theptwaious results.

For the above mentioned approaches, both of them requidyt&0,000 MC simulations for the robustness estimation of
5 RCAs (10,000 simulation for each RCA). And for proposed $Bdu estimation method, the number of simulations for
each design is the sum of training sample size listed in Thbsnd the number of extracted tail points through clasatfan
shown in Table VIII.

From Table VIII, the total number of MC simulations requirey proposed SB based estimation method is 6845. It is up to
7.3x faster than the other two methods. In other words, it only$ak3.89% running time of two aforementioned approaches.

TABLE VI
STANDARD DEVIATION AND VARIANCE FOR5 RCAS

[ RCA JCCMOS]| CPL | TFA [ TGA [ 10T |
Standard | 3.6002 | 7.7530 | 4.6593 | 5.7400 | 6.6522
Deviation e-010 e-010 | e-010 | e-010 | e-010

1.2962 | 6.0109 | 2.1709 | 3.2947 | 4.4251
Variance e-019 e-019 e-019 e-019 e-019
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TABLE VIl

NUMBER OF MC SIMULATIONS REQUIRED BY PROPOSEDSB BASED ESTIMATION APPROACH

[ RCA [ CCMOS [ CPL | TFA [ TGA | 10T |
Extracted tail Points 321 313 295 306 310
Total MC Size 1021 1213 | 1595 | 1606 | 1410

VII. ADAPTIVE BoDY BIAS (ABB) FORYIELD COMPENSATION

Through the comparison of robust ability for different dgs, the design which is robust worst has been picked up. How
to reduce the variability and improve performance subje@ power constraint, and thus, improve the yield loss for@seh
design?

Adaptive Body Bias (ABB) is used to compensate for parameteation, which reduce variability and improve perforrnan
and power consumption. The bias for PMOS transistor tremdie tforward biased to improve the circuit performance whith t
threshold voltage increasing. While the bias for NMOS trstosiis reverse biased to reduce the leakage current, tdusee
the power consumption with the threshold voltage decrgasttowever, ABB has its own drawback: it requires an addélon
on-power distribution networks for body voltage, and thusgupy additional silicon area.

In above experiments, CPL RCA is proved to be the robust wdistis, ABB is applied to improve its tolerant ability
under process variation and also enhance the circuit peafoce. All the bulks of PMOS transistors in 16-bit CPL PCA are
connected to the body bias voltagig and all the NMOS bulks are connected¥y. In this paper, the optimum combination
for V, and V,, has been selected to achieve the best performance and ponsuneption for a trade off and improve its
robustness. [23] suggests the range of the body bias vditeigg +20% of the nominal supply voltage (1.1V) mainly due to
the fact that we would like to provide enough noise margindody bias voltage signal in order not to allow the possipilit
of crossing the forward threshold of the transistor junwiidy the body bias voltage. The exhaustive combination$/fand
V,, has been simulated, then the optimum pair has been foundsdyt a 1.3V andV,, = -0.2V. As shown in the Table IX,
the circuit performance and power consumption has beenowegrwith less variability when optimal body bias voltages ha
been applied.

TABLE IX
COMPARISON BETWEEN WITH AND WITHOUTABB FOR CIRCUIT PERFORMANCE ANDPOWER CONSUMPTION

Vp=1.3V Mean Std Var Mean Std Var
V,=-0.2V | (Delay) | (Delay) | (Delay) | (Power) | (Power) | (Power)
Without 6.5909 | 4.6618 | 2.1732 | 7.1623 | 4.6007 | 2.1167
ABB e-0009 | e-010 e-019 e-005 e-006 e-011
With 6.3544 | 4.6255 [ 2.1395 | 6.9692 | 4.3726 | 1.9128
ABB e-0009 | e-010 e-019 e-005 e-006 e-011
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VIIl. CONCLUSIONS

Statistical Blockade is an efficient approach for rare evemalysis. However, the classification threshold and nurobe
training samples are still major issues which may resulb@ccurate tail model and slow simulation speed. This paEsented
an effective way to the problem of finding the minimum thrddhof classifiert. for the given tail part and the minimum
number of samples required for corresponding classification threshold. Base proposed improved algorithms, the values
of t. andn are derived for high-replication block. When the values aliad to Statistical Blockade method, the resulting
tail model shows a good match with empirical model. It offbrgh the fastest speed of simulation and highest accuracy fo
Statistical Blockade. The experimental results also igis that the obtained minimum classification threshplithr 3%, 2%
and 1% tails can be applied to all the latest technology e¢erfrem 45nm to 16nm in both HP and LP models. Additionally,
a novel method combined with improved SB has been propostbt@valuate the tolerant ability under process variafion
different designs. It can make computation time much shadenpared with full MC simulation method. Furthermore, the
circuit delay and power consumption as well as its varigbHias been reduced for the chosen design using ABB techiigue
applying optimum body bias voltage. However, it may not Bigantly improve the yield loss of the products since tharstill
a distribution tail which may not meet the accepted requamThus, ABB technique can be explored further to comgensa
the yield loss.
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