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Abstract

Significant increase in design cycle time is caused by the design and optimization complexity of Analog/Mixed-
Signal System-on-a-Chip (AMS-SoC) components as the technology moves deeper into the nanoscale domain. In
this paper, a two-tier design methodology is proposed that greatly reduces design cycle time by combining accurate
polynomial metamodeling and intelligent optimization. In this methodology, the parasitic-aware netlist description
of an AMS-SoC component is converted into an accurate metamodel (a mathematical function or algorithm)
which minimizes the time for design space exploration. Bee Colony Optimization (BCO) is subsequently used
for optimization of the nano-CMOS AMS circuit. Five distinct metamodels with 21 parameters each are created for
corresponding Figures of Merit (FoMs) to perform AMS-SoC component design space exploration. For a specific case
study, a 180nm LC Voltage Controlled Oscillator (LC-VCO) based Phase-Locked Loop (PLL) frequency generator
circuit is used this paper. The proposed optimization achieved approximately 90% power and 52% jitter reduction
in comparison to the baseline design while maintaining the locking time of the PLL system. In comparison to an
exhaustive simulation based design optimization approach, the proposed design flow can be up to 102° times faster
and hence has potential to greatly reduce design effort and chip cost.
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I. INTRODUCTION

The physical design (layout) stage of Analog/Mixed-Signal (AMS) circuits and systems is quite complex in
nature and very time consuming as it is a manual process. It is hard to accurately predict the output of these AMS
circuits and systems due to numerous parasitic elements involved when they are realized at the physical design
level of the chip [1], [2]. The parasitic elements complicate circuit simulation and make traditional, continuous
time numerical methods inefficient. Therefore sophisticated tools are used to simulate such Analog/Mixed-Signal
System-on-a-Chip (AMS-SoC) components. However, for larger systems the simulation complexity results in run
times of days to weeks for a single design space point. Thus, there is a pressing need for design methodologies
that provide: (1) Fast simulation for characterization and verification of nano-CMOS AMS systems and circuits. (2)
Fast layout optimization of complex nano-CMOS AMS systems. (3) Fast design space exploration and optimization
convergence to reduce design cycle time under current strict time-to-market constraints.

Design optimization using the actual circuit (i.e. SPICE netlist description) is a pressing issue and has been
addressed in the current literature. The existing approaches speedup the design cycle in various ways including fast
algorithms, fast design sampling, or simplified circuit models (also known as macromodels). A macromodel, which
is a simplified model of the actual circuit, is hard to create and keeps the design verification and optimization cycle
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closely coupled to analog simulation tools. Several current research works consider macromodeling to reduce the
complexity of the circuit and system under design [3], [4], [5], [6]. However, the design optimization when the
full-blown parasitic-aware SPICE netlist is used remains a time-consuming and resource-intensive task.

The design flow presented in this paper relies instead on metamodels which are predictive mathematical expres-
sions or algorithms (also called surrogated models) and decouples the design and optimization from the actual analog
circuit simulator [7], [8], [9]. A metamodel is essentially a predictive mathematical formula or process created on
statistical data for a given figure of merit (FoM) such as power, frequency, jitter, leakage, and phase noise. If
the design of the circuit requires more than one concurrent FoM optimization (possibly constrained), multiple
metamodels, one for each FoM can be generated from the same sample of the design space. Metamodels provide
enormous time savings during the optimization phase since the optimization is done on a simple formula instead
of running one or more complex analog simulations for each optimization iteration. Metamodels are language and
tool independent allowing the designer to use more powerful tools for the optimization and verification stages of
the design. Metamodels are also reusable, which makes them a powerful IP, saving time for designers who create
multiple designs with similar specifications. The same metamodels can also be used for ultra-fast process variation
analysis. Other engineering and scientific fields use metamodeling especially on very costly or time consuming
product designs [10].

The rest of the paper is organized in the following manner: Section II highlights the contributions of this paper.
Section III discusses prior related research. The PLL circuit used as a case study is discussed in Section IV.
Section V describes the metamodel-based design flow along with the metamodel generation technique and bee
colony optimization algorithm. The optimization results are shown in Section VI. The paper is concluded with
directions for future research in Section VII.

II. CONTRIBUTIONS OF THIS PAPER

Addressing the design complexity and long design cycle time at the physical design level has been a challenging
research problem; in particular, when full-blown (RCLK) parasitics are extracted. The current paper demonstrates
how to adjust traditional design flows to significantly reduce the time and complexity of the entire process. The
novel contributions of this paper to the state of the art are as follows:

o The paper presents a new design flow that applies layout-accurate polynomial metamodels, intelligent bee
colony optimization algorithm, and single-manual-layout iteration for ultra-fast AMS-SoC component design
exploration.

o The paper addresses how to create accurate, parasitic-aware metamodels for complex nanoscale AMS circuits
and system using a phase-locked loop (PLL) as a case study. Accurate polynomial metamodels are created for
21 design parameters from only 100 SPICE-level simulations.

o AMS-SoC component circuit optimization is conducted using the bee colony optimization algorithm for the first
time. The effectiveness of the proposed approach is demonstrated by conducting multi-objective optimization
and reaching the desired specifications for the desired physical design of the PLL. The optimization is performed
exclusively on the metamodels and its efficiency is proven by modifying the baseline design according to the
results of the metamodel analysis and demonstrating on-spec operation of the circuit.

e The proposed design flow which uses the bee optimization algorithm is shown to perform orders of magnitude
faster than analog simulator based approaches.

III. RELATED PRIOR RESEARCH

The current paper simultaneously utilizes layout-accurate metamodels and an intelligent bee-colony optimization
algorithm in the context of a single manual-iteration design flow. These three aspects ensure ultra-fast design
exploration and to the authors’ best knowledge this is the first time this approach has been proposed in the literature.
Thus, VLSI metamodeling research and AMS circuit fast optimization are considered as prior related literature.

Many function based approaches have been investigated to simplify or predict circuit behavior using predictive
functions that are derived from statistical analysis and mathematical algorithms. In [8], different sampling techniques
are examined for generating polynomial metamodels for small circuit optimization. In [11], support vector machine
(SVM)-based machine learning is proposed as a surrogate for expensive circuit-level simulation. Metamodeling
is used in [12] for creating an inductor for CMOS circuits using mathematical formulas for the model. A VCO



parametric metamodeling approach is given in [13]. A statistical wire-length estimation approach using surrogate
modeling is proposed in [14]. Posynomial modeling for gate sizing is done in [15]. The author is using Response
Surface Methodology (RSM) to approximate process variation of a low noise amplifier in [16]. These research
works present metamodeling techniques, but do not provide a complete design optimization flow, as in the current
paper.

Intelligent algorithms have also been explored for optimization of circuits. Intelligent optimization approaches
including genetic algorithm [17], particle swarm optimization algorithms [18], or artificial bee colony [19] have
been explored for circuit optimization. Relevant research that apply bee colony optimization in a VLSI context
are now discussed. In [19], the artificial bee colony optimization algorithm is investigated considering the transient
performance of a CMOS inverter circuit. In [20], a CMOS Miller operational transconductance amplifier is optimized
using artificial bee colony algorithm. In [21], the bee colony algorithm is used to determine the different parameters
of a Schottky barrier diode. Thus, in the current literature, the artificial bee colony optimization algorithms iterate
over very small circuits and hence their scalability to large circuits is not feasible.

IV. PHASE LOCKED LooP (PLL) CIRCUIT DESIGN

The Phase Locked Loop (PLL) is a widely used component in most AMS Systems-on-a-Chip (AMS-SoC),
processors, Field-Programmable-Gate Arrays (FPGAs) etc. PLL frequency generators have two functions: indirect
frequency multiplication or frequency demodulation. The PLL, as shown in Fig. 1, is a single closed loop feedback
control system that keeps the generated higher clock signal (Clock Out) in close phase relationship to the reference
signal (Clock In). The PLL system has several components: phase detector, charge pump, loop filter, LC-VCO, and
frequency divider. The phase frequency detector produces two output signals UP and DOWN which are proportional
to the difference of the output signal phase and input clock signal phase. The output signals of the phase detector
drive the charge pump which provides the current to the second-order passive loop filter. The output signal from
the filter becomes the control voltage for the VCO which oscillates according to the control voltage input. The
frequency of the oscillator is typically different from the PLL input frequency. The frequency of the output signal
from the LC-VCO is the output (Clock Out) signal of the PLL. This signal is looped back to the divider, which
divides the frequency by some integer, to recover the reference frequency range. The easiest implementation for
the divider is to keep the divider ratio a power of two since they are straightforward to design. When the PLL
reaches the locked state, the frequency of the output should be an exact multiple of the input frequency [22]. During
acquisition of the lock stage, the PLL responds to the frequency and therefore the phase of the input clock signal
and tries to adjust itself until it becomes in phase (locked) with the input signal. Therefore it is essential to have
the input signal as jitter free as possible, which is usually accommodated by off chip crystal oscillators which have
low frequency ranges.

Reference
Clock In uP . Clock Out
p— Phase Detector Charge Pump Loop Filter LC-VCO >
(PD) (CP) =
DOWN -
T

Frequency Divider

-2

Fig. 1. Block diagram of a PLL.

A. Phase Detector

The phase detector is an analog mixer or an asynchronous sequential logic circuit used to detect mismatch
between phase or frequency between two signals [23]. Two output signals of the phase detector (UP and DOWN)
are active when the system is out of lock and produces pulses directly proportional to the phase difference of the
two clock signals. These signals are then used to direct the charge pump to supply charge in proportion to the
phase error detected. The logical design of the phase detector using two D flip-flops and one AND gate is shown
in Fig. 2(a). The physical layout realization of the phase detector is shown in Fig. 2(b).
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(a) High-level representation of the phase detector. (b) Physical design of the phase detector circuit.

Fig. 2. Design of the phase detector circuit.

B. Charge Pump and Loop Filter

The charge pump and loop filter are used to stabilize spurious fluctuations of current and switching time so that
the spurs in the VCO input are minimum. An efficient charge pump circuit provides constant current to the loop
filter which integrates this current from the UP and DOWN signals received from the phase detector and the result
is a continuously changing control voltage applied to the VCO. The combination of the two circuits creates analog
signals for controlling the locked oscillator from the digital signal provided by the phase detector [24]. The circuit
diagrams of the charge pump and loop filter are shown in Fig. 3(a) and Fig. 3(b), respectively.

The loop filter determines the dynamic characteristics of the PLL and affects tracking and capture ranges, and
maximum slew rate. A low-pass RC filter is designed to pass frequency signals within the range of the VCO to
smooth the voltage spurs coming from the charge pump and slow down VCO frequency transitions. The component
values for the filter are considered in such a way that the cutoff frequency of the filter is approximately equal to
the maximum frequency of the LC-VCO so that it rejects signals at frequencies above its maximum frequency. The
loop filter is designed to match the specifications required by the application. The physical design of the charge
pump and loop filter is shown in Fig. 3(c).

C. LC Voltage Controlled Oscillator

The LC-VCO is an oscillator that controls the target frequency of the PLL. It includes an LC tank and is
controlled by 2 symmetrical voltage controlled capacitors (varactors) C; and C that adjust the capacitance of the
LC tank to respond to the voltage inputs. The LC-VCO circuit design is shown in Fig. 4(a). The designed LC-VCO
is targeted towards a 2.6 GHz frequency with approximately 0.5 GHz tuning range. The physical layout realization
of the LC-VCO is shown in Fig. 4(b).

D. Frequency Divider

The frequency divider shown in Fig. 5(a) is implemented using true single phase clock logic. When a continuous
train of pulse waveforms at fixed frequency is fed to it as an input signal, an output signal of approximately half
the frequency of the input signal can be obtained. If used in a cascaded fashion it can also be used to provide
division by 4, 8, etc. The circuit is comparable to a two-phase static D flip-flop operation. The physical layout of
the divide by 2 circuit is shown in Fig. 5(b).

E. PLL Circuit Characterization

The logical and physical design of the PLL was performed in a 180 nm CMOS technology with a target frequency
of 2.6 GHz. The characterization of the target FoMs is presented in Table II. The initial design showed acceptable
phase noise characteristics with -172 dBc/Hz @ 1 MHz offset. The PLL circuit is characterized for output frequency,
power, vertical and horizontal jitter (to simplify the phase noise calculations), and locking time which is used for
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(a) Schematic of the charge pump circuit. (b) Schematic of the loop filter circuit.
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(c) Physical design of the charge pump and RC filter.

Fig. 3. Design of the charge pump and loop filter circuits.

correctness of operation. A separate metamodel is created for each FoM from the same sample of the design space.
Each single transient simulation calculates all FoMs so the number of simulations required does not depend on the
number of metamodels than need to be generated.

V. PROPOSED ACCURATE POLYNOMIAL METAMODEL BASED BEE COLONY OPTIMIZATION OF PLL

This section introduces the proposed ultra-fast and yet accurate design flow that has 3 unique features to
accomplish this goal. It is a flow that uses single manual layout iteration with two layout stages at most: one
initial and one optimal. It uses layout-accurate polynomial metamodels which are generated from a parasitic-aware
(RCLK - Resistance, Capacitance, Self and Mutual inductance)) netlist of the PLL circuit. The optimization is then
performed using the polynomial metamodels and not the actual circuit netlist, thus significantly speeding up the



(a) Schematic diagram of the LC-VCO. (b) Physical layout of the LC-VCO.

Fig. 4. Design of LC-VCO circuit.

design process. The bee colony optimization algorithm was carefully selected as it has the capability to converge
to solutions in reasonable time using minimal computational resources while dealing with complex circuits with
large number of parameters.

A. Proposed Design Flow

The design flow proposed in this paper is shown in Fig. 6. As the input specifications are received by the designer
the initial logical design is created. The physical layout is created based on this design when it meets specifications.
The usual technology rule checks (DRC), layout versus schematic (LVS) and parasitic extraction (RCLK) steps
are then performed. As noted previously, the RCLK components have tremendous effect on high frequency AMS
circuits. As most of the time the circuit fails specifications, extra steps are introduced to bring the design back to
spec without iteratively going back to the physical layout or logical design.

The resulting netlist which includes all parasitics and circuit elements is parameterized. The design parameters are
selected among the key components of the PLL circuit. LC-VCO transistors N M; and N My (Fig. 4(a)) widths are
set to Wy, ¢ and PM; and PM> widths are set to Wpr,c. The divider (Fig. 5(a)) transistor widths are parameterized
separately: Wy1piy for Ms, Wyapiy for Mg, Wyspiw for My, Wiyapiw for Mg, Wispiw for Mg, Wy1piy for My,
Wpapiv for M, Wpspi, for M3, and Wyaps, for My. Since the phase detector has too many transistors, this
component circuit is parameterized after dividing it into three logical portions. The parameters are distributed
between two flip-flops and the AND gate. D-flip-flop DFFy: W,,,q1 and W41, D-flip-flop DF Fa: Wi,40 and
Wppd2, and AND gate: Wy,,,q3 and W43 (Fig. 2(a)). The charge pump (Fig. 3(a)) is also divided into two different
portions. Since the current mirror transistors need to be larger size than the logic transistors of the circuit, the
charge pump inverter 1&2 transistors My, Mo, M3, and My are set to Wy,cp1 and Wycp1, and the current mirror
transistors My, Mg, M7, and My are set to Wy,cp2 and Wi,c po. This results in a total of 21 parameters. The ranges
for each parameter are shown in Table III.

The parameters considered are usually up to the designer. In the worst case, they can be the same parameters that
will be used for future verification for process variation analysis. The metamodels are created based on the sampling
done on the design space. Each metamodel is the direct output for a single specification of the circuit such as power,
locking time, phase noise, frequency etc. The optimization is then conducted on the designed metamodel. It should
be noted that the optimization time is not directly linked to the simulation time. Hence, the optimization algorithm
can be thorough and more computationally expensive since the metamodel itself is computationally cheap.
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(a) Schematic of divide by 2 circuit. (b) Physical layout of the divide by 2 circuit.

Fig. 5. Design of divide by 2 circuit.

B. Metamodel Creation

The polynomial metamodel generation steps are shown in Fig. 7. To maximize the accuracy of the model an
appropriate sampling technique should be identified. The current paper uses Latin Hypercube Sampling (LHS) as it
is accurate and yet fast [8]. The sample data generation stage is the slowest part of the metamodeling process. The
accuracy of the metamodel is dependent on the amount of simulations which is limited by the available simulation
budget (time-wise). The Latin Hypercube sampling (LHS) is conducted on the number of parameters that exist in
the parameterized netlist with parasitics. LHS is a semi-uniform statistical technique that divides the design space
space into “Latin” squares which are then sampled randomly. The Latin squares provide more uniform distribution
of samples than Monte Carlo sampling which takes random points from the design space with a given distribution
for each present parameter.

Latin hypercube sampling was first introduced in [25]. Let P = P;; be an N x K matrix, where each column of
P is an independent random permutation of 1,2, --- , N. Moreover, let {;.(j = 1,--- ,N) be NK independent and
identically distributed over U0, 1] (uniformly distributed on [0,1]) random variables which are also independent of
P. Then the LHS sample matrix X, is defined by the following:

Xji = F7 (N pje — 1+ &), (1)

where F' is the joint distribution of the random vector of parameters X . Since the Latin squares are picked randomly
from the design space for the number of simulations desired, the total amount of combinations for same LHS design
can be quite high: (M!)N~1 where M is the number of divisions for each of N parameters to create the Latin
square.

Two different LHS sizes are constructed: a large one for a training set and a small set for verification. LHS
points (sets of design parameters) are then imported in a script that runs the SPICE simulations. Since the number
of simulations is directly linked to the number of different types of analysis that are performed to calculate the
specifications, the number of simulations translates into the amount of time it takes to generate the metamodel and

is calculated as follows: N
Thteta = <Z) x Y T, 2)

where T, is average time to perform a separate simulation for each ¢ analysis and N is the total number of
simulations.
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Fig. 6. The proposed ultra-fast design optimization flow that uses polynomial metamodels and bee colony optimization.

Polynomial regression is then performed on the training data set. In this work we consider only polynomial
metamodels, hence the accuracy is directly related to the maximum number of coefficients that can be fit in the
model given the available data. Since more than one function can be generated to fit the generated data, different
order polynomials are considered since regression is not a time consuming process. Partial polynomial functions
of order 1 through 6 are considered, since the full polynomial function would result in a very large amount of
coefficients for 21 variables.

A stepwise regression method [26] is used to filter out the coefficients that do not contribute to the function’s
outcome, since it has a chance to exclude some terms which are not statistically needed, resulting in shorter and
just as accurate functions with faster computation time. Stepwise regression is a systematic method for adding and
removing terms from a model based on their statistical significance in a regression. It starts with an initial model
and then compares the explanatory power of incrementally larger and smaller models. At each step, the P-value
of an F'-statistic [26] is computed to test the model with and without a potential term. If a term is not currently
in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is
sufficient evidence to reject the null hypothesis, the term is added to the model; otherwise, if a term is currently in
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the model, the null hypothesis is that the term can be ignored, so if there is insufficient evidence to reject the null
hypothesis, the term is removed from the model. The method concludes when no more improvements can be made
to the model. Stepwise regression may build different models from the same set of potential terms depending on
the terms that were initially included in the model since it changes the order in which terms are moved in and out.

As the manufacturing price of the circuit is very high, it is essential to produce the most accurate metamodel
for that design to be manufactured with the lowest tolerance for error. To pick the most accurate function from
the pool of functions the RMSE (Root Mean Square Error) and R? (coefficient of determination) statistics are
generated. Since the statistical data only calculates the goodness of fit to the training data set, the verification LHS
input parameters are used and the output of each function is compared to the actual (simulation) data by using
the same statistical method. This step ensures that the function is not over-fitted and shows how well the function
under consideration performs on the parameter values other than training data. The best metamodeling function is
selected from the best RMSE and R? values for both data sets.

RMSE and R? are the metrics used for goodness of fit in our metamodeling approach. The RMSE is derived
from the Sum of Square Errors (SSE):

1
RMSE = (N> SSE, 3)

1 N
= \(§) X e - it @

k=1

where N is the number of simulation points, y is the actual simulation result values and ¢ are the results of
the metamodel at the same location as the simulation point z. R? predicts the probability that a future result is
accurately predicted by the model. R? ranges from 0 to 1, where 1 is the best probability value. However, R? cannot
account for over-fitting of the model. Hence, the adjusted R? which accounts for the number of explanatory terms
in a function, RZ dj> is used [26]. Both R? and R?Ldj for different orders of the polynomial metamodels for settling
time are shown in Fig. 8. The number of coefficients that are generated for each order of the polynomial metamodel
is shown in Fig. 9. In can be seen that the R? value and dej are nearly equal to 1 when the order reaches 5.
The number of coefficients that represent the metamodel at those orders is equal to the number of simulation data
points (100). This means that the model is over fitted, therefore for the metamodel that represents settling time, a

polynomial order of 4 will be used. R? is calculated using the following expression:

g2 = SSE _ 2ily(er) — glax))
SST  oply(xr) —9)*

®)
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where ) is the mean value of the simulation responses at the N sample points. dej is calculated by including
the effect of the degrees of freedom in the data:

dejzl—(%ﬂ(l—f#), ©

- p

where p is the total number of terms in the polynomial metamodel (including the constant term).
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Fig. 8. Generated R? and Ridj for various orders of the polynomial metamodels for frequency.
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Fig. 9. The number of coefficients corresponding to the order of the generated metamodels for frequency.

The statistics for all polynomial metamodels of the selected FoMs for the PLL that were selected for optimization
are presented in Table I. It is interesting to note that metamodels of higher order than 2 primarily show better results.
This is an important observation because the commonly used Response Surface Methods (RSM) for optimization
only used a local representation of the data that is at most quadratic. In contrast, the metamodel representation is
not only global but of high degree as well.

C. Bee Colony Optimization Algorithm

In this paper, the bee colony optimization (BCO) algorithm is investigated for nanoscale PLL design as the
parasitic-aware netlist simulation time is excessive for efficient design space exploration. The BCO algorithm is
based on the natural behavior of honey bees for finding the best food source. The artificial bee colony divides bees



TABLE 1
SELECTED METAMODEL STATISTICS FOR EACH FOM OF PLL CIRCUITS

Metamodels | Order | R? R? Coefficients RMSE
adjusted in model fit (W)
Frequency 3 0.9064 | 09119 48 33.397 MHz
Power 3 0.9985 | 0.9980 56 0.157 mW
Settling Time 4 0.8558 | 0.8748 57 9.96 ns
Horizontal Jitter 3 0.7041 | 0.8452 34 36.37 ps
Vertical Jitter 3 0.7125 | 0.7968 41 1.6 mV

into three categories: onlookers, scouts, and workers. The algorithm starts with bees being divided equally between
onlookers and worker bees only. The state diagram in Fig. 10 shows the states and transitions between stages that
the bees can go though. An initial random solution is assigned to worker bees. Worker bees then search for food at
the known random location. When bees return to the hive, the information is shared among the bees by performing
a wiggly dance on the hive floor. The unemployed onlooker bees then choose the best food source and employ
themselves to go search for more food around the area of the food source. If the worker bee does not get enough
food source it becomes unemployed and waits for a dance that it will like with probability P,,. Then it goes to the
location of proximity to the advertised location. If the food source is not as good as expected it goes on searching
in other random locations by becoming a scout bee. If the scout finds a better food source, it returns to the hive
and becomes a worker bee again by wiggle dancing and trying to recruit onlookers.

FoM* >FoM Fon=low
Pon=high &
FoM*>FoM

Worker Onlooker

FoM*<FoM

Ry = high &

FoM*>FoM FoM* <FoM

FoM* <FoM

Fig. 10. Bee transition states in the beehive implemented in the bee colony algorithm.

The internals of the meta-heuristic BCO algorithm which is used for fast design space exploration of the PLL in
this paper are described in Algorithm 1. The proposed algorithm is a maximization approach. Due to the random
behavior of bees it can leave local maxima and potentially find the global maximum, provided a sufficiently large
number of iterations is performed. The FoMs used in this algorithm are presented in Section VI.

VI. EXPERIMENTAL RESULTS

To accommodate the metamodeling approach, multiple CAD tools are used. The data flows from/to different tools
at different steps of the process. The initial (logical) design is done using SPICE. LHS generation is conducted in
MATLAB which in turn creates the LHS design matrix for all parameters and generates the script file to run the
SPICE simulations. As the simulations are run, the data is fed back to MATLAB where the metamodel generation,



Al

gorithm 1 Proposed Bee Colony Optimization Algorithm.

1

e e e e e
0NNk W= O

19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:

49

: Initialize maximum iterations < mazx;.
: Set the boundaries for each parameter P(i) < [min, maz].
: NumberBees < Define the number of bees.
. buf fer < Define number of close worker bees dispersal.
: Initialize a matrix as follows: bee,,qtrix (3, Number Bees) < [workers, onlookers, scouts].
. Set bee,,qiria first half to be workers and other onlookers.
. Initialize food sources.
while (Counter < max;) do
for each i from 1 to NumberBees do
if (beematriz(1,1) == 1) then
(1) Send worker bee to a random known food source.
Calculate Power(i), Jittery, /,,(i) using metamodels.
Calculate the proposed FoM of the PLL.
if (current FoM is better than the previous FoM) then
Update result and location.
else
Convert bee to onlooker.
end if
else if (beepqtriz(1,7) == 1) then
(2) Send onlooker bee.
Calculate P,,, < probability of the food source being good
if (P,,, is high) then
P + (Pin + random(1) X Ppaz) X buf fer.
Send onlooker to random location for each design parameter P.
Calculate the FoM.
if (current FoM is better than the previous FoM) then
Update result and location.
Convert bee to worker.
else
Convert bee to scout.
end if
end if
else
(3) Send scout bee.
Pick the best result as best,..
P + Pin + random(1) X Ppaz.
Send the scout to random location for each P.
if (current FoM is better than the previous FoM) then
Update the result.
Convert bee to worker.
end if
end if
if (current FoM is better than previous FoM) then
Update result and location.
end if
end for
Counter <+ Counter + 1.
end while

: Return result and location.




statistical analysis and optimization are conducted. The optimized values are transferred to SPICE where the final
adjustments are done on the physical layout and verification simulations are run.

The proposed optimization is performed under a constraint of locking time. The locking time is a metric that
shows that the PLL circuit really works as expected and is able to lock within reasonable time. The optimization
target is that the frequency is within 0.5% of the specification. The aim is for a 2.6 GHz output frequency of the
PLL. The FoM that needs to be maximized is calculated for every arising combination of parameters varied for
optimization. In this work the following FoM for the PLL is introduced, to ensure that mutual conflicting objectives
are met during the optimization:

1
FolM = 7
*“PLL (Power x Jitter, x Jitterv) ’ ™

where P, Jp,, and J, are the power, horizontal jitter, and vertical jitter, respectively. The maximization of this FoM
will lead to a PLL design that will have minimized power and jitter while able to achieve a lock.

The BCO progression over the number of iterations is shown in Fig. 11. Each run of the optimization is slightly
different from the others due to the random effect of the bee transitions and food search in the given design space.
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Fig. 11. Results of the BCO algorithm progression for the selected FoM for up to 10 iterations.

The results of the BCO are shown in Table II. The final optimization shows more than 90% power improvement
and very high vertical jitter improvement over the baseline design with no area penalty which is due to the layout
configuration and the selected parameters that do not affect the final layout considerably. The final optimized
responses for each parameter of the PLL are shown in Table III.

TABLE I
POWER AND JITTER OF THE PLL BEFORE AND AFTER OPTIMIZATION.

Metric Before After Improvement
Optimization Optimization
Power 9.29 mW 0.87 mW 90.6%
Jitter Vertical 168.35uV 3.28 nV ~100%
Jitter Horizontal 189 ps 180 ps 4.8%
Area 525 x 326 um? | 525 x 326 um? 0%

Careful consideration was given to the initial physical design to provide enough space for transistor resizing.
Even though it might affect the compactness of transistors in the initial layout in comparison to the optimal placed
physical design, the speed up that this design flow provides outweighs the area savings. The final physical design
of the PLL that uses the optimized parameters is shown in Fig. 12. Most of the parameters used are located in
the lower left corner of the layout, which includes the phase detector, charge pump, loop filter, and divider. The



TABLE III
PLL CIRCUIT PARAMETERS WITH EACH PARAMETER RANGE. THE FINAL COLUMN ALSO SHOWS THE OPTIMIZED VALUES FOR EACH
PARAMETER.
Circuit Parameter | Min | Max | Optimal

(m) (m) | Value (m)
Wopdi 400n | 2p 1.661

Wpdi 400n m L.1lp
Wppd2 400n | 2u 784n
Phase Detector Wopda 200n | 2 6390
Wopd3 400n | 2pu 1.54p
Whpd3 400n | 2p 737n
Wncp1 400n | 2u 1.24pu
Wyop1 400n 21 1.35u

Charge Pump

Wicp2 Tu 4p 1351
Wpcp2 11 4p 2.881
WarLco 3u 20 18.62u

Le-veo Wprc 6u 40 37.48u
Wpipiv | 400n | 2pu 1.65u

WpQDiv 400n Z,U 154”

Wp3piv | 400n | 2pu 1.38u

WpaDiv 400n 2u 1.96u

Divider WariDiv 400n 21 1.094

Wa2piv 400n | 2p 1.17u
W'n.BDiv 400n 2,U 129][},
Whabiv 400n 2,u 1.95,[1,
Waspiv | 400n | 2u 536n

LC-VCO takes up most of the area of the PLL, but since the inductor and capacitors have not been parameterized,
there was no area penalty to this design optimization from the initial physical design.

VII. CONCLUSION AND FUTURE RESEARCH

This paper has provided a detailed design flow that uses metamodels to speed up the design process for AMS
components. A 2.6 GHz PLL circuit that was designed using 180 nm nano-CMOS technology was used as case
study. The physical layout was parameterized using 21 design parameters and optimized using the bee colony
optimization algorithm. It was demonstrated that the algorithm is suitable for AMS circuit optimization by use of
metamodels and has provided significant optimization improvements in FoM characteristics. The optimization was
conducted on 5 metamodels which were created on only 100 sampling points and have been shown to provide
excellent characterization of the PLL circuit with high accuracy. The final outcome of the design flow was 90%
power savings and an average of 52% jitter minimization. The final physical layout of the process is shown to have
0% area penalty from the initial design. Compared to an exhaustive search of the 21-dimensional design space,
with 10 samples per parameter, 102! simulations would be required. The time savings are enormous (=~ 10%%x
simulation time). In future research we will investigate metamodels other than polynomial. Since the accuracy of
the metamodel is essential, it would be interesting to see the behavior of different kinds of equations and algorithms
and their accuracy applied to complex circuits with very large parameter sets (100+).
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