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Abstract

Existing secure embedded systems are primarily cryptography based. However,
for effective Digital Rights Management (DRM) of multimedia in the framework
of embedded systems, both watermarking and cryptography are necessary. In this
paper, a watermarking algorithm and corresponding VLSI architectures are pre-
sented that will insert a broadcasters logo into video streams in real-time to facili-
tate copyrighted video broadcasting and internet protocol television (IP-TV). The
VLSI architecture is prototyped using a hardware description language (HDL)
and when realized in silicon can be deployed in any multimedia producing con-
sumer electronics equipment to enable real-time DRM right at the source. The
watermark is inserted into the video stream before MPEG-4 compression, result-
ing in simplified hardware requirements and superior video quality. The water-
marking processing is performed in the frequency (DCT) domain. The system is
initially simulated and validated in MATLAB/Simulink R⃝ and subsequently proto-
typed on an Altera R⃝ Cyclone-II FPGA using VHDL. Its maximum throughput is
43 frames/sec at a clock speed of 100 MHz which makes it suitable for emerging
real-time digital video broadcasting applications such as IP-TV. The watermarked
video is of high quality, with an average Peak-Signal-to-Noise Ratio (PSNR) of
21.8 dB and an average Root-Mean-Square Error (RMSE) of 20.6.
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1. Introduction

As broadband Internet is widely available, multimedia resources are openly
accessed and distributed quickly and widely. From this trend, it is predicted that as
more and more music, movies, and images are exchanged on the Internet, down-
load multimedia sales will eventually surpass traditional sales. This development
will benefit the multimedia product owners as sales will increase. However, it
will also pose challenges to their ownership as most multimedia products are dis-
tributed in unsecured formats. This situation is further aggravated by the fact
that duplicating digital multimedia products is almost cost-free and fast due to the
availability of free or low cost tools. To legal authorities, arbitrating the ownership
of multimedia products is not easy, unless a mechanism guarantees the genuine
integrity of copyright. Digital Rights Management (DRM) using encryption and
watermarking is investigated as a solution for copyright and intellectual property
protection of multimedia.

Along these lines, there is a pressing need for real-time copyright logo inser-
tion in emerging applications, such as internet protocol television (IP-TV). This
is demonstrated in figure 1. The visible-transparent watermarking unit accepts
broadcast video and one or more broadcaster’s logos. The output is real-time
compressed (MPEG-4) video with the logo embedded in the stream. This situa-
tion arises in IP-TV and digital TV broadcasting when video residing in a server
is broadcast by different stations and under different broadcasting rights. Embed-
ded systems that are involved in broadcasting need to have integrated copyright
protection mechanisms. The majority of the existing research [1, 2] concentrates
on invisible watermarking, which cannot be used for logo insertion. Existing re-
search on visible watermarking [3, 4, 5, 6, 7, 8] is primarily for images, not video.
The research works presented in [9, 10] are for video, but they can not be used for
real-time DRM. The objective of this paper is to fill the gap of real-time water-
marking in consumer electronic equipment at the source end.

Visible-Transparent
Watermarking

Broadcaster’s Logo

Video

Watermarked
Video

Video

Figure 1: Real-time logo insertion through watermarking.
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MPEG-4 has rapidly become one of the mainstream exchangeable video for-
mats in the Internet today because it has high and flexible compression rate, low bit
rate, and higher efficiency while providing superior visual quality. Microsoft, Real
Networks, and Apple support the MPEG-4 standard and have already embedded
MPEG-4 decoders into many of their products. Other companies or organizations
also provide MPEG-4 encoders/decoders (or CODECs), and there are even free
products available, such as the Xvid codec [11]. This motivated us to consider
MPEG-4 as the target video compression method in our research. Thus, the ob-
jective of this paper is real-time secure MPEG-4; i.e., watermarking integrated
into MPEG-4, operating in real-time.

The novel contributions of this paper are as follows:

1. A perceptual-based adaptive visible watermarking algorithm suitable for
real-time applications such as video broadcasting.

2. VLSI architectures for real-time watermarking in the context of compressed
video (i.e., the MPEG-4 compression standard).

3. MATLAB/Simulink R⃝ prototyping of the watermarking architectures to demon-
strate their functionality.

4. VHDL based FPGA prototyping of the VLSI architectures which can be
integrated in multimedia producing appliances (e.g., digital video camera,
network processor, etc.).

The remainder of this paper is organized as follows: In Section 2, existing
literature is discussed. In Section 3, an overview of the MPEG-4 algorithm and
its hardware cost perspective is discussed. The proposed watermarking algorithm
that produces watermarked compressed video is discussed in Section 4. In Sec-
tion 5 the proposed hardware architectures are presented. The high-level archi-
tectural MATLAB/Simulink R⃝ simulations of the overall system and FPGA-based
hardware prototyping are discussed in Section 6. Section 7 discusses the experi-
mental results. The paper concludes in Section 8, which summarizes our results
and offers suggestions for further research.

2. Significance of Our Work with Respect to Related Prior Research

The existing literature is rich with watermarking algorithms introduced for
different types of multimedia objects, such as images, video, audio, and text, and
their software implementations. These watermarking algorithms primarily work
off-line, i.e., the multimedia objects are first acquired, and then the watermarks
are inserted before the watermarked multimedia objects are made available to the
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user. In this approach there is a time gap between the multimedia capture and its
transmission. The objective of this paper is to present research which will lead
to a hardware-based watermarking system to bridge that gap [12, 1, 2, 13, 7, 14].
The watermarking chip will be integrated into the electronic appliance which is
an embedded system designed using system-on-chip (SoC) technology.

In prior research [15, 16, 17], a real-time watermarking embedder-detector
for a broadcast monitoring system is presented in the context of a VLIW DSP
processor. The insertion mechanism involves addition of pseudo-random numbers
to the incoming video stream based on the luminance value of each frame. The
watermark detection process involves the calculation of correlation values. In
[18], the Millennium watermarking system is presented for copyright protection
of DVD video in which specific issues, such as watermark detector location and
copy generation control, are addressed. In [13], a VLSI architecture for a spread-
spectrum based real-time watermarking system is presented. In [19], the graphics
processing unit (GPU) is utilized for hardware assisted real-time watermarking.
In [20], a watermark detection system is presented for a hardware based video
watermark embedder using a Stratix FPGA from Altera R⃝, a PCI controller, and
Microsoft Visual C#. In [21, 22], a custom IC for video watermarking is presented
that performs all operations using floating-point datapath architectures for both
the watermarking embedder and detector. The embedder consumes 60 mW, and
the detector consumes 100 mW while operating at 75 MHz and 1.8 V. In [23],
a video watermarking system called “traceable watermarking” is proposed for
digital cinema. In [24], FPGA prototyping is presented for HAAR-wavelet based
real time video watermarking. In [25], a real-time video watermarking system
using DSP and VLIW processors is presented that embeds the watermark using
fractal approximation.

The research presented in the current paper will significantly advance the state-
of-the art in digital rights management. The algorithm and architecture proposed
in this paper will be immensely useful for real-time copyright logo insertion in
emerging applications, such as IP-TV. An embedded system that will allow such
operations needs to have embedded copyright protection facilities such as the one
presented in this paper.

3. Watermarking in the MPEG-4 Framework: A Hardware Cost Perspective

The most important phases for video compression are color space conver-
sion and sampling, the Discrete Cosine Transform (DCT) and its inverse (IDCT),
Quantization, Zigzag Scanning, Motion Estimation, and Entropy Coding. The
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watermarking process is implemented with a single embedding step in the video
compression framework. In this section the watermarking algorithm in the frame-
work of MPEG-4 is discussed highlighting the design decisions that were made
towards real-time performance through a hardware-based solution.

3.1. Color Space Conversion
The conversion from RGB-color space to YCbCr-color space is performed us-

ing the following expression [26, 27]:

Y = 0.299R + 0.587G + 0.114B,
Cb = 0.564(B − Y) + 128,
Cr = 0.731(R − Y) + 128.

 (1)

A total of 6 adders and 5 multipliers are needed to perform the color conversion,
and they can be concurrent. The delay introduced does not contribute significantly
to the critical path delay as the conversion takes place at the input stage, where
the additive terms in the Cb and Cr components guarantee that their values will
be positive. The sampling rate is chosen to be 4:2:0 so that in a 4 pixel group,
there are four Y pixels, a single Cb pixel and a single Cr pixel to meet digital TV
broadcasting standards.

3.2. Discrete Cosine Transformation (DCT)
DCT is one of the computationally intensive phases of video compression. For

ease of hardware implementation, a fast DCT algorithm and its inverse [28, 27]
is selected. The fast DCT algorithm reduces the number of adders and multi-
pliers so that the evaluation of the DCT coefficients is accelerated. The two-
dimensional DCT and IDCT algorithms can be implemented by executing the
one-dimensional algorithms sequentially, once horizontally (row-wise) and once
vertically (column-wise).

3.3. Quantization
After the DCT, the correlation of pixels of an image or video frame in the

spatial domain has been de-correlated into discrete frequencies in the frequency
domain. Since human visual system (HVS) perception is more acute to the DC
coefficient and low frequencies, a carefully designed scalar quantization approach
reduces data redundancy while maintaining good image quality. In the MPEG-4
video compression standard, a uniform scalar quantization is adopted. The fea-
ture of the scalar quantization scheme is an adaptive quantized step size according
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to the DCT coefficients of each macroblock. For computational efficiency and
hardware simplification, the scalar quantization step size can be chosen from pre-
defined tables [29].

3.4. Zigzag Scanning
Zigzag scanning sorts the matrix of DCT coefficients of video frames in as-

cending order. For progressive frames and interlaced fields, the zigzag scanning
routes are provided by predefined tables as explained in [29, 27].

3.5. Motion Estimation
Prior to performing motion estimation, an image (video frame) is split into

smaller pixel groups, called macroblocks, as the basic elements of the image rather
than a single pixel. This is driven by a compromise between efficiency and per-
formance to analyze a video’s temporal model. A macroblock commonly has a
size of 16×16 pixels. With the macroblock in the base frame and its two dimen-
sional motion vector, the current frame can be predicted from the previous frame.
In the MPEG-4 standard, the region in which the macroblock is sought for match
could be a square, diamond, or of arbitrary shape. For most applications, a square
region is considered. For example, if the macroblock has pixel size, the searching
region will be a pixel block. The similarity metric for two blocks is the minimized
distance between them. For simplicity, the sum of the absolute difference (SAD)
is applied as the criterion for matching, as represented in [29, 27]:

S AD(x, y) =


∑N−1

i=0
∑N−1

j=0 |c(i, j) − p(i, j)| for (x, y) = (0, 0),∑N−1
i=0

∑N−1
j=0 |c(i, j) − p(i + x, j + y)| ,

(2)

where c(i, j) are the pixels of the current block, i, j = 0, 1, ,N − 1; p(m, n) are
the pixels of the previous block in the searching region, and m, n = −R,−R +
1, ..., 0, 1, ,R + N − 1, where the size of the macroblock is R pixels. Motion es-
timation is in the critical path of video compression coding and most time delay
will occur at this step. The SAD algorithm will search the square target region
exhaustively to find a matching macroblock. The output of this procedure is the
prediction error for motion compensation and the motion vector. The hardware
implementation of the motion estimation block is sequential and contributes the
largest delay to the critical path.
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3.6. Entropy Coding
After DCT and quantization compression, additional compression can be achieved

via entropy coding, which includes Huffman coding, Arithmetic coding, etc. Un-
like lossy compression, as in the color space, DCT and quantization procedures,
the entropy coding compression is lossless. The entropy coding efficiency depends
on the precision of calculating the probability of occurrence of each coefficient.
However, calculating probabilities of all the coefficients is impossible in real-time
MPEG-4 coding and watermarking. The approach we followed is to utilize pre-
calculated Huffman code tables for generic images [29].

4. The Proposed Video Watermarking Algorithm

This section presents a watermarking algorithm that performs the broadcaster’s
logo insertion as a visible watermark in the DCT domain. The robustness of DCT
watermarking arises from the fact that if an attack tries to remove watermarking
at mid-frequencies, it will risk degrading the fidelity of the image because some
perceptive details are at mid-frequencies [29, 27]. The other important issue of
visible watermarking, transparency, comes from making the watermark adaptive
to the host frame [5]. The proposed watermarking algorithm is presented as a flow
chart in figure. 2. For gray scale, the watermark is applied to Y frames. For a color
image, the Cb and Cr color spaces are watermarked using the same techniques for
Y frames. To protect against frame interpolating attacks, all I, B, and P frames
must embed the watermark.

The watermark embedding model used in this paper was originally proposed
by us in [5] for images:

CW(i, j) = αnC(i, j) + βnW(i, j), (3)

where CW(i, j) is a DCT coefficient of watermarked images, αn is the scaling fac-
tor, and βn is the watermark strength factor, C(i, j) is the original DCT coefficient,
and W(i, j) is the watermark DCT coefficient. The relative values of αn and βn

determine the strength of the watermark. The coefficients are adaptive to image
blocks and do not introduce any artifacts; therefore, this scheme is widely adopted
in the literature. Their values are computed based on the characteristics of the host
video frame.

Given that human perception is sensitive to image edge distortion, for edge
blocks, the value of αn should be close to its maximum value αmax, while the
value of βn should be close to its minimum value βmin. Since the watermark DCT
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Figure 2: The flow of the proposed watermarking algorithm.

coefficients will be added to the video frame AC DCT coefficients, it will be ad-
vantageous to adjust the strength of the watermark such that the distortion of these
coefficients is minimal. Given that AC coefficients of strongly textured blocks
have small variance σn, it is desirable to make αn proportional to σn , and βn in-
versely proportional to σn. Therefore, for non-edge blocks the following models
are used:

αn = σ
∗

n × exp
(
− (
µ∗n − µ∗

)2
)
,

βn =

(
1
σ∗n

)
×

(
1 − exp

(
− (
µ∗n − µ∗

)2
))
.

(4)

The subscript n indicates the 8 × 8 block for which the parameters are being cal-
culated. αn and βn in Equation 4 are calculated on a block-by-block basis, for a
frame. σ∗n is the normalized natural logarithm of the variance of the block’s AC
DCT coefficients σn, given by:

σ∗n =

(
ln (σn)

ln (σmax)

)
with (5)

σn =

(
1

64

)
×

7∑
i=0

7∑
j=0

(
ci j − µAC

n

)
. (6)

In Equation 6, σmax is the maximum value of all of the σn’s in a frame, ci j are the
DCT coefficients, and µAC

n is the mean value of the AC DCT coefficients in block
n. In Equation 4, µ∗n is the normalized mean value of the DC DCT coefficient in
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block n. µ∗ is the normalized mean value of all c00(n) in a frame consisting of N
8 × 8 blocks. These are calculated as:

µ∗n =

(
c00(n)
cmax

)
and (7)

µ∗ =

(
1
N

)
×

N∑
n=1

c00(n). (8)

Once the intra-frame parameter issue is solved as above, the next challenge
is their determination for inter-frames. There are several approaches, including
the following: First, calculate the parameters for each frame on the fly. However,
it is a fact that continuous, real-time calculation of the values of αn and βn for
each block within each frame being watermarked is very expensive in terms of
resource requirements and processing time. Second, predetermine the parameters
for benchmark frames, store them in a buffer, and use them on the fly. The second
alternative is followed in this paper. MATLAB R⃝ experiments are performed using
video frames and values of αn and βn applied to all blocks in a frame. Based on
these experiments, the constant values αn = 0.9, and βn = 0.1 are selected for our
hardware implementation. A variety of watermarked videos using these values
do not display perceptible degradation in quality. However, the development of
a video content adaptive technique is part of our ongoing research. The above
models are thoroughly tested and proven to be working for a large variety of video
data.

The complete watermark embedding process is shown in Algorithm 1.

5. The Proposed VLSI Architectures

The datapath architecture proposed in this work that can perform watermark-
ing within the MPEG-4 video compression framework uses the components which
are discussed in this section. The VLSI architecture for copyright protected MPEG-
4 compression is shown in Figure 3. In the system architecture, the “watermark
embedding” module performs the watermarking process. After that procedure,
watermarked video frames are obtained. The rest of the units (e.g. entropy cod-
ing, zig-zag, quantization, DCT, and motion-estimation) of the architecture essen-
tially perform MPEG-4 compression of the video. The system has a controller
which generates addressing and control signals to synchronize all components of
the system.

9



Algorithm 1 The proposed MPEG-4 watermarking algorithm.

1: Convert RGB color frames to YCbCr frames for a given host video.
2: Resample YCbCr frames according to 4:2:0 sampling rate.
3: Split Y frame and watermark image into 8 × 8 blocks.
4: Run 2-D DCT for each 8 × 8 block to generate 8 × 8 DCT coefficient matrix.
5: Watermark each 8 × 8 Y DCT matrix with an 8 × 8 watermark DCT matrix.
6: Perform 2-D IDCT for each 8 × 8 watermarked matrix to obtain the pixels.
7: Buffer watermarked Y frame, non watermarked Cb and Cr frames for a Group

of Pictures (GOP, e.g., 15 continuous adjacent frames).
8: Split the Y frame into 16 × 16 blocks, and Cb and Cr into 8 × 8 blocks.
9: Perform motion estimation for Y frames. Each 16 × 16 Y block is rescaled to

8 × 8 blocks.
10: if (Even first frame (I) of GOP) then
11: return to Step 28.
12: else if (P) Frame then
13: return to Step 17.
14: else if (B) Frame then
15: return to Step 22.
16: end if
17: Perform Y frame forward or backward motion estimation P frames with refer-

ence frames (I or P frames). Obtain the motion vectors (MV) and prediction
errors of residual frame for motion compensation (MC).

18: if (Y) Frame then
19: return to Step 28.
20: end if
21: Obtain Cb, Cr motion vectors and prediction errors. Go to Step 28.
22: Using bilinear algorithm motion, estimate B frames with two P frames or I and

P frames for Y component. Obtain the motion vectors (MV) and prediction
errors of residual frame for motion compensation (MC).

23: if (Y) Frame then
24: return to Step 28.
25: else if (Cb and Cr)frames then
26: return to Step 21.
27: end if
28: Perform 2-D DCT on blocks of frames and quantize the 2-D DCT matrix.
29: Zigzag scan quantized 2-D DCT coefficient Matrix.
30: Perform entropy coding of the 2-D DCT coefficients and motion vector.
31: Build structured MPEG-4 stream from buffer.
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Figure 3: System-level architecture of MPEG-4 watermarking.

5.1. Watermark Insertion Unit
The watermark embedding or insertion unit is composed of several sub-modules,

such as DCT, perceptual analyzer, edge detection, scaling factor, insertion, row
and column address decoder, registers, and a local controller. The DCT module
calculates the DCT coefficients of the host and watermark video frames before
they are stored in the buffer memory. The controller schedules the operations of
all other modules and the data flow in the watermarking unit. Address decoders
are used to decode the memory address where the video frames and watermark
frame are stored. This unit embeds a watermark image into a video frame. The
input and output video frames are buffered to the frame buffer as shown in Fig-
ure 4(a).

5.2. Discrete Cosine Transformation (DCT) Unit
The DCT module calculates the DCT coefficients of the video frames and

consists of two 1D DCT sub-modules. The algorithm of Loeffler et al. [28] is used
in the implementation. The 1D row DCT of each 8×8 block is first computed. The
column DCT of each block is then performed. A buffer is used to assist in finding
the transpose of the 1D row DCT. The final controller for the watermarking unit
controls the DCT module. The buffer stores the 1D row DCT coefficient before
the column DCT is computed. The block diagram of the DCT module is shown
in Figure 4(b). The 2-D DCT has a 12-bit data bus and a 6-bit address bus for the
64-byte internal buffer. The input data is an 8-bit unsigned integer and the output
is a 12-bit integer. For higher precision, the bit length is increased.

5.3. Frame Buffer
The frame-buffer is responsible for buffering the frames for every block pro-

cedure module, e.g., the watermark, DCT, and motion-estimation units. Its size
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Figure 4: The Proposed Architectures of various Datapath Components.

capacity is enough for one input group of pictures (GOP), motion vectors, and the
output stream. The frame-buffer shown in Figure 4(c) is an external buffer which
is different from the block-memory RAM used by the motion-estimation module.

5.4. Motion Estimation Module
The motion estimation module is composed of motion detection and half-pel

modules. The macro block motion detection core in Figure 5(a) performs a search
for the best match for each macro block in the current frame based on a 3 × 3
macro block area in the previous frame. It is intended to be used as part of a larger
video compression system. Pixel data is input 8 bits at a time in 4:2:2 YUV order
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at 27 MHz. Data is separated by component type, stored in off-chip RAM, and
macro blocks are processed one at a time. Each macro block results in a half-pel
motion vector and a set of differences that could be sent on to additional stages
for encoding. The core is intended to be used in real time encoding of full-size
NTSC. The motion detection core uses 16 block RAM modules, and half-pel uses
9 block RAM modules to do the exhaustive search.

5.5. Entropy Coding Unit
The architecture of the entropy coding unit is shown in Figure 5(b). It is imple-

mented using a Huffman coding look-up table. It has many different submodules
including variable length coding (VLC) and pattern matching.

5.6. Quantization Unit
The quantization module architecture is shown in Figure 5(c). This module

quantizes the DCT coefficients according to predefined quantization tables. The
input and output are buffered in the frame buffer.

5.7. Zig-Zag Scanning Unit
The architecture of the zigzag scanning unit is shown in Figure 5(d). This unit

performs re-ordering of the DCT coefficients of video frames.

5.8. Overall Datapath
The overall datapath architecture that can perform watermarking in the MPEG-

4 video compression framework is shown in Figure 6. The datapath is constructed
by stitching various individual units together.

5.9. Overall Controller
The overall controller of the system to synchronize system functions is shown

in Figure 7. The controller generates address and control signals to synchronize
the different components of the datapath for their coordinated processing.

6. Architecture Modeling and Prototyping

In this section the two different ways of modeling the proposed architecture
are presented. First, Simulink R⃝ based modeling for functional verification of
the architectures is discussed. Then, VHDL-based modeling is presented and is
synthesized for an FPGA platform.
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6.1. Simulink R⃝ Based Modeling
To verify the functionality of the algorithms and architecture presented in the

previous sections, a fast prototype is built in MATLAB/Simulink R⃝. The method-
ology for this high level system modeling is bottom-up: building function units
first, then integrating these units into subsystems, assembling the subsystems into
a complete system, and, finally, verifying overall system functionality.

MATLAB/Simulink R⃝ offers video and image processing functions and mod-
ules that facilitate fast prototyping. Available function units include DCT/IDCT,
SAD for motion estimation, block processing (split), and delay (buffer). In ad-
dition, quantization, zigzag scanning, and entropy coding modules were built.
The system-level modeling is accomplished using different modules as follows:
(1) Module 1: Color Conversion and sampling rate compression, (2) Module 2:
DCT domain compression in each frame, (3) Module 3: Quantization and zig-
zag scanning, (4) Module 4: Entropy coding using Huffman codes, (5) Module
5: Motion estimation and compensation only on I and P frames, (6) Module 6:
Interpolating B frames, and (7) Module 7: Uncompressed domain watermarking.
The MATLAB/Simulink R⃝-based representation of the integrated watermarking
MPEG-4 system is shown in Figure 8, and the details of the watermarking inser-
tion unit are presented in Figure 9.
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Figure 8: Simulink block diagram of the proposed system.

As seen from Figure 9, the video frames are watermarked in the DCT domain
before being compressed. For three (Y , Cr, Cb) color frames, only the Y color
frame is watermarked for the following reasons:

1. The watermark image, which is black-white monochrome or gray scale,
should only modify the brightness of the picture being watermarked. If the
watermark is in color, the Cb and Cr frames must be watermarked as well.

2. The Y color space is more sensitive to human perception such that any unau-
thorized modification will be easily detected. This makes the Y component
of color frames ideal for watermark-based copyright protection.

3. To avoid redundancy, the watermark will not be embedded into the Cb or Cr

frames. However, they can also be watermarked for high perceptual quality
watermarking with only slight modifications to the architecture.

To protect against frame interpolating attacks, all I, B, and P frames must em-
bed the watermark. Exhaustive simulations are performed to verify the proposed
algorithms and architectures with a large variety of watermark images and video
clips. Sample watermarked video clips are presented in the experimental results
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Figure 9: Simulink simulation of the Encoder.

section.

6.2. FPGA Based Prototyping
The VLSI architectures presented here were designed in the form of soft-cores,

i.e., in the form of hardware description language modules, such as Verilog and
VHDL, to make the digital rights management (DRM) technology available for
diverse electronic appliances that can generate the video. During the FPGA-based
prototyping development, the working video compression and watermarking mod-
ules are implemented in VHDL. A top-down modular design flow for performing
the architectural design and simulation and FPGA prototyping is presented in Fig-
ure 10. In this approach, the architecture unit is logically and structurally divided
into several modules first. Each of the modules is individually tested and verified
through simulation and synthesized from VHDL into register transfer level (RTL)
form. Once the individual modules are tested and verified to be functionally cor-
rect, they are stitched together. Next, the controller is designed that executes the
datapath and ensures that the unit performs its assigned operations. The VHDL
code was compiled using Altera R⃝ Quartus with a Cyclone II FPGA chip as the
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target for synthesis. The individual modules are: frame buffer, watermarking,
DCT, Quantization, and Zig-Zag. The controller is realized as a finite state ma-
chine (FSM), as shown in Figure 11. In this FSM, several sub-states have been
merged for simplicity of design.

Generate, Synthesize, and Simulate the RTL of the Overall Watermarking Architecture 

Design and Simulate the Video Watermarking Algorithm

Design the Datapath Architecture of the Video Watermarking Algorithm

Partition the Watermarking Datapath Architecture into Modules

Model the Individual Datapath Modules in VHDL  

Simulate the Individual Datapath Modules 

Generate, Synthesize, and Simulate the RTL of Individual Datapth Modules 

Integrate the Individual Datapath Modules to Obtain the Complete Dapath  

Design the Watermarking Controller Architecture

Design and Simulate the Overall Video Watermarking Architecture

Figure 10: The Design Flow used for the FPGA-Based Prototyping of the Video Watermarking
Architectures.

Results for the processing of a (Y , Cr, Cb) frame using Quartus Cyclone-II
synthesis tools are shown in Table 1. The motion estimation block currently uses
54% of logic resources but there is sufficient room to add all the other compo-
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S0

S1

S2

S6

S5

S7

S3

S4

Reset

(a) States of the controller

S0: 1. Video Frame to DCT
2. Watermarking to DCT
3. Watermarking to DCT to Watermark Buffer

S1: 1. Buffer to IDCT
2. IDCT to Video Frame

Watermark

S2: 1. Motion Estimation P Frame to Output Buffer

S7: 1. B Frame to Output Buffer
2. IDCT to Video Frame

Motion Estimation

S3: 1. Output Buffer to DCT/Quantization
2. DCT/Quantization to Output Buffer

S4: 1. Output Buffer to Zig-Zag Scanning
2. Zig-Zag Scanning to Output Buffer

S5:

S6:

1. Output Buffer to Huffman Coding
2. Huffman Coding to Output Buffer

1. Set End Signal. Back to S0

(b) Finite State Machine of the Controller

Figure 11: State diagram of the controller.

nents (DCT, Entropy, Quantization, Zig-Zag, etc.) and fit an entire system on this
FPGA.

We also performed Hardware-In the-Loop (HIL) simulation of the watermark-
ing process using Simulink R⃝, the FPGA board and Altera’s R⃝DSP Builder block-
set and libraries. In this process, a VHDL description is automatically generated
for the DSP Builder blocks and downloaded to the FPGA. To set up the HIL, a
QuartusII project is created to synthesize the VHDL code generated. The next step
after running the QuartusII project and VHDL synthesis is to add a clock block
from the DSP Builder block-set (which is used as the simulation master clock,
independent of the FPGA’s clock) and use the synthesis fitter to run the QuartusII
assembler. After the synthesis and assembler are performed successfully, a new
Simulink R⃝ file is created and an HIL DSP builder block is inserted. At this point
we have a block with the necessary logic, inputs and outputs to operate as the DSP
Builder Blocks. Finally, all the input and output terminals are connected appro-
priately and input the right signal sources and sinks (derived from the Matlab R⃝
workspace). The HIL simulations were performed on a state-of-the-art worksta-
tion with Intel R⃝ Core i7-950 3.06 GHz CPU and 12 GB of RAM (the simula-
tions were performed in 32-bit mode since the DSP Builder tool is unavailable
in a 64-bit version at the time this work is being performed). Typical runtimes
were approximately 10 minutes for 1 sec. of video. The excessive simulation
time is due to the constant communication between Simulink R⃝ and the FPGA
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Table 1: Resource Utilization Report for a 128 × 128 Color Frame
Components Logic Elements Registers MUXes
2D DCT 1477 157 0
Quantization 2363 0 1
Zigzag 1030 786 0
Watermark 24 0 0
Frame Buffers 7713 6156 0
Motion Vector Buffer 667 520 0
Watermark Buffer 4043 3048 0
RGB to YCbCr 1416 0 8
Motion Estimation 8987 4900
Controller 575 157 0
Overall Architecture 28322 16532 9

board via USB and the JTAG interface which utilizes a very high overhead pro-
tocol. Though clearly unsuitable for real-time implementation, the HIL approach
is very effective in verifying the overall system functionality before the entire de-
sign is downloaded into the hardware. It also provides a very powerful interface
for debugging during the design stage as entire system sub-block input and output
vectors can be examined and manipulated in Matlab R⃝ during the actual operation
of the hardware. This HIL approach is also substantially more powerful than us-
ing traditional logic analyzers (most of the sub-block signals are not accessible)
or IP-based on-chip scopes (such as Altera’s R⃝ SignalTap II) for which there are
no hardware resources left following the implementation of complex algorithms
such as MPEG-4.

The HIL resource usage for the watermark insertion phase is shown in Table 2.
The other phases of the overall MPEG-4 watermarking are similarly performed,
however not tabulated here for brevity.

7. Experimental Results

This section discusses the experiments performed to test the performance of
the watermarking algorithm and architecture proposed in the previous sections.

7.1. Experimental Setup
The proposed watermarking algorithm is first tested on a PC. The high-level

system modeling was performed with MATLAB/Simulink R⃝ following a bottom-

20



Table 2: Resource Usage in Hardware-In the-Loop (HIL) Simulation of the Watermark Insertion
Total Logic Elements 21.819/33.216
Total Combinational Functions 15.269/33.216
Dedicated Logic Registers 19.651/33.216
Total Number of Registers 8035
Total Memory Bits 347.218/483.840
Embedded Multiplier 9-bit Elements 45/70
Total PLLs 0/4

up approach. In this case, all individual components are first designed and tested
and then integrated to build a complete system model. The overall system is finally
verified for its functionality. This algorithm operates in the uncompressed domain
only. As MATLAB/Simulink R⃝ has built-in video and image processing modules,
it was straightforward to build the various component prototypes.

7.2. Testing of Watermarking Quality
Exhaustive simulations are performed to verify the proposed algorithms and

architectures with a large variety of watermark images and video clips. For brevity,
selected examples of watermarked video are presented in Figures 12, 13, 14, and
15. A different sequence of AVI [11] video clips and different watermark images,
all having the same dimensions of 320 × 240, were used for the experiments. The
video frames are watermarked in the DCT domain before being compressed. Out
of three (Y , Cr, Cb) color frames, only the Y color frame is watermarked, as the
watermark image, which is monochrome or grayscale, only modifies the bright-
ness of the video frame. If the watermark is in color then Cb and Cr must be
watermarked as well. To avoid redundancy, the watermark was not embedded
into Cb or Cr. As the Y color space is more sensitive to human perception, any
unauthorized modification will be easily detected. This makes the Y color frame
ideal to watermark for copyright protection.

The total processing time for 3 frames (Y,Cb and Cr) is 1.07 msec or 932
frames/sec. If the system is utilized for high-resolution applications, such as
the NTSC television video broadcasting system, the peak processing speed is 43
frames/sec, which exceeds the required 29.97 frames/sec.

Standard video quality metrics such as the Mean Square Error (MSE) and
Peak-Signal-to-Noise-Ratio (PSNR) [8, 29, 5] are applied to quantify the system’s
performance. The MSE and PSNR [30, 26, 29, 28] are expressed by the following
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(a) Original bird video (b) Watermarked bird video

(c) Original dinner video (d) Watermarked dinner video

(e) Original barcode video (f) Watermarked barcode video

(g) Original talent video (h) Watermarked talent video

Figure 12: Sample watermarked video - 1 using watermark - 1.
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(a) Original Iphone Review video (b) Watermarked Iphone Review video

(c) Original LGphone video (d) Watermarked LGphone video

(e) Original Train video (f) Watermarked Train video

Figure 13: Sample watermarked video - 2 using watermark - 1.
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(a) Original bird video (b) Watermarked bird video

(c) Original dinner video (d) Watermarked dinner video

(e) Original barcode video (f) Watermarked barcode video

(g) Original talent video (h) Watermarked talent video

Figure 14: Sample watermarked video - 1 using watermark - 2.
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(a) Original Iphone video (b) Watermarked Iphone video

(c) Original LGphone video (d) Watermarked LGphone video

(e) Original Train video (f) Watermarked Train video

Figure 15: Sample watermarked video - 2 using watermark - 2.
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Table 3: Video quality metrics of video compression and watermarking using watermark - 1
Compression Ratio

Clips PSNR(dB) RMSE
Average Range Estimate

Bird 21.15 22.34
Dinner 22.22 19.74

Barcode 22.77 18.53
Talent 21.82 23.17 21.46 16∼39 16
Iphone 22.20 20.10

LGphone 22.82 23.17
Train 21.75 22.11

equations:

MS E =

(∑M
m=1

∑N
n=1

∑3
k=1 |p(m, n, k) − q(m, n, k)|2

3M × N

)
, (9)

PS NR = 10 log10

(
(2i − 1)2

MSE

)
. (10)

where m is the image pixel row from 1 to M, n is the image pixel column from 1
to N, and k is the index (1 to 3 for RGB color space) corresponding to the color
plane. p(m, n, k) and q(m, n, k) are the images’ pixels after and before processing,
respectively, and i is the bit length of the image pixel, which is 8 in RGB systems.

The quality metrics of video compression and watermarking in the working
model are displayed in Table 3 and Table 4 for two different watermarks added
to the video frames, respectively. The criteria of video quality are as follows: for
a PSNR between 40 dB to 50 dB, the noise will be beyond human perception;
however, for PSNR between 10 dB to 20 dB, the noise is detected by the human
visual system [31]. The integrated watermark video system generates video with
an average PSNR of 30 dB, which implies that the implementation of MPEG-4
video compression is perceptually of high quality. The low PSNR did not degrade
the perceptual quality of the video; rather, the low PSNR value is due to the fact
that the watermark logo inserted is visible and consequently becomes noise for
the host video, affecting the PSNR. The results are consistent with other visible
watermarking algorithms and architectures available in the current literature [8, 5].

The video compression rate consists of two components: the constant compo-
nent, from the 4:2:0 color space sampling rate, whose compression rate is always
2:1, and the content adaptive compression component, whose rate is variable and
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Table 4: Video quality metrics of video compression and watermarking using watermark - 2
Compression Ratio

Clips PSNR(dB) RMSE
Average Range Estimate

Bird 21.70 20.97
Dinner 21.94 20.39

Barcode 21.40 21.70
Talent 21.14 20.45 21.22 16∼39 16
Iphone 21.90 21.00

LGphone 21.39 22.24
Train 22.33 23.88

depends on the content data such as motion estimation, DCT coefficients, quanti-
zation, and Huffman coding. To estimate the variable compression rate we assume
that half of the DCT coefficients are truncated so that the compression rate is 2:1.
The redundancy of two frames by the motion estimation results in a compression
rate of 4:1. In the working module, one GOP is comprised of one I frame, one B
frame, and one P frame or IBP structure. The motion estimation compression is
estimated as (1 + 1 + 1)/(1 + 1/4 + 1/16) ≈ 2 : 1. The DCT coefficient quanti-
zation and Huffman coding have compression rates approximately 2:1. Hence the
estimated average compression rate of the video compression working module is
16:1. The compression rate obtained from our experimental results is 27:1. To
achieve a higher compression rate, one approach is to interpolate more B frames
and more P frames in one GOP. After tuning, the average compression rate could
be greater than 100:1.

7.3. Comparison With Existing Research
In order to obtain a broad perspective on the quality of the watermarking al-

gorithm and FPGA prototype given in this paper, performance statistics with ref-
erence to existing hardware based watermarking for video are presented here. A
comparative view is provided in Table 5. The research works are arranged accord-
ing to their working domain, e.g., spatial, DCT, wavelet, etc. It is noted that of
all the research presented, the current system is the only one capable of achieving
real-time video watermarking and compression at rates exceeding existing broad-
cast standards.
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Table 5: Video watermarking hardware proposed in the existing literature

Research Design Different Working Chip Statistics
Works Type Types Domain
Strycker, et. al. DSP board Invisible Spatial 100 MHz
[16, 15] Robust Fourier
Maes, et. al. FPGA board Invisible Spatial 17 kG Logic
[18] Custom IC Robust Fourier 14 kG Logic
Tsai and Wu Architecture Invisible Spatial NA
[13] Robust Spatial NA
Brunton and GPU Invisible Spatial NA
Zhao [19] Fragile
Jeong, et al. FPGA Invisible Spatial ALTERA STRATIX
[20] Robust
Mathai, et. al. Custom IC Invisible Wavelet 0.18µm, 3.53 mm2,
[21, 22] Robust 75 MHz, 160 mW
Vural, et. al. Architecture Invisible Wavelet NA
[23] Robust
Jeong, et al. FPGA Invisible Wavelet XILINX VERTEX2
[24] Robust
Petitjean, et. al. FPGA board Invisible Fractal 50 MHz takes 6 µs
[25] DSP board Robust 250 MHz takes 118 µs
This Paper FPGA Visible DCT 100 MHz, 43 fps

8. Conclusions

This paper presented a visible watermarking algorithm and prototyped it us-
ing FPGA technology for MPEG-4 video compression. The algorithm and its
implementation are suitable for real-time applications such as video broadcasting,
IP-TV, and digital cinema. The watermark is embedded before video compres-
sion, thus resulting in balanced quality and performance. Our implementation
using standard FPGAs demonstrates its suitability for standard NTSC television.
The algorithm achieved peak performance of 43 frames/sec and a PSNR of 30 dB.
Further development is under way to extend the real-time performance of the sys-
tem to HDTV and higher resolutions and to improve the PSNR towards the 40−50
dB range. To this end the following extensions to this research are planned: (1)
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Realization of the watermark embedding in the compressed domain. Even though
the hardware requirements will increase, it is anticipated that the quality of the
watermarked video will improve, particularly at high resolutions. (2) Utilization
of advanced MPEG-4 features, such as N-bit resolution, advanced scalable tex-
tures, and video objects. It is anticipated that, with modest hardware complexity
increase, performance will be significantly improved with the inclusion of these
additional features. (3) RTL-level subsystem optimization to improve resource
utilization and minimize execution time. (4) Alternative hardware architectures
using on-board memory and pipelining will also be considered.
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