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SUMMARY

A systematic development of efficient discretization schemes for the numerical evaluation of the eigenvalues of the
Single Band Effective Mass Equation (SBEME) that describes the motion of electrons in an ideal periodic crystal
is presented. The approach presented makes use of the translational symmetry of the crystal lattice and utilizes
the quantum mechanical properties of the momentum operator as the generator of spatial translation. Boundary
conditions satisfied at the heterointerfaces are explicitly incorporated in the discretization procedure and the effects
of this approach in overall accuracy are evaluated by studying a prototype quantum well heterostructure. Copyright
c© 2008 John Wiley & Sons, Ltd.
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1. Introduction

There are numerous classes of electronic and optoelectronic devices that rely on the formation of
structures from dissimilar semiconducting, insulating and metallic materials. Common examples
are Resonant Tunneling Diodes (RTDs), Heterojunction Bipolar Transistors (HBTs), High-Electron
Mobility Transistors (HEMTs), Quantum Wires, and Quantum Dots. In all of these devices, the spatial
configuration of the constituent materials frequently translates to the formation of quantum wells of
various shapes with rectangular and triangular wells being the most common.

Any type of analysis that attempts to describe the macroscopic behavior of these devices needs to
take the presence and properties of these quantum wells into account. Even though several analytical
approximation techniques have been developed in the past, oftentimes it is desirable to be able
to simulate these devices via computer, which necessitates the development of efficient numerical
techniques for the solution of the resulting equations.
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DISCRETIZATION TECHNIQUES 1

In the case of quantum wells formed in heterostructures, the starting point for the formulation and
solution of these equations is often the so-called Single-Band Effective (SBEM) Equation [1], which
describes an the equation of motion satisfied by the envelope function of individual electrons.

Our objective in this paper is to exhaustively investigate an operator based method via which the
final equation that describes these electronic states is discretized and numerically solved. The result
of the numerical procedure is the eigenvalues of the Hamiltonian in the SBEME which provide the
energies of electrons bound in the quantum well.

Even though the following discussion is one-dimensional, the devices we consider (like the majority
of devices on which we collect data) are three-dimensional. The nature of a heterostructure does not
permit a complete separation of the longitudinal and transverse components in the describing equation.
The effects of the transverse direction are incorporated via the concept of transverse electron energy, a
procedure we have outlined in detail in Ref. [2].

We present the majority of this discussion within the framework of Dirac’s bra-ket notation. A short
summary of the notation conventions followed throughout the text is given in Appendix A.

2. Derivation of the SBEM Equation

In this section we review the Single-Band Effective Mass theory for bound and propagating states in
an ideal periodic crystal.

2.1. Basic Considerations

In any physical system that must be treated in a quantum mechanically consistent way, three major
parts in the development of the desired solution are identified:

1 The system itself and its surrounding environment must be properly identified and demarcated,
which may not always be a trivial consideration.

2 Once the system is identified, the Hamiltonian operator Ĥ for that particular system must be
expressed as a function of the operators that correspond to the dynamical variables of the system.
The Hamiltonian along with the boundary conditions imposed on the system, which in general
will depend on the outcome of the analysis in part 1, define the appropriate Hilbert space that
contains the states of the system.

3 The last, and typically most difficult stage, is the diagonalization of the Hamiltonian, i.e. the
determination of a set of vectors that comprise a basis of the Hilbert space that contains the
states of the system, in which basis the Hamiltonian has a diagonal matrix representation.

Once the Hamiltonian has been identified and diagonalized, any macroscopic property of the system
can be calculated, in principle, from the wave function of the system. This wave function is a linear
combination of the basis vectors determined in part 3 and depends entirely upon the initial conditions
imposed on the system.

The device is considered to be one-dimensional, extending along the x-direction, while its lateral
dimensions are considered to be very large, so as to exclude the appearance of any two-dimensional
effects. In essence, for all practical calculations, we will consider the cross-sectional area A to
approach infinity. It should be noted here that the device is not truly one-dimensional but rather three-
dimensional, as any real device is, with an infinitely large cross-section thus enabling us to concentrate
along the dimension (x) where changes occur.
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2 E. KOUGIANOS

Within the single-electron, single-band effective mass approximation, the SBEM Hamiltonian Ĥ
(ignoring spin effects) is:

Ĥ =
1
2

(
P̂

1

M̂
∗
(R̂)

P̂

)
+ Êc(R̂), (1)

where P̂ and R̂ are the momentum and position operators, respectively, M̂
∗

is the spatially varying
effective mass operator, Êc(R̂) is the edge of the conduction band, and ÛE(R̂) is the potential energy
due to externally applied biases. Êc(R̂) is possibly modulated by an externally applied field, and given
by: Êc(R̂) = Êco(R̂)+ÛE(R̂). Êco(R̂) is the zero-bias conduction edge and is spatially varying for
heterostructures and compositionally and doping varying semiconductor layers. Êco(R̂) is determined
solely by the symmetry properties of the structure and is available for all semiconductors of interest.

Our choice for the Hamiltonian conforms with the so-called Ben Daniel - Duke Hamiltonian [3].
Several forms for the Hamiltonian have been suggested [4, 5, 6] but the Ben Daniel - Duke form is
commonly used due to its simplicity and manifestly Hermitian properties [7].

Within the framework of the SBEM approximation, an electron in the crystal is described by an
“envelope function” |Φ〉 which modulates the Bloch functions for the conduction band and satisfies
the Schrödinger-like SBEM equation [1]:

i~
∂

∂t
|Φ〉 = Ĥ|Φ〉 =

[
1
2

(
P̂

1

M̂
∗
(R̂)

P̂

)
+ Êc(R̂)

]
|Φ〉. (2)

Our main task, which is the primary contribution of this paper, is to discretize and determine
numerically the eigenvalues of this Hamiltonian to facilitate computer-based simulation of
heterostructure devices.

2.2. Matrix Form of the SBEM Equation

The form of the Single Band Effective Mass equation presented in Eq. (2) is three-dimensional. We will
now decouple it into two components: one longitudinal, along the x direction and one transverse, along
the yz plane. We expect all physically interesting quantities to vary along the longitudinal direction but
we will see that the effect of the transverse properties of the device cannot be simply ignored.

We define the inverse effective mass operator as:

Q̂(R̂) =
1

M̂
∗
(R̂)

. (3)

Eq. (2) becomes now:

i~
∂

∂t
|Φ〉 =

[
1
2

(
P̂ · Q̂(R̂) · P̂

)
+ Êco(R̂) + ÛE(R̂)

]
|Φ〉, (4)

where the contributions to the conduction band edge Êc(R̂) due to an externally applied potential
ÛE(R̂) have been explicitly noted.

The momentum P̂ and position R̂ operators can be easily split into a direct sum of three orthogonal
operators, each acting in a subspace of the complete Hilbert space and each being orthogonal to the
other two. Thus we can write:

P̂ = P̂x ⊕ P̂y ⊕ P̂z, (5)

R̂ = X̂ ⊕ Ŷ ⊕ Ẑ. (6)
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DISCRETIZATION TECHNIQUES 3

The inverse mass operator Q̂(R̂), the zero-bias conduction band edge operator Êco(R̂) and the
external potential operator ÛE(R̂) are all functions of the position operator X̂ alone and do not depend
on the other two position operators, Ŷ and Ẑ. We can thus write:

Q̂(R̂) = Q̂(X̂) = Q̂x(X̂)⊕ Q̂t(X̂), (7)
Êco(R̂) = Êco(X̂), (8)
ÛE(R̂) = ÛE(X̂). (9)

where Q̂x and Q̂t are the longitudinal and transverse components of the inverse effective mass.
Eq. (4) can now be expressed as:

i~
∂

∂t
|Φ〉 =

[
1
2
(
P̂x ⊕ P̂y ⊕ P̂z

) · Q̂(X̂) · (P̂x ⊕ P̂y ⊕ P̂z

)
+ Êco(X̂) + ÛE(X̂)

]
|Φ〉. (10)

The presence of the operator Q̂(X̂) “sandwiched” between the orthogonal components of P̂ prevents
us from fully decoupling Eq. (4). Using the well-known commutation relations obeyed by the
momentum and position operators, as well as their functions [8]:

[
P̂α, P̂β

]
= 0 for any α, β, (11)

[
X̂, Ŷ

]
=

[
Ŷ , Ẑ

]
=

[
Ẑ, X̂

]
= 0, (12)

[
Q̂(X̂), P̂α

]
=





0 if α = y or z,

i~
d

dX̂
Q̂x(X̂) if α = x,

(13)

we can rewrite Eq. (4) as:

i~
∂

∂t
|Φ〉 =

{[
1
2
P̂x · Q̂x(X̂) · P̂x + Êco(X̂) + ÛE(X̂)

]
+

[
1
2
Q̂t(X̂)

(
P̂y

2
+ P̂z

2)]}
|Φ〉. (14)

As mentioned earlier, this equation is non-separable because of the presence of the Q̂t(X̂) factor in
the second bracket. Since we will be studying steady-state problems, we will eliminate time derivatives
using the substitution:

|Φ〉 = |Ψ〉e−iEt/~. (15)

This yields the time-independent SBEM equation for stationary states:
{[

1
2
P̂x · Q̂x(X̂) · P̂x + Êco(X̂) + ÛE(X̂)

]

+
[
1
2
Q̂t(X̂)

(
P̂y

2
+ P̂z

2)]}
|Ψ〉 = E|Ψ〉.

(16)

We will now reason as in the Born-Oppenheimer approximation to decompose the electron envelope
function as the tensor product of two envelope functions, one along the longitudinal direction and one
along the transverse:

|Ψ〉 ∼ |ψx〉 ⊗ |ψyz(x)〉. (17)

Because of the imperfect decoupling of the Hamiltonian in Eq. (16), this decomposition is itself
imperfect. However, if we consider the transverse envelope function to change adiabatically (which
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4 E. KOUGIANOS

essentially means that |ψx〉 follows any changes in longitudinal effective mass Q̂x(X̂) rapidly while
|ψyz(x)〉 adapts to the changes in the transverse effective mass Q̂t(X̂) much more slowly) we can
“decouple” Eq. (16):

Ex(x)|ψx〉 =
[
1
2
P̂x · Q̂x(X̂) · P̂x + Êco(X̂) + ÛE(X̂)

]
|ψx〉, (18)

Eyz(x)|ψyz(x)〉 =
[
1
2
Q̂t(X̂)

(
P̂y

2
+ P̂z

2)]|ψyz(x)〉, (19)

where Ex(x) + Eyz(x) = E = const.
These are not eigenvalue problems because neither Ex(x) nor Eyz(x) are constants. We can convert

them to eigenvalue problems within the framework of the adiabatic approximation if we know the value
of Eyz(x) = εt at the injecting contact, i.e. the transverse energy with which electrons are injected at
each contact.

Eq. (19) can be immediately recognized as a field-free wave equation. Its solution kets are
characterized by the wave vectors ky and kz: |ψyz(x)〉 = |ky, kz〉 where:

〈yz|ky, kz〉 =
1√
A

ei(kyy+kzz), (20)

with A an arbitrary transverse normalizing area, and

~2

2m∗
t (x)

(
k2

y + k2
z

)
= Eyz(x), (21)

where m∗
t (x) is the transverse effective mass. Since at the injecting contact:

~2

2m∗
ic

(
k2

y + k2
z

)
= εt, (22)

where m∗
ic is the transverse effective mass at the contact, we have:

Eyz(x) =
m∗

ic

m∗
t (x)

εt, (23)

and
Ex(x) = E − Eyz(x) = E − m∗

ic

m∗
t (x)

εt. (24)

Substituting Eq. (24) back in Eq. (18), we have:
[
1
2
P̂x · Q̂x(X̂) · P̂x + Êco(X̂) + ÛE(X̂) + m∗

icεtQ̂t(X̂)
]
|ψx〉 = E|ψx〉. (25)

Now, this is an eigenvalue problem since E = const.
This form also shows the difference between a “true” one-dimensional problem and a one-

dimensionalized three-dimensional problem. The additional term m∗
icεtQ̂t(X̂) does not appear in the

former case.
For simplicity we reincorporate the effect of the external potential in the term for the overall

conduction band edge Êc(X̂):
[
1
2
P̂x · Q̂x(X̂) · P̂x + Êc(X̂) + m∗

icεtQ̂t(X̂)
]
|ψx〉 = E|ψx〉. (26)
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DISCRETIZATION TECHNIQUES 5

Eq. (26) is just the SBEM equation, decoupled according to an adiabatic approximation. From now
on, we need only concentrate on the x direction. The effect of the transverse direction (yz-plane) is
incorporated in the transverse energy at the injecting contact, εt. For the moment we will assume that
this energy is known and has a definite value.

Eq. (26) admits two kinds of solutions: one kind with continuous spectrum, characterized by values
of E that satisfy the condition E > Ec(ic), where Ec(ic) is the value of the conduction band edge at
the injecting contact and another kind with discrete spectrum. Discrete solutions might or might not
exist depending on the particular form of the confining potential and whether or not it possesses local
minima. The continuous solutions are characterized by the continuous wave vector kx: |ψkx

x 〉, while
the discrete solutions are characterized by distinct indices i : |ψi

x〉. The generic notation |ψx〉 will refer
to solutions of Eq. (26) that could be either discrete or continuous.

Before considering the various kinds of solutions in detail, it will be instructive to rewrite Eq. (26)
in a matrix form, thus allowing us to use any basis of the Hilbert space we find convenient. Almost
exclusively in the remainder of this work, this basis will be that of the eigenkets of the position operator
X̂ , |x〉. The ensuing formulation however remains independent of our basis choice and Eq. (26) itself
is basis-independent.

We will assume that the eigenkets |x〉 form a complete and orthonormal basis:

〈x|x′〉 = δ(x− x′), (27)∫
|x〉〈x| dx = 1̂, (28)

where 1̂ is the unit operator. Multiplying Eq. (26) from the left with the bra 〈x| and inserting unit
operators as needed, the eigenvalue problem becomes:

E〈x|ψx〉 =
1
2

∫∫∫
〈x|P̂x|x′〉〈x′|Q̂x(X̂)|x′′〉〈x′′|P̂x|x′′′〉〈x′′′|ψx〉 dx′ dx′′ dx′′′

+
∫
〈x|Êc(X̂)|x′〉〈x′|ψx〉 dx′

+ m∗
icεt

∫
〈x|Q̂t(X̂)|x′〉〈x′|ψx〉 dx′,

(29)

or, in terms of matrix elements:

Eψx(x) =
1
2

∫ ∫ ∫
px(x, x′)qx(x′, x′′)px(x′′, x′′′)ψx(x′′′) dx′ dx′′ dx′′′

+
∫

ec(x, x′)ψx(x′) dx′

+ m∗
icεt

∫
qt(x, x′)ψx(x′) dx′.

(30)

These matrix elements are:

px(x, x′) = 〈x|P̂x|x′〉 (31)
qx(x, x′) = 〈x|Q̂x|x′〉 (32)
qt(x, x′) = 〈x|Q̂t|x′〉 (33)
ec(x, x′) = 〈x|Êc|x′〉 (34)

ψx(x) = 〈x|ψx〉, (35)
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6 E. KOUGIANOS

Since Q̂x, Q̂t and Êc are functions of X̂ alone, their matrix elements in the |x〉 representation are seen
immediately to be:

qx(x, x′) = Qx(x) δ(x− x′) (36)
qt(x, x′) = Qt(x) δ(x− x′) (37)
ec(x, x′) = Ec(x) δ(x− x′), (38)

while the matrix elements of P̂x are [8]:

px(x, x′) =
~
i

d

dx
δ(x− x′). (39)

The more familiar form of Eq. (26):

−~
2

2
d

dx

(
Qx(x)

dψx

dx

)
+ [Ec(x) + m∗

icεtQt(x)] ψx(x) = Eψx(x), (40)

is immediately recovered by using Eq. (37) - Eq. (39).
Finally we note the matrix form of Eq. (26):

E Ψx =
[
1
2
Px · Qx · Px + Ec + m∗

icεtQt

]
Ψx. (41)

The matrices that appear in this equation are infinite dimensional. We will proceed to reduce their
dimensionality in the next section.

3. Bound States

In this section we present a discretization scheme that will allow us to examine the eigenvalue problem
for bound states to a high level of accuracy and detail.

3.1. The Discretization of the SBEM Equation

In order to solve the eigenvalue problem for the discrete spectrum, we must convert the infinite
dimensional matrix Eq. (41) to a finite dimensional one, suitable for solution by computer. This is
achieved by converting the continuous set of eigenkets |x〉 to a discrete set. Out of all the possible kets
|x〉, we select a finite number of them, say N , and attempt to use them as a basis of the Hilbert space.
To qualify as a basis, this set of vectors must satisfy the equivalent of Eq. (27) - Eq. (28):

〈xi|xj〉 = δij , (42)

N∑

i=1

|xi〉〈xi| = 1̂. (43)

where δij is the Kronecker Delta, defined by:

δij =

{
0 if i 6= j,

1 if i =j.
(44)
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DISCRETIZATION TECHNIQUES 7

In general, these relations will not be satisfied due to the truncation of the basis. This is the inherent
error source of such discretization schemes. These relations however are very useful in developing the
finite dimensional representation of eigenvalue problems, if we recognize that there is an unavoidable
source of error in them. Since we will not be explicitly concerned with an error analysis in this work,
we will use them as if they were exact. Certain limits on the accuracy of a particular discretization
scheme (DS) we will develop will however be established.

Using these relations, the discrete space equivalent of Eq. (29) becomes:

E〈xi|ψx〉 =
1
2

∑

j

∑

k

∑

l

〈xi|P̂x|xj〉〈xj |Q̂x(X̂)|xk〉〈xk|P̂x|xl〉〈xl|ψx〉

+
∑

j

〈xi|Êc(X̂)|xj〉〈xj |ψx〉

+ m∗
icεt

∑

j

〈xi|Q̂t(X̂)|xj〉〈xj |ψx〉.

(45)

This is identical with Eq. (41), only in this case all the matrices are finite dimensional. Matrices Px,
Qx, Qt and Ec are of dimension N ×N while Ψx is an N ×1 vector. N is the number of grid points we
use or, equivalently, the number of discrete basis vectors. In correspondence with Eq. (31) - Eq. (35):

px(i, j) = 〈xi|P̂x|xj〉, (46)

qx(i, j) = 〈xi|Q̂x(X̂)|xj〉, (47)

qt(i, j) = 〈xi|Q̂t(X̂)|xj〉, (48)

ec(i, j) = 〈xi|Êc(X̂)|xj〉, (49)
ψ(i) = 〈xi|ψx〉. (50)

Most of these are straightforward due to the fact that they are plain functions of x:

qx(i, j) = Qx(xi)δij , (51)
qt(i, j) = Qt(xi)δij , (52)
ec(i, j) = Ec(xi)δij , (53)

ψ(i) = ψx(xi). (54)

The evaluation of px(i, j) is however impossible to achieve exactly in a truncated basis. The physical
reason behind this is that the action of P̂x in the |x〉 representation is equivalent to that of differentiation
with respect to x. It is impossible to calculate exactly the derivative of a function at a given point with
knowledge of the function only at a finite number of points with the possible exception of very simple
functions.

We will present now the discretization scheme that will allow us to evaluate px(i, j) with as much
accuracy as we desire, up to the maximum accuracy allowed by the particular truncated basis at our
disposal.

We employ a simple but powerful linear interpolation scheme to express the action of any power of
the momentum operator on the |xi〉 kets. Let us consider the ket |xj〉. The action of the M -th power of
P̂x on |xj〉 is expressed as (see Fig. 1):

P̂x
M |xj〉 =

m=L∑

m=−K

αj+m|xj+m〉, (55)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2008; 00:0–0
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8 E. KOUGIANOS

Figure 1. Node labeling for the 1-D discretization scheme.

where the undetermined coefficients α are the weights of the interpolation scheme. Thus, we use the
values not only at the j-th point, but the values at K points to the left of j and L points to the right
of j, as well. We will call this DS a (K, L) DS. The choice of K and L is entirely arbitrary but
must be guided by computational intensity considerations. The greater the value of (K, L), the more
accurate the results but the computational penalty might be heavy. A study of these considerations for
a prototype potential will be presented in Section IV.

Our task is now to calculate the (K + L + 1) coefficients αj+m. To this purpose, we will take
advantage of the properties of the linear momentum operator as the generator of the Lie group of
infinitesimal translations [9], namely:

|xj+m〉 =exp
[
− i

~
(xj+m − xj) P̂x

]
|xj〉

=
∞∑

n=0

1
n!

(
− i

~

)n

(xj+m − xj)
n

P̂x
n|xj〉

=
K+L∑
n=0

1
n!

(
− i

~

)n

(xj+m − xj)
n

P̂x
n|xj〉

+ O
(
(xj+m − xj)

K+L
)

.

(56)

Substituting Eq. (56) in Eq. (55) and projecting on the bra 〈xi|, we have:

〈xi|P̂x
M |xj〉 '

K+L∑
n=0

1
n!

(
− i

~

)n m=L∑

m=−K

αj+m (xj+m − xj)
n 〈xi|P̂x

n|xj〉.
(57)

This expression is accurate to O
(
(xj+m − xj)

K+L
)

. Equating similar terms, we obtain the following

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2008; 00:0–0
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DISCRETIZATION TECHNIQUES 9

system of (K + L + 1) equations:

m=L∑

m=−K

αj+m = 0, (58)

m=L∑

m=−K

αj+m (xj+m − xj) = 0, (59)

. . .
m=L∑

m=−K

αj+m (xj+m − xj)
M = M !

(
−~

i

)M

, (60)

. . .
m=L∑

m=−K

αj+m (xj+m − xj)
K+L = 0. (61)

This can be expressed in matrix form as:




1 . . . 1
(xj−K − xj) · · · (xj+L − xj)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(xj−K − xj)
M · · · (xj+L − xj)

M

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(xj−K − xj)
K+L · · · (xj+L − xj)

K+L



·




αj−K

αj−K+1

. . . . . .
αj−K+M

. . . . . .
αj+L




=




0
0

. . . . . . . . .

M !
(
−~

i

)M

. . . . . . . . .
0




. (62)

This type of system is of the well-known Vandermonde variety for the solution of which very
efficient and robust algorithms exist [10]. It is worthwhile to note that the solution of this system
of equations, consisting of a set of (K + L + 1) numbers αj+m actually represents a whole row (the

j-th row) of the matrix representation of P̂x
M

. This is easy to see from the following matrix element:

〈xi|P̂x
M |xj〉 =

m=L∑

m=−K

αj+m〈xi|xj+m〉. (63)

Taking into account the orthogonality properties of the basis |xi〉, Eq. (42), we see that:

〈xi|P̂x
M |xj〉 =

{
0 if i < j −K or if i > j + L,

αj+m if j −K ≤ i ≤ j + L.
(64)

Thus it is sufficient to solve at most N systems of dimension (K + L + 1) in order to obtain the N
rows of matrix Px. Once Px is known, direct substitution of all the available matrices in Eq. (41)
yields a matrix eigenvalue problem. Direct solution provides the set of bound state energies Ei

and the corresponding eigenvectors |ψi
x〉. Specific examples of the application of this method will

be presented in Section IV. The accuracy of this (K, L) discretization scheme is O(hK+L), where
h = max{|xj−K − xj |, . . . , |xj+L − xj |}.

This method of discretizing equations from a continuous Hilbert space to a discrete functional space
is a generalization of the well-known method of polynomial interpolation [11] and, in particular, the
approach used by Lyness and Moler [12] and Ballester and Pereyra [13]. Because it is driven by the

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2008; 00:0–0
Prepared using jnmauth.cls
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physics of the particular problem at hand, as evidenced by the use of the appropriate operator, it is
more general and flexible, and applicable to a wide variety of physical problems. For example, the
above arguments can be directly used to discretize the radial Schrödinger’s equation if we replace the
linear momentum operator with the angular momentum operator.

Although the functional method of Refs. [12] and [13] applies to differential operators only,
the generalization presented here can be used for any operator regardless of form. In fact, if the
Hamiltonian under study is a function of operators which are a subset of the generators of a known Lie
group, the previous arguments can be extended to more than one dimension. This situation will occur
whenever the symmetry group of the Hamiltonian is a Lie group, a situation frequently encountered in
the quantum theory of solids.

3.2. Treatment of Discontinuities

The presence of interfacial areas where the effective mass and the conduction band edge change rapidly,
complicates significantly the discretization of the SBEM equation at points where these changes occur.
The common approach in the literature has been to ignore the particular location of the interface and
consider points only to the left and to the right of the discontinuity where there is no ambiguity as
to the precise values of material parameters and envelope functions [14]. Between these well defined
points, the material is assumed to change in an unspecified but smooth manner thus eliminating any
problems related to uncertain specification of material properties. This particular point of view makes
good physical sense when considering what happens at an atomic level at the interface, but is not
compatible with the assumptions underlying much of the theory: namely that the interfaces are abrupt
and not smooth.

It has been pointed out in Ref. [15] that a simple averaging procedure of the potential at abrupt
discontinuities significantly improves the accuracy of calculated eigenvalues. In this section we will
generalize these arguments and examine the consequences of this analysis.

Instead of simply accounting for the potential discontinuities as in Ref. [15], we must also take into
account the abrupt change in effective mass. Referring to the discrete equivalent of Eq. (40), we replace
the term [Ec(i, i) + m∗

icεtQt(i, i)]ψx(i) at the interface position xi with an average. This average must
extend by K points to the left and by L points to the right, otherwise the overall accuracy of the DS
scheme will be reduced. Thus we have:

〈[Ec(i, i) + m∗
icεtQt(i, i)] ψ(i)〉 =

1
xi+L − xi−K

∫ xi+L

xi−K

[Ec(x) + m∗
icεtQt(x)] ψ(x) dx.

(65)

Taking into account the fact that multiplication by the matrix Px corresponds to differentiation with
respect to x within a multiplicative factor, and hence multiplication by P−1

x corresponds to integration
with respect to x, this equation takes the following matrix form:

〈[Ec(i, i) + m∗
icεtQt(i, i)] ψ(i)〉 =[

1
xi+L − xi−K

(
−~

i

)
P−1

x (Ec + m∗
icεtQt) Ψx

]

i

.
(66)

It is thus sufficient to replace the i-th row of the matrix:
[
1
2
Px · Qx · Px + Ec + m∗

icεtQt

]
, (67)
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with the i-th row of the matrix:[
1
2
Px · Qx · Px +

1
xi+L − xi−K

(
−~

i

)
P−1

x (Ec + m∗
icεtQt)

]
, (68)

where the matrix elements of Qx at the interfacial node are linearly interpolated from those at
neighboring nodes.

This adjustment will not only assure proper handling of the interfaces but will also maintain the
overall accuracy of the discretization scheme.

3.3. Modifications for III-V Materials

The basic equations presented in this section require minor modifications to account for second-
order effects peculiar to III-V materials. Most prominent among them are the conduction band non-
parabolicity, and multiple conduction band valleys (Γ − L−X). For heavily doped devices, bandgap
narrowing must also be accounted for.

In GaAs, it has been shown that non-parabolicity of the Γ valley modifies the effective density
of states [16]. However, the effect of a non-parabolic k4 term in the energy band relation E(k)
is to produce high-order derivatives (∇2∇2) in the effective mass theorem which complicate the
discretization of Schrödinger’s equation. The net effect is densely populated matrices with increased
bandwidth and the solution of the eigenvalue problem becomes much more complex and time-
consuming with the corresponding gain in accuracy of minimal value, particularly under bias
conditions. For these reasons, non-parabolicity effects can be usually ignored. With the help of the
discretization schemes developed earlier in this section, the resultant matrices can be calculated even
when high order derivatives are involved since differentiation has been reduced to simple matrix
multiplication. Thus, non-parabolicity can be taken into account if the need arises.

In materials like AlGaAs, the contribution of all three conduction band valleys (Γ − L − X) to
electronic conduction might be included. This entails solving the Schrödinger-like SBEM equation
separately for each band and adding the electron concentrations to obtain the overall concentration.
As expected, this addition does increase execution time for the eigenproblem by a factor of 3. In the
remainder of this work, we used only one conduction band statistics.

4. Bound States of a Prototype Potential Well

Rectangular potential wells are ideally suited for the study of bound states, mainly because they
incorporate all the pertinent features of real devices but in addition their eigenproblems can be
solved via simple transcendental equations to a high degree of accuracy. Thus the solution can
be considered “quasi-analytical” and is quite useful for comparison with results obtained via other
numerical techniques.

In particular, we will consider the rectangular well formed by the conduction band edge of a thin
layer of GaAs positioned between two thick layers of Al0.3Ga0.7As. Electrons confined in this well will
be bound if their energy corresponds to the eigenvalues of the Hamiltonian operator for this potential
profile. The parameters we will use for this prototype potential well will be chosen to be identical with
those of Tan et al. (see footnote [14]), namely conduction band discontinuity of 0.23eV and electron
effective mass m∗ = 0.067 and m∗ = 0.092 in the GaAs and Al0.3Ga0.7As layers, respectively.

The geometry of the prototype well is represented in Fig. 2. The length of the well is LW while the
overall length of the device is Lx. We choose Lx = 1000Å while LW = 56Å. The restriction that
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12 E. KOUGIANOS

Figure 2. Prototype potential well geometry.

LW ¿ Lx guarantees the validity of the boundary conditions (ψ(0) = ψ(Lx) = 0) at the ends of the
device. Essentially this requirement is tantamount to Lx →∞.

4.1. Uniform vs. Non-uniform Discretization Grid

Careful consideration must be given to the selection of the grid points on which the SBEM equation
will be discretized. Before any particular choice of points can be made, the fundamental form of the
grid must be decided, i.e. whether the grid should be of uniform or variable spacing. Uniform grids are
used extensively because of the ease with which they can be generated as well as the simple form of
the resulting equations. It is considerably easier to generate the grid once and for all and not be forced
to adjust its spacing throughout the simulation process. It has been however noted (see the paper by
Tan et al. cited in footnote [14]) that the use of a non-uniform grid significantly improves the accuracy
of the calculated eigenvalues.

Intuitively, it is to be expected that a grid that adjusts to the variations of the underlying potential
will give more accurate results. There are however more compelling reasons to choose non-uniform
grids. In the class of devices we will study, the quantum nature of the devices is manifested in relatively
small areas. For example, in a narrow base HBT, the base region is of the order of 50 − 150 Å. The
quantum well formed at the heterointerface of the emitter-base junction is of comparable dimensions.
The overall length of the device is however of the order of 2− 3 µm. A uniform grid of spacing 20 Å
(deemed the absolute maximum to even acknowledge the existence of the base region), would require
at least 1000 points to cover the whole device. Beyond the waste of grid points in areas where the
potential remains fairly constant, the resultant matrices are of extremely large dimensions, consuming
considerable CPU time for their manipulation. Not only it takes orders of magnitude longer to solve
these problems, but the results are not as accurate as those obtained via the use of an optimized, much
smaller non-uniform grid.

In all subsequent discussions, it will be assumed that the grid is non-uniform and adjusted to the
variations of the conduction band edge. For the well of Fig. 2, the potential profile remains constant and
no adaptive grid re-allocation technique is required. No space charge effects will be taken into account
(i.e. no self-consistency with Poisson’s equation will be required.) This will allow us to concentrate
on the effects of the discretization alone, unburdened by secondary phenomena. Of the total of N grid
points, one third will be allocated for the well itself and one third each for the flat areas of the potential.
This strategy guarantees that the physically interesting area (the well) is allocated a large amount of
points while the non-essential areas receive a proportionally much smaller number of points.

Finally, in order to treat this as a true one-dimensional problem, it is assumed that electrons are
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Figure 3. Number of bound states as a function of well width.

injected in the device with zero transverse energy (εt = 0).

4.2. Quasi-Analytical Results

This type of well has been studied in Ref. [17]. The number N of bound states the well admits is
dependent upon the material parameters and the length and depth of the well via the relationship:

N = 1 + Int

[√
2m∗

AL2
W |Vp|

π2~2

]
, (69)

where m∗
A is the electron effective mass in GaAs and Vp is the depth of the well, 0.23 eV in our case.

Int(x) is the integer part of x. A plot of the number of bound states as a function of the well width
LW for constant Vp = 0.23 eV is shown in Fig. 3. This plot also relays information about the strength
of the bound state. For example, for our case of LW = 56 Å, we see that the well admits two bound
states. Since LW is very near the transition edge from one to two bound states (at approximately 50
Å), we expect the ground state to be strongly bound but the second state will be weakly bound. The
exact values of the energies are given by the solution of the following transcendental equations:

kw

m∗
A

tan
(

kw
LW

2

)
=

kb

m∗
B

, (70)

kw

m∗
A

cot
(

kw
LW

2

)
= − kb

m∗
B

, (71)

where m∗
B is the electron effective mass in the AlGaAs layer and the wave vectors kw and kb are given

by:

kw =

√
2m∗

Aε

~2
, (72)

kb =

√
2m∗

B(|Vp| − ε)
~2

. (73)
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Figure 4. Variation of the first 4 energy eigenvalues (absolute value) of rectangular well for varying widths.

Eq. (70) determines the eigenenergies ε corresponding to states of even symmetry, while Eq. (71)
determines those of odd symmetry. These equations were solved numerically to find the first 4
eigenvalues for wells of varying widths. The solutions are shown in Fig. 4 and are accurate to 10−12

hence they can be considered as exact.

4.3. Computational Issues and Simulation Results

There are several parameters that must be taken into consideration when deciding on a proper strategy
for solving the bound state problem in a heterostructure. One of the fundamental issues is grid spacing.
Although the arguments for the use of a non-uniform grid are compelling, from the numerical point of
view a uniform grid offers many advantages, the main being the symmetry of the resulting matrix.

Eq. (41) is the defining equation of the eigenproblem. If the spacing of the grid is uniform, this matrix
is symmetric. If the spacing is non-uniform, the matrix is non-symmetric. In general the symmetric
eigenvalue problem is considerably easier and computationally faster to solve than the general problem
[18]. Taking into account these factors, it is appropriate to address the question of using a uniform grid
for speed considerations. Given the existence of high-speed and high-quality linear algebra routines
that can solve the general eigenvalue problem in times comparable to those of the symmetric problem,
any speed gain from the use of a uniform grid is rapidly counterbalanced by the accuracy and device
geometry considerations in favor of the non-uniform grid. The linear algebra routines publicly available
in the LAPACK [19] package were used throughout this work.

Apart from the grid uniformity issue, grid size is of paramount importance. As expected, a denser
grid will provide more accuracy but at what speed penalty? Although this issue is problem-dependent,
useful guidelines can be obtained from the solution of the prototype quantum well eigenproblem with
different grid sizes and different discretization schemes. The results are shown in Fig. 5 where the
overall CPU time to solve the eigenproblem is plotted as a function of grid size. These times were
obtained on a 2.4 GHz Intel Pentium IV CPU, running in single user mode.

The standard discretization scheme used in most common approaches, wherein the first derivative is
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Figure 5. CPU time (in arbitrary units) as a function of grid size and discretization scheme. The numbers in
parentheses (K, L) refer to the order of the discretization scheme.

approximated with a two-point central finite difference approximation:

d

dx
ψ(i) =

ψ(x(i + 1))− ψ(x(i− 1))
x(i + 1)− x(i− 1)

(74)

performs the fastest for all grid sizes. The reason is that the discretization scheme is hard coded in the
software since the approximating formulas are already known. In contrast, in our discretization scheme,
the approximating formulas must be solved at run-time. This involves the solution of N Vandermonde
systems of dimension (K + L + 1) each. Since this involves O((K + L + 1)2N) operations and
K, L are typically small, the penalty involved is not severe. As seen in Fig. 5, for (K, L) one is likely
to encounter in practice, CPU time remains approximately constant and very competitive with the
standard DS. Certainly (K, L) larger than (5, 5) are not recommended due to the ill-conditioned nature
of high-dimensional Vandermonde problems [11] (but also see the discussion in Ref. [10]).

Before addressing the issue of accuracy, the question of possible improvement, if any, by the detailed
treatment of the interfaces as outlined in Sec. 3.2 must be considered. The effect of this approach on
CPU time as a function of grid size is shown in Fig. 6.

The results for the standard DS and the (1, 1) DS from Fig. 5 are repeated for comparison. The
treatment of the discontinuities, as described in Section 3.2, requires the calculation of the inverse
matrix P−1

x , a time-consuming operation. As seen from Fig. 6, the increase in CPU time is acceptable
for grids of size < 100− 150 points but increases rapidly for larger grid sizes.

The main motivation for adopting sophisticated DS, namely accuracy, was evaluated for the ground
state energy of the well for different schemes and the results are shown in Fig. 7. The error presented
in Fig. 7 is obtained by comparing the calculated eigenvalues for each DS with the quasi-analytical
results shown in Fig. 4.

Although the standard and (1, 1) schemes, which are entirely equivalent apart from the method of
calculating the DS coefficients (in the former case they are hard-coded while in the latter they are
calculated during run-time, but the final result is the same), perform satisfactorily, the (2, 2) and (5, 5)
schemes offer slight improvement in accuracy. The clearly superior DS though is (1, 1) with handling of
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Figure 6. CPU time (in arbitrary units) as a function of grid size, discretization scheme and interface handling
method.

Figure 7. Ground state energy error as a function of grid size and discretization scheme.

discontinuities as described in Section 3.2. In the 100 - 150 grid size region, improvement in accuracy
of the order of 3-4x is achieved as compared to standard and (1, 1) DS.

If we take into account the information conveyed in Figs. 5-7, it becomes apparent that a grid size of
100 - 150 points in conjunction with a (1, 1) DS with interface treatment offers superior performance
with slight speed penalty. Should higher accuracy be deemed necessary, an increase in grid size should
accommodate all requirements. In all cases however, it is evident from the results of Fig. 7 that the
interfaces must be taken into account.

One final observation in favor of general (K, L) schemes as opposed to standard DS’s. If we plot the
distribution of the eigenvalues on the complex plane for a 105 point grid and for various DS’s, the series
of plots shown in Figs. 8-10 arises. Since the matrices involved are non-Hermitian, their eigenvalues
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Figure 8. Spectral distribution of eigenvalues for standard and (1,1) DS. The eigenvalues of interest are circled.

Figure 9. Spectral distribution of eigenvalues for (2,2) DS. The eigenvalues of interest are circled.

are, in general, complex. Out of the multitude of eigenvalues (105 in this case) we are interested in
only a few (two). The fact that they must be negative (the energy origin coincides with the top of
the conduction band) and greater than −0.23eV helps isolate them. A comparison of their spectral
distribution though, shows that they are arranged in different ways on the complex plane. As the order
of the DS increases, the complex eigenvalues tend to “spread” away from the origin, a fact that makes
their isolation and subsequent rejection easier. In addition, those values with zero imaginary part and
positive real part, which correspond to decaying states, tend to migrate from the real axis toward the
complex plane. In situations where the energy reference level does not provide sign information about
the real bound states, this behavior would be desirable.
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Figure 10. Spectral distribution of eigenvalues for (5,5) DS. The eigenvalues of interest are circled.

5. Conclusion

We presented an operator based family of discretization schemes for the SBEME in a heterostructure.
This approach take advantage of the quantum mechanical operator forming the generator of the
Lie group of infinitesimal translations, and can be extended to other cases (a rotationally invariant
Hamiltonian, for example.)

A prototype potential well was studied and the effects of various discretization schemes on
eigenvalue accuracy and execution time were examined. As a consequence of this study, the use of
a (1,1) DS with discontinuity treatment is recommended as an optimal trade-off in accuracy vs. CPU
time.

APPENDIX

Throughout this work, the formulation of quantum mechanics in Hilbert space [8] and Dirac [20]
notation is used, unless reference to a specific representation is required.

Operators acting in Hilbert space are denoted with bold, accented letters. Thus the quantum
mechanical momentum operator is typeset as P̂ . In situations where the aforementioned operator can
be decomposed in two or more orthogonal operators, each acting in its own subspace (orthogonal to all
the other subspaces) of the initial Hilbert space, then the component operators are denoted with normal
accented letters. Thus the components of P̂ are typeset as P̂x, P̂y and P̂z , with P̂ = P̂x ⊕ P̂y ⊕ P̂z ,
where ⊕ stands for the direct sum of operators.

The matrices representing operators in a given basis are denoted with bold or normal sanserif
uppercase letters. So the matrix representing P̂ is typeset as P and that of P̂x as Px. Individual matrix
elements are denoted with small roman letters, appropriately indexed. The matrix elements of P̂ , for
example, are typeset as p(x, x′) or p(i, j) depending on whether the basis is continuous or discrete,
respectively. In the latter case, the notation pij is also used.

Functional representations of operators are be denoted by the same letter as the operator, but in a
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roman, unaccented typeface. Thus the function representing P̂x in the |x〉 representation is typeset as
Px(x).

Finally, quantum mechanical states are denoted in uppercase bold Greek letters as in |Φ〉 while their
tensor components are denoted with the corresponding lowercase Greek letter as in |Ψ〉 = |ψx〉⊗|ψyz〉,
where ⊗ stands for the tensor product of vectors. The projections of states in the |x〉 representation
(wave functions,) are typeset with the familiar ψx(x) = 〈x|ψx〉.
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