
A Page-based Hybrid (Software-Hardware)
Dynamic Memory Allocator

Wentong Li Saraju P. Mohanty Krishna Kavi
Email-ID: wl@cse.unt.edu Email-ID: smohanty@cse.unt.edu Email-ID: kavi@cse.unt.edu
Dept. of Computer Science and Engineering, University of North Texas, Denton, TX 76203.

Abstract— Modern programming languages often include
complex mechanisms for dynamic memory allocation and
garbage collection. These features drive the need for more
efficient implementation of memory management functions,
both in terms of memory usage and execution performance.
In this paper, we introduce a software and hardware co-
design to improve the speed of the software allocator used
in Free-BSD systems. The hardware complexity of our design
is independent of the dynamic memory size, thus making
the allocator suitable for any memory size. Our design
improves the performance of memory management intensive
benchmarks by as much as43%. To our knowledge, this is
the first-ever work of this kind, introducing “hybrid memory
allocator”.

I. I NTRODUCTION

Dynamic memory management accounts for a significant
amount of execution time in modern imperative languages.
In current systems, the dynamic memory management func-
tions are performed by pure software. In some applications,
the amount of execution time spent on memory manage-
ment is as much as42% [1]. Implementation of a low cost
allocator, which has both good execution performance and
memory locality is still an important research problem.

Different software allocators use different techniques to
organize available chunks of free memory. A search of these
free chunks is needed for allocation of memory. This search
could be in the critical path of allocators causing a major
performance bottleneck. Hardware allocators can provide
several advantages over the software counterpart. Parallel
search of the available memory chunks can be implemented
in hardware, which can speed up memory allocation and
improve the performance by reducing execution time. The
hardware allocator can easily hide the execution latency
of freeing objects, since freeing can run concurrently with
application execution. The hardware allocator unit can
also perform coalescing of free chunks of memory, in the
background, while the application is not using this portion
of the memory. The major disadvantage of a hardware-
only allocator is the potential hardware complexity in
implementing complex allocators.

In this paper, we present a new hybrid software/hardware
allocator and its hardware architecture for faster and low
cost system. This allocator is based on the PHK [9]
allocation algorithm used in the Free-BSD system and

Manuscript submitted: 4 May 2006. Manuscript accepted: 13 July 2006.
Final manuscript received: 18 July 2006.

Chang’s hardware allocator [4]. Thus, we aim to balance
the hardware complexity with performance by using both
hardware and software together. To substantiate our claims,
we present a comparison of our design in terms of hardware
complexity with a hardware-only allocator and a compari-
son in terms of performance with a software-only allocator.
Our proposed hybrid allocator can find important use in
the applications written in modern programming languages
like C++/JAVA where a significant amount time is spent in
memory management.

II. RELATED RESEARCH

Berger et al. [1] show that a general purpose allocator
works well for most applications. The average performance
difference of two most popular general purpose open source
allocators, Doug Lea [11] used in LINUX system and PHK
used in Free-BSD system, is less than 3% [7] for memory
allocation intensive benchmarks in SPEC 2000. We chose
PHK because of its suitability for hardware/software co-
design. The PHK allocator is a page based allocator. Each
page can only contain objects of one size. For a large object,
sufficient number of pages are allocated to accommodate
the object. For applications written using object-oriented
languages such as Java and C++, most objects allocated
are small. For small objects, less than half a page, object
size is padded to the nearest power of 2, to match the size of
objects in that page. This allocator keeps a page directory
for all the allocated pages. At the beginning of each small
object page, a bitmap of allocation information is created.
When allocating a small object, the PHK allocator performs
a linear search on the bitmap to find the first available chunk
in that page. This search is performed in the following
sequence: first locate the first word of a page that has a
free chunk, then locate the address of the first byte in that
word that represents a free chunk.

There are a few hardware allocator designs [4] [3] [6]
reported. All of these are based on the buddy system
invented by Knuth [10]. Chang’s algorithm [4] is a first-
fit method based on a binary OR-tree and a binary AND-
tree. Each leaf node of the OR-tree represents the base size
of the smallest unit of memory that can be allocated, and
other nodes provide information if such a unit is available.
All allocated objects are multiples of the base size. The
leaves of the OR-tree together represent the entire memory.
The input of the AND-tree is generated by a complex

interconnection network of the OR-tree. The AND-tree has
the same number of leaves as the OR-tree. The AND-tree
is used to generate the address of the first available chunk
for a particular sized object. The interconnection between
the OR-tree and the AND-tree is the most complex part of
Chang’s allocator. The interconnection has the same critical
path delay as the OR-tree and the AND-tree. The final
allocation result is produced by the output of the AND-
tree through a set of multiplexers. The critical path delay of
this algorithm isDdelay = DOR−tree +DInterconnection +
DAND−tree. The hardware complexity, in terms of the
number of gates, isO (n lg n), wheren is the number of
the memory chunks andO (ln n) is the critical path delay.

III. O UR PROPOSEDHYBRID ALLOCATOR

We note that pure hardware allocators based on buddy
system are not scalable since the complexity of the hard-
ware increases with the size of the memory managed. Also
buddy system is known for its poor object locality [8].
On the other hand, software allocators have the problem
of poor execution performance. We design a new hybrid
allocator using small, fixed hardware to help manage the
memory. The software portion based on PHK algorithm
provides better object localities than the buddy system and
the hardware portion improves execution performance of
the software portion.

The software in our allocator is responsible for creating
page indexes and for initializing the page header as in
a software implementation of PHK. For large objects (>
half a page), the software takes full responsibility without
any hardware assistance. When an application requests
allocation for a small sized object, the software portion of
our hybrid system will locate the bitmap of a page with free
memory and issues a search request to the hardware. The
hardware portion will search the page index (or bitmap)
in parallel to find a free chunk, and mark the bitmap to
indicate an allocation.

Fig. 1 shows the block diagram of the hardware we
propose to fulfill parallel searching. We have an OR-tree
and an AND-tree similar to Chang’s system. The OR-tree
is responsible for determining if there is a free chunk in a
page. The AND-tree will locate the position of the first free
chunk in the page. Because an OR-tree and an AND-tree
are dedicated to one object size, the complex interconnec-
tions between the OR-tree and the AND-tree are not needed
(unlike Chang’s [4]). The individual implementation of the
OR-tree and the AND-tree are identical to that of Chang’s
designs. The multiplexer (MUX) uses the opcode to select
the address of the bit needed to be flipped. If the opcode
is “alloc”, the address from the AND-tree will be chosen.
If the opcode is “free”, the address from the request will
be selected. D-latches in our design are used as storage
devices, where the bitmap will be loaded from the page
in accordance with the allocation size. The de-multiplexer
(DEMUX) is used to decode the address from the MUX.

Bit-flippers use the decoded address and the opcode to
determine how to flip a desired bit. Because of the page
limits, we do not show the detailed flipper logic here. It
may be noted that the critical path in this design is only the
AND-tree for the “allocate” operation. The “free” doesn’t
generate any output, and the processor can immediately
continue execution of application code.

address

256

8

256
D−Latches

OR

Tree

 AND

Tree
X

U

M

1

Valid bit

 8 8
address
Input 2

Opcode

Bit−Flippers

256

DEMUX
256

8

 Output

Fig. 1. Block Diagram of Our Proposed Hardware Component (For Page
Size 4096 bytes and Object Size 16 bytes)

U

Unit for 32 bytes objects

Unit for 16 bytes objects
Size

Input

Unit for quarter page objects

M

Unit for half a page objects

Opcode

X

Fig. 2. The Block Diagram of Overall Hardware Design

Fig. 2 shows the overall design of our system with
4096-byte pages. We have shown one unit for one page in
Fig. 1. For different object sizes, the hardware needed to
support the bit-map will be different. In our design, we pre-
select object sizes from 16-bytes to 2048 bytes and include
hardware to support pages for these objects. It should be
noted that the larger the object size the smaller the amount
of hardware needed to support the bit-maps indicating the
availability of chunks in that page. For example, we need
only 2 bits for a page that allocates 2048-byte objects. The
MUX here is used to select the hardware unit that will
be responsible for supporting objects of a given size. With
4096-byte pages, we have 8 different sized objects ranging
from 16-bytes to 2048-bytes. For allocating 16-byte objects,
we need trees with 256 leaves. Each tree only needs 255
AND/OR gates. For the overall system, we need 502 AND
gates and 502 OR gates. This is very small amount of
hardware compared with billions of transistors available on
modern processor chips.

IV. COMPLEXITY AND PERFORMANCECOMPARISON

A. Complexity Comparison

Existing hardware allocator designs implement the buddy
system of allocations. The amount of hardware that is used
to implement a buddy allocator is dependent on the size of
memory [6]. That makes buddy system based allocators not

TABLE I

COMPARISON OFCHANG’ S ALLOCATOR AND OUR DESIGN

Attributes Chang’s Allocator Our Design
Design Algorithm Total Memory Page Based

Interconnection Complexity O
(

M
S lg M

S

)
No Interconnection

Overall Hardware Complexity O
(

M
S lg M

S

)
O

(
P
S

)
Scalability No Yes

Need for Software Assistance No yes

Critical Path Delay O
(
lg M

S

)
O

(
lg P

S

)
Clock Frequency Slow Fast

Allocation Locality Poor Better

POSIX Compatible No Yes

scalable. Our design has much lower hardware complexity
than Chang’s allocator. In order to compare hardware
complexity, the following notations are used:M is the total
dynamic memory size,P is the page size, andS is the
smallest allocated object size. Table I shows details of the
comparison with Chang’s algorithm.

The complex interconnection determines the hard-
ware complexity of Chang’s allocator and it grows as
O

(
M
S lg M

S

)
. The hardware complexity of our design is

O
(

P
S

)
. Normally, the page size is small and in most cases

pages are of fixed size. For example, in a 2GByte dynamic
memory system where the smallest object allocated is
16-bytes, Chang’s allocator needs several hundred million
gates, while our design only needs twenty thousand gates
when 4096-byte pages are used (see previous section).

The critical path delay of our design is much smaller
than that of Chang’s design. For Chang’s allocator, the
critical path delay isO

(
lg M

S

)
which grows with the size

of the memory managed. For our design, the critical path
delay is O

(
lg P

S

)
. For a system as previously described,

the height of the trees in Chang’s algorithm 27. The total
critical path delay will be 108 logic gate delays. For our
approach, the critical path incurs only 16 gate delays.
Moreover, our proposed allocator can be run at much higher
clock frequency than Chang’s allocator, although it needs
software assistance.

When freeing an object, Chang’s algorithm needs the
size of the object to manipulate the AND and OR trees. In
POSIX systems, “free” commands do not provide object
sizes; only the starting address of the object to be freed.
This incompatibility makes Chang’s approach impractical.
Since the software part in our design will locate the
bitmap on free, our design is fully POSIX compatible. In
addition, our design is based on the PHK allocator which
aims to enhance the locality of allocated objects (since
smaller objects are allocated from the same page), unlike
an allocator based on the buddy system used by Chang.
There is another buddy allocator called Address-Ordered
buddy system [5] that may improve locality.

TABLE II

SIMULATION PARAMETERS

Pipeline Parameters
Issue Width 4

4 IntALU, 1 IntMult/Div, 4 FloatALU,
Functional Units 1 FloatMult/Div, 2 Memory Ports, 1 Branch

Register Update Unit Size 8

Load/Store Queue Size 4

Branch Prediction Scheme Bimodal

Memory Parameters
L1 Data Cache 4–way Set Associative, 16K Bytes

L1 Instruction Cache Direct-mapped, 16K Bytes

L2 Unified Cache 4–way Set Associative, 256K Bytes

Cache Line Size 32 Bytes

L1 Hit Time, Miss Penalty 1 cycles, 6 cycles

Mem Latency/Delay 18/2 cycles

TABLE III

SELECTED BENCHMARKS AND AVE. OBJECTSIZES

Benchmark Average Time Spent in
Name Input Object Size Allocation (%)

cfrac 22-digits number 8 bytes 29.7

espresso largest.espresso 250 bytes 4.7

boxed-sim -n 10 -s 1 24 bytes 2.4

parser ref.in (first 300 lines) 16 bytes 35.6

perlbmk perfect.pl b 2 38 bytes 10.7

treeadd 20 1 24 bytes 48.2

voronoi 20000 1 40 bytes 10.4

bisort 250000 1 24 bytes 2.3

perimeter 12 1 48 bytes 16.3

health 5 500 1 24 bytes 4.9

B. Performance Analysis

For the purpose of analyzing performance gains from
our design, we simulated the existence of a hardware-
assisted PHK allocator within a conventional CPU using
SimpleScalar simulation tool set [2]. The hardware portion
of our hybrid allocator presented in Section III runs at 1
cycle speed. For the purpose of analysis this hardware is
implemented as a special functional unit in a superscalar
processor. This unit is activated by operations, findchunk
and freechunk. The page size of the system is assumed
to be 4096 bytes, and the smallest object allocated is set
to 16 bytes. The detailed processor parameters used in our
simulations are shown in Table II.

We used ten benchmarks (with varying number of mem-
ory management overheads) to study the performance gains
using our design: parser and perlbmk are from SPEC
CPU2000 suite; cfrac, espresso and boxed-sim are memory
intensive benchmarks that are widely used by researchers;
the other benchmarks are from Olden suite, which are
also memory allocation intensive programs. The inputs to
these benchmarks, average object sizes, and percentage of
execution time spent in memory management are shown in
Table III. The simulation results are shown in Table IV.

TABLE IV

PERFORMANCECOMPARISON WITH PHK ALLOCATOR

PHK Software Our Hardware
Benchmark Allocator Execution Allocator Execution Speedup
Name Cycles (million) Cycles (million)
cfrac 189.7 148.1 1.28

espresso 5,241 5,129 1.02

boxed-sim 9,043 8,922 1.01

parser 27,111 21,163 1.27

perlbmk 135.5 127.3 1.06

treeadd 160.4 112.4 1.43

voronoi 128.8 122.3 1.05

bisort 424.1 418.1 1.01

perimeter 42.11 37.97 1.11

health 383.0 372.2 1.03

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

healthperimeterbisortvoronoitreeaddperlbmkparserboxed-simespressocfrac

P
er

ce
ta

ge
 o

f P
er

fo
rm

an
ce

 g
ai

n(
%

)

0.5

Fig. 3. Normalized Memory Management Performance Improvement

The speedup of each application is proportional to the
execution time spent on memory management and the
average object size. In Fig. 3, we show the reduced memory
management execution cycles normalized to the original
execution cycles spent on memory management functions
by software only allocator. This figure shows the relative
performance improvements for memory management func-
tions. The cfrac application shows the best performance
improvement.The average object size in cfrac is 8 bytes,
which means that most pages allocated contain 256 objects.
The linear search in the software implementation for that
many objects will be very slow. The hardware speeds
up the search, leading to76.2% normalized performance
improvement over the software-only allocation. The cycles
spent in bitmap searching by software-only allocator is
close to the performance difference between the software-
only allocator and our proposed hybrid allocator, which can
be calculated from Table IV.

The benchmark espresso with average object size of
250 bytes shows the least amount of improvement using
our hybrid allocator. Pages allocated for espresso contain
fewer than 20 objects. Linear search of 20 objects is not
significant, and the hardware allocator only shows48.0%
normalized performance improvement. The other bench-
marks have average object sizes of 16 bytes to 48 bytes,
and thus the performance gains are not as significant as that
for cfrac, but better than espresso. On average, our hybrid

allocator reduces the memory management time by58.9%.
The average overall execution speedup of our design when
compared to a software only allocator implementation is
1.127 (or 12.7%).

V. CONCLUSION

Our design has significantly lower hardware complex-
ity and lower critical path delays compared to reported
hardware-only allocators. Our hardware design has a fixed
hardware complexity, complexity being dependent on the
size of a memory page, and not the total (user) memory
being managed. Since our design is based on PHK al-
gorithm, we are likely to achieve better object localities
than those using buddy systems. We also have shown that
our hardware-software allocator achieves12.7% gains in
overall execution performance over software-only allocator
implementation for memory intensive benchmarks and im-
proves the memory management efficiency by58.9% (that
is the execution performance improvement for memory
management functions). The performance gains depend
on how often an application invokes “malloc” or “free”
functions, and the average size of objects allocated. In
the future, we will explore variable sized pages such that
the number of allocated objects are the same in each
page. By doing this, all the bitmaps will have the same
number of bits. Thus, we need only one pair of AND-tree
and OR-tree in our design. That will further reduce the
hardware complexity. We expect that this will also improve
the memory management efficiency of allocators for large
objects. We also plan to investigate hybrid designs for other
memory management algorithm’s like Doug Lea’s allocator.

REFERENCES

[1] E. D. Berger, B. G. Zorn and K. S. McKinley, “Reconsidering
Custom Memory Allocation”, inProc. of Conf. on Object-Oriented
Programming Systems, Languages and Applications, 2002, pp. 1-12.

[2] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, V 2.0”,
Tech Report CS-1342, University of Wisconsin-Madison, Jun. 1997.

[3] H. Cam, et. al., “A High Performance Hardware Efficient Memory
Allocator Technique and Design”, inProceedings of the Interna-
tional Conference on Computer Design, 1999, pp. 274-276.

[4] J. M. Chang and E. F. Gehringer, “A High-Performance Memory
Allocator for Object-oriented Systems”,IEEE Transactions on Com-
puters, Mar. 1996, pp 357-366.

[5] D. C. Defoe, S. R. Cholleti, and R. K. Cytron, “Upper Bound for
Defragmenting Buddy Heaps”, inProc. of the Conf. on Languages,
Compilers, and Tools for Embedded Systems, 2005, pp. 222-229.

[6] S. Donahue, M. Hanpton, R. Cytron, M. Franklin and K. Kavi,
“Hardware Support for Fast and Bounded-time Storage Allocation”,
in Second Workshop on Memory Performance Issues (WMPI 2002).

[7] Y. Feng and E. D. Berger, “A Locality-Improving Dynamic Memory
Allocator”, in Third Annual ACM SIGPLAN Workshop on Memory
Systems Performance (MSP 2005).

[8] M.S. Johnstone and P.R. Wilson, “The memory fragmentation prob-
lem: Solved”,ISMM’98 Proceedings of the First International Sym-
posium on Memory Management, volume 34(3) ofACM SIGPLAN
Notices, pages 26-36, Vancouver, Oct. 1998.

[9] P. H. Kamp. “Malloc(3) revisited”,http://phk.freebsd.dk/
pubs/malloc.pdf

[10] D. E. Knuth,The Art of Computer Programming Vol.I: Fundamental
Algorithms., Addison-Wesley, 1968.

[11] D. Lea, “A Memory Allocator”, http://gee.cs.oswego.
edu/dl/html/malloc.html

