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A VLSI Architecture for Visible Watermarking in a
Secure Still Digital Camera (S2DC) Design
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Abstract— Watermarking is the process that embeds data
called a watermark, tag or label into a multimedia object, such
as images, video or text for their copyright protection. According
to human perception, the digital watermarks can either be visible
or invisible. A visible watermark is a secondary translucent
image overlaid into the primary image and appears visible to
a viewer on a careful inspection. The invisible watermark is
embedded in such a way that the modifications made to the
pixel value is perceptually not noticed and it can be recovered
only with an appropriate decoding mechanism. In this paper, we
present a new VLSI architecture for implementing two visible
digital image watermarking schemes. The proposed architecture
is designed aiming at easy integration into any existing digital
camera framework. To our knowledge, this is the first VLSI
architecture for implementing visible watermarking schemes. A
prototype chip consisting of 28469 gates is implemented using
0.35µ technology, which consumes 6.9mW power while operating
at 292MHz.

Index Terms— Digital Watermarking, Spatial domain water-
marking, visible and invisible watermarking, still digital camera,
JPEG encoder.

I. INTRODUCTION

Watermarking is the process that embeds data called a
watermark, tag or label into a multimedia object such that
watermark can be detected or extracted later to make an
assertion about the object. The object may be an image, audio,
video, or text [1]. Whether the host data is in spatial domain,
discrete cosine transformed, or wavelet transformed, water-
marks of varying degree of visibility are added to presenting
media as a guarantee of authenticity, ownership, source, and
copyright protection. In general, any watermarking scheme
(algorithm) consists of three parts, such as, (i) the watermark,
(ii) the encoder (insertion algorithm) and (iii) the decoder and
comparator (verification or extraction or detection algorithm)
[2], [3]. Whether each owner has a unique watermark or an
owner wants to use different watermarks in different objects,
the marking algorithm incorporates the watermark into the
object. The verification algorithm authenticates the object
determining both the owner and the integrity of the object.

Watermarks and watermarking techniques can be divided
into various categories. The watermarks can be applied either
in spatial domain or in frequency domain. It has been pointed
out that the frequency domain methods are more robust than
the spatial domain techniques [4]. On the other hand, the
spatial domain watermarking schemes have less computational
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overhead compared to frequency domain schemes. According
to human perception, the digital watermarks can be divided
into four categories : (i) visible watermark, (ii) invisible-
robust, (iii) invisible-fragile and (iv) dual [2], [3]. A visible
watermark is a secondary translucent image overlaid into the
primary image and appears visible to a casual viewer on care-
ful inspection. The invisible-robust watermark is embedded
in such a way that modifications made to the pixel value
is perceptually not noticed and it can be recovered only
with appropriate decoding mechanism. The invisible-fragile
watermark is embedded in such a way that any manipulation
or modification of the image would alter or destroy the
watermark. A dual watermark is a combination of a visible
and an invisible watermark [5]. In this type of watermark,
an invisible watermark is used as a back up for the visible
watermark.
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There are numerous software based watermarking schemes
available in literature. A vast research community involving
experts from computer science, cryptography, signal process-
ing, and communications, etc. are working together to develop
watermarks that can withstand different possible forms of
attacks. Each one of which has its own its applications and
thus, are equally important. There is a gap between the image
capture and image transmission in the way watermarking is
used presently. Once the images are acquired watermarks are
inserted in them off-line and then images are made available.
The objective of this research work to implement hardware
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based watermarking schemes so as to bridge that gap. The
watermark chip will be fitted in the devices that acquires the
image and watermark the images in real time while capturing.
In this work, we focus on the VLSI implementation of two
visible watermarking schemes, one proposed by Braudaway,
Magerlein, and Mintzer [7] and the other visible watermarking
scheme proposed by Mohanty, Ramakrishnan, and Kankanhalli
[5]. Both these algorithms operate in spatial domain of image
data. The VLSI chip can insert either one of the watermarks
at a time depending on the requirements of the user. The
proposed watermarking chip can be easily incorporated as a
module in any existing JPEG encoder and a secured JPEG
encoder can be developed. An outline of such a secure JPEG
encoder is provided in Fig. 1 [6]. The secure JPEG codec
can be a part of a scanner or a digital camera so that the
digitized images are watermarked right at the origin. The
proposed watermarking chip can also be directly integrated
with any existing digital still camera. We provide the schematic
view of a still camera that includes a watermarking module
in Fig. 2, and call such a camera as a “secure digital still
camera” (S2DC). The S2DC is conceptually similar to the
“trustworthy digital camera” proposed by Friedman [8], in
which cryptography is used for image authentication.

The rest of the paper is organized as follows. A brief
overview of the existing watermarking chips is presented
in Section II. The visible watermarking algorithms being
implemented in this work and the modifications made to
them are described in Section III. Section IV discusses the
detailed architecture of the watermarking chip. The design of
a prototype VLSI chip is discussed in Section V followed by
experimental results and conclusions.

II. RELATED WORK

Several watermarking algorithms have been presented in
the literature for image, video, audio and text data. The
watermarking schemes work in spatial, DCT, and wavelet
domain. Moreover, the watermarking algorithms are invisible-
robust, invisible fragile, etc. Although many software algo-
rithms exists, very few hardware schemes have been proposed.
In this section, we briefly visit the hardware based systems
for watermarking. A comparative view of all the proposed
watermarking chips are provided in Table I.

Strycker, et. al. [9] proposed a real-time watermarking
scheme for television broadcast monitoring. They address
the implementation of a real-time spatial domain watermark
embedder and detector on a Trimedia TM-1000 VLIW proces-
sor developed by Philips semiconductors. In the insertion
procedure, pseudo-random numbers are added to the incoming
video stream. The depth of watermark insertion depends on
the luminance value of each frame. The watermark detection is
based on the calculation of correlation values. Mathai, Kundur
and Sheikholeslami [10] present a chip implementation of the
same video watermarking algorithm.

A DCT domain invisible watermarking chip is presented by
Tsai and Lu [11]. The watermark system embeds a pseudo-
random sequence of real numbers in a selected set of DCT
coefficients. They also proposed a JPEG architecture which in-
cluded the watermarking module. The watermark is extracted

without resorting to the original image. The authors claim that
the watermark is resistant to the JPEG attacks of as much as
10% compression ratio. The watermark chip is implemented
using TSMC 0.35µm technology and occupies a die size
of 3.064 × 3.064mm2 for 46374 gates. The chip consumes
62.78mW power when operated at 50MHz with 3.3V supply
voltage.

Garimella, et. al. [12] propose a VLSI architecture for
invisible-fragile watermarking in spatial domain. In this
scheme, the differential error is encrypted and interleaved
along the first sample. The watermark can be extracted by
accumulating the consecutive LSBs of pixels and then de-
crypting. The extracted watermark is then compared with the
original watermark for image authentication. The ASIC is
implemented using 0.13µ technology. The area of the chip is
3453×3453µm2 and consumes 37.6µW power when operated
at 1.2V . The critical path delay of the circuit is 5.89ns.

Mohanty, Ranganathan and Namballa [6] describe a water-
marking chip that has both invisible robust and invisible fragile
watermarking functionalities in spatial domain. The invisible-
robust algorithm proposed by Tefas and Pitas [13], [14] and the
invisible-fragile algorithm proposed by Mohanty, Ramakrish-
nan and Kankanhalli [5] are implemented. In invisible-robust
watermarking, a ternary watermark is embedded in the original
image using encoding function that involves addition of a
scaled grey value of neighboring pixels. A binary watermark
generated from pseudorandom numbers are XORed with an
original image bit-plane in the invisible-fragile watermarking
scheme. The chip implemented using 0.35µ technology oc-
cupies an area of 15.01 × 14.22mm2 and consumes 24mW
when operated at 3.3V and 151MHz frequency.

In this paper, we propose a VLSI architecture that can
insert visible watermarks in images. To our knowledge, this
is the first watermarking chip that has such functionalities.
Depending on the user’s requirements, it can insert either
of the watermarks. The spatial domain visible watermarking
algorithms proposed by (i) Braudaway, Magerlein, and Mintzer
[7] and (ii) Mohanty, Ramakrishnan, and Kankanhalli [5] have
been implemented in this work. We first describe briefly the
algorithms followed by the proposed VLSI architecture and
the chip implementation.

III. WATERMARKING ALGORITHMS

In this section, we discuss the image watermarking algo-
rithms in brief and then discuss the modifications necessary
to facilitate hardware implementation. The modifications are
aimed at reducing silicon area through module sharing. The
notations used in the description of the algorithms are given
in Table II.

A. Visible Watermarking Algorithm 1 :

In general, visible watermarking has three goals: (i) the
visible watermark should identify the ownership, (ii) the visual
quality of the host image should be preserved, and (iii) the
watermark should be difficult to remove from the host image.
To satisfy these three conflicting criteria, schemes have been
proposed for adding watermark with the original image. The
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TABLE I
WATERMARKING CHIPS PROPOSED IN CURRENT LITERATURE

Proposed Type of Target Working Technology Chip Area Chip Power
Work Watermark Object Domain Consumption
Mathai, Kundur and Invisible-Robust Video Wavelet 0.18µ NA NA
Sheikholeslami [10]
Tsai and Lu Invisible-Robust Image DCT 0.35µ 3.064× 3.064 62.78mW
[11] mm2 3.3V, 50MHz
Garimella, Invisible-Fragile Image Spatial 0.13µ 3453× 3453 37.6µW
and et. al. [12] µm2 1.2V
Mohanty, Ranganathan, Invisible-Robust Image Spatial 0.35µ 15.01× 14.22 24mW
and Namballa [6] Invisible-Fragile mm2 3.3V, 151MHz

TABLE II
LIST OF VARIABLES USED IN ALGORITHM EXPLANATION

I : Original (or host) image (a gray scale image)
W : Watermark image (a gray scale image)
(m, n) : A pixel location
IW : Watermarked image
NI ×NI : Original image dimension
NW ×NW : Watermark image dimension
ik : The kth block of the original image I
wk : The kth block of the watermark image W
iW n : The kth block of the watermarked image IW

αk : Scaling factor for kth block
(used for host image scaling)

βk : Embedding factor for kth block
(used for watermark image scaling)

µI : Mean gray value of the original image I
µkI : Mean gray value of the original image block ik
σkI : Variance of the original image block ik
αmax : The maximum value of αk

αmin : The minimum value of αk

βmax : The maximum value of βk

βmin : The minimum value of βk

Iwhite : Gray value corresponding to pure white pixel
αI : A global scaling factor
C1, C2, C3, C4 : Linear regression co-efficients

visible watermarking algorithm proposed in [7] is discussed
here. The watermarked image is obtained by adding a scaled
gray value of the watermark image to the host image. The
amount of scaling is done in such a way that the alternation of
each original image pixel occurs to a perceptual equal degree.
The original formulae have been simplified as shown below
[15], where the scaling factor αI determines the strength of
watermark.

IW (m,n) =





I(m,n) + W (m,n)
(

Iwhite

38.667

) (
I(m,n)
Iwhite

) 2
3
αI

for I(m,n)
Iwhite

> 0.008856

I(m,n) + W (m,n)
(

I(m,n)
903.3

)
αI

for I(m,n)
Iwhite

≤ 0.008856

(1)

The above equation can be simplified to make it amenable
for hardware implementation. At the same time, it is ensured
that the computation in hardware yields results that are as
accurate as the software implementation. We assume Iwhite =

255 and simplify the above equations to the following.

IW (m,n) =





I(m,n) +
(

αI

6.0976

)
W (m,n)(I(m,n))

2
3

for I(m,n) > 2.2583
I(m,n) +

(
αI

903.3

)
W (m,n) I(m,n)

for I(m,n) ≤ 2.2583

(2)

The above expression involves cubic root calculation, which
is complex to implement in hardware. So, we further simplify
the above expressions and remove the cubic root function with
a piecewise linear model. We divide the gray values range
[0, Iwhite] to four ranges, such as

[
0, Iwhite

4

]
,
[

Iwhite

4 , Iwhite

2

]
,[

Iwhite

2 , 3Iwhite

4

]
, and

[
3Iwhite

4 , Iwhite

]
. We fit four linear

regression co-efficients that best approximates the cubic root
in each of these ranges. Moreover, we roundup the fraction
involved in the comparison operation and the final expression
that is implemented using hardware is as follows.

IW (m,n) =





I(m,n) +
(

αI

903.3

)
W (m,n) I(m,n)

for I(m,n) ≤ 2
I(m,n) +

(
αIC1
6.0976

)
W (m,n) I(m,n)

for 2 < I(m,n) ≤ 64
I(m,n) +

(
αIC2
6.0976

)
W (m,n) I(m,n)

for 64 < I(m,n) ≤ 128
I(m,n) +

(
αIC3
6.0976

)
W (m,n) I(m,n)

for 128 < I(m,n) ≤ 192
I(m,n) +

(
αIC4
6.0976

)
W (m,n) I(m,n)

for 192 < I(m,n) < 256

(3)

We performed extensive software simulations for various test
images and found that pixel values of the watermarked images
obtained using the above set of equations match with that
obtained using original equation.

B. Visible Watermarking Algorithm 2 :

In this subsection, we discuss the visible watermarking
algorithm proposed in [5]. The pixel gray values are modi-
fied based on local and global statistics. The watermarking
insertion process consists of the following steps.
• Both host image (one to be watermarked) I and the

watermark (image) W are divided into blocks of equal
sizes (the two images may be of unequal size).

• Let ik denote the kth block of the original image I and
wk denote the kth block of the watermark W . For each
block (ik), the local statistics; mean µkI and variance
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σkI are computed. The image mean gray value µI is
also found out.

• The watermarked image block is obtained by modifying
ik as follows.

iW k = αk ik + βk wk k = 1, 2... (4)

Where, αk and βk are scaling and embedding factors
respectively, depending on µkI and σkI of each host
image block.

The choice of αk and βk are governed by certain character-
istics of human visual system (HVS) and mathematical models
are proposed so that the perceptual quality of the image are
not degraded due to watermark addition. The αk and βk are
obtained as follows.
• The αk and βk for edge blocks are taken to be αmax and

βmin respectively.
• The αk and βk are found out using the following equa-

tions.
αk = 1

σ̂kI
exp

(−(µ̂kI − µ̂I)2
)

βk = σ̂kI

(
1− exp

(−(µ̂kI − µ̂I)2
)) (5)

Where, µ̂kI and µ̂I are normalized values of µkI and µI ,
and σ̂kI are normalised logarithm values of σkI .

• The αk and βk are scaled to the ranges (αmin,αmax)
and (βmin, βmax) respectively, where αmin and αmax

are minimum and maximum values of scaling factor,
and βmin and βmax are minimum and maximum values
of embedding factor. These parameters determine the
extent of watermark insertion. A linear transformation
is used to scale current αk and βk values to the ranges
(αmin, αmax) and (βmin, βmax), respectively. Let current
values of αk be written as αc

k, and αc
min and αc

max,
respectively denote the current minimum and maximum
values. Similarly, let current values of βk be written as
βc

k, and βc
min and βc

max, respectively denote the current
minimum and maximum values. The αk and βk values
are scaled as follows.

αk =
(

αmax−αmin

αc
max−αc

min

)
αc

k

+
(
αmax −

(
αmax−αmin

αc
max−αc

min

)
αc

max

)

βk =
(

βmax−βmin

βc
max−βc

min

)
βc

k

+
(
βmax −

(
βmax−βmin

βc
max−βc

min

)
βc

max

)
(6)

We used first-order derivatives for edge detection. For
horizontal edge detection, we compute the horizontal gradient
as :

Gh(m,n) = I(m,n)− I(m + 1, n) (7)

The vertical gradient is computed as follows for vertical edge
detection.

Gv(m, n) = I(m,n)− I(m,n + 1) (8)

The amplitude of an edge is calculated as,

G(m, n) = |Gh(m,n)|+ |Gv(m,n)| (9)

The mean amplitude for a block is computed as,

Gµ = 1
NB×NB

∑
m

∑
n G(m,n) (10)

When the mean amplitude for a block exceeds a predefined
threshold, we declare it as an edge block. The values of m
and n correspond to the pixel locations of individual blocks
with reference to the original image pixel location.

The mean gray value of a block is calculated as the average
of gray values of all pixels in the image block. The mean gray
values are normalized with pure white pixel gray value. Thus,
we have normalized mean gray values of a block as,

µ̂kI = 1
NB×NB

(
1

Iwhite

)∑
m

∑
n I(m,n) (11)

Where, m and n are the pixel locations of the kth image
block; same as their locations in the original image. The
normalized standard deviation of gray values for the kth block
is calculated as follows.

σ̂kI = 1
NB×NB

(
2

Iwhite

) ∑
m

∑
n

∣∣I(m,n)− Iwhite

2

∣∣ (12)

The exponential term in the Eqn. 5 is approximated as a power
series. For 0 ≤ x ≤ 1, we have the following Taylor series
approximation which was used upto the square term in our
implementation.

ex =
∑

i
xi

i! = 1 + x + 1
2x2 + ... (13)

In the step three of the insertion algorithm, scaling needs
to be done using a linear transformation. The transformation
needs to find the current minimum and maximum values for
both αk and βk over all the blocks. Due to this the hardware
performance is going to be severely degraded since it has
to wait till all the pixels of the images are covered to find
local statistics of all the blocks. So, we modify the Eqn. 5 to
ensure that the performance of the hardware is improved with
no compromise on the quality. We find αk and βk using the
following equations.

αk = αmin

+ (αmax − αmin) 1
σ̂kI

exp
(−(µ̂kI − µ̂I)2

)

βk = βmin

+ (βmax − βmin) σ̂kI

(
1− exp

(−(µ̂kI − µ̂I)2
))
(14)

Extensive simulations for various images show that the αk

and βk obtained using Eqn. 6 and Eqn. 14 are comparable
(maximum difference is 5% [2]). Thus, we use Eqn. 14 for
the αk and βk calculations.

IV. VLSI ARCHITECTURE

In this section, we discuss the VLSI architectures for the
Two algorithms discussed in Section III. The two architectures
are combined to develop a single datapath with modules that
can be shared by both algorithms. A finite state machine
(FSM) based design of a controller that drives the datapath
is described. We assume that both the original image and
the watermark image are stored in the memory within the
digital camera framework and are available for processing.
The images may be in either a compressed format or as raw
ascii data. We need to have a corresponding decoder to decode
the image and get the uncompressed data in case it is in
compressed format which was not part of this work.
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Fig. 3. Datapath Architectures for the Visible Watermarking Algorithms

A. Architecture for Algorithm 1 :

The insertion operation for the first watermarking algorithm
is described in Eqn. 1. This insertion function is simplified to
Eqn. 3 using a piecewise linear model such that we have a
compact and efficient hardware design, as described in the
previous section. Fig. 3(a) shows the architecture proposed
for the first algorithm. The watermarking in this scheme
is performed pixel-by-pixel as evident from the insertion
function. A register file is used to store the constants needed
to scale the image-watermark product in Eqn. 3. We store the
constants 1

903.3 , C1
6.0976 , C2

6.0976 , C3
6.0976 , and C4

6.0976 . The other
constant αI is assumed as a parameter, which can be changed
by user to vary the watermark strength. The comparator is used
to determine the range in which a particular pixel gray value
lies, such that an appropriate constant can be picked up from
the register file. The left side multiplier calculates appropriate
constant times the host image pixel gray values and the right
side multiplier is used to find αI times the watermark image
pixel gray value. The results of the above two multipliers
are fed to the third multiplier which effectively calculates the
product of constants, αI , host image pixel gray value, and
watermark image pixel gray value, respectively. The above
product is added to the host image pixel gray values using

the adder to obtain watermarked image pixel gray values. The
above described process has to be carried out for all the pixels
in order to obtain the watermarked image.

B. Architecture for Algorithm 2 :

The architecture for the second watermarking algorithm is
shown in Fig. 3(b) in which the watermarking insertion is
performed block-by-block as described in Eqn. 4. For each
block the watermarking insertion is performed on a pixel-by-
pixel. The “αk and βk calculation unit” computes the αk and
βk values for the kth non-edge block using expression in Eqn.
14. The “edge detection unit” determines if a block is an edge
block or non-edge block; if the Gµ exceeds a user defined
threshold, then it is an edge-block. Larger the threshold more
are the blocks declared as edge-blocks. The multiplexors help
in selecting the scaling and embedding factors between the
edge and non-edge blocks. The left side multiplier calculates
the scaling factor times the host image pixel gray value. The
right side multiplier multiplies the embedding factor with
the watermark image pixel gray value. The products from
these two multipliers are added using an adder to find the
watermarked image pixel gray value. This process is repeated
for all pixels in a block, and subsequently for all the blocks
in the image.

1) αk and βk calculation unit: : The architectural details
of “αk and βk calculation unit” is shown in Fig. 4(a). This
hardware implements Eqn. 14 for αk and βk calculation for a
block at a time. The left side adder-accumulator combination
finds the sum of all the image pixel gray values for a block.
After the sum is multiplied with

(
1

NB×NB
∗ 1

Iwhite

)
, we get

the normalized mean gray value of kth block denoted by µ̂kI .
Since we have assumed block size of 8 × 8, and Iwhite as
256, this evaluates to 1

16384 . It may be noted that Iwhite is
255, but using 256 makes hardware implementation easier, the
latter being representable as a power of two. In the original
algorithm (µ̂kI − µ̂I) is the deviation of a mean gray value of
a block from the image mean gray value. We are evaluating
the deviation of mean block gray value from mid-intensity
of Iwhite

2 for simplicity, . Thus, (µ̂kI − µ̂I) is computed as
(µ̂kI − 0.5), when normalized with Iwhite. This assumption
accelerates the hardware performance to a great extent since
the block-by-block watermarking can be performed without
waiting for the global image statistics computed over the
whole image before the watermark insertion can be performed.
The expression exp

(−(µ̂kI − µ̂I)2
)

is computed using the
“exponential unit”.

The adder/subtractor unit finds the image pixel gray value
absolute deviation from Iwhite

2 . The following unit, adder-
accumulator accumulates the

∑
m

∑
n

∣∣I(m,n)− Iwhite

2

∣∣ for
a block. When this sum is multiplied with

(
1

NB×NB

)
∗(

2
Iwhite

)
, which is 8192 for our case, we get the normalized

standard deviation σ̂kI . The right side divider divides expo-
nential value computed before by σ̂kI . The quotient is then
multiplied with αmax −αmin. The above product is added to
αmin to evaluate αk expressed in Eqn. 14. The exponential
unit result is fed to a adder/subtractor on left side which finds
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its difference from 1. The result is then multiplied with σ̂kI

obtained from the computations performed before. The product
obtained is then multiplied with βmax − βmin. This product
is then added to βmin which in turn gives the required βk as
per Eqn. 14.

2) Edge detection unit: : The circuit to determine if a block
is an edge or non-edge block is shown in Fig. 4(b). The left
side and right side calculate the absolute value of horizontal
gradient |Gh(m,n)|and absolute value of vertical gradient
|Gv(m,n)|, respectively. The amplitude of an edge G(m,n)
is calculated using the first adder. Then, the adder-accumulator
combination finds the sum of G(m, n) for all pixels of a block.

The above sum when multiplied with
(

1
NB×NB

)
, we get the

mean amplitude Gµ for a block. The comparator compares
the Gµ values with an user defined threshold and declares the
block as a edge or non-edge block.

C. Architecture for the Watermarking Processor :

The datapaths for both the algorithms shown in Fig. 3(a)
and Fig. 3(b) are stitched together using multiplexors and the
combined datapath is shown in Fig. 5(a). Both the algorithms
share the same multipliers, as it is evident from Fig. 5(a), the
multiplexors help in selecting input for the multipliers. The
“Select” signal helps in choosing one of the watermarking
scheme. When Select is “0” first algorithm is used and when
select is “1”, second algorithm is performed.

α
k β k

Edge Detection

Unit

0 1 0 1

minβmax
α

α
k

β kand Calculation Unit

0 1

Register File 

Comparator

0 1

α
I

Multiplier Multiplier

Multiplier

0 10 1

I(m,n) W(m,n)Select

Adder

W
I   (m,n)

(a) Merged Datapath for Algorithms 1 and 2

Read

Pixel

Read

Block

Write

Block

Display

Image

Write

Pixel

Init

BlockCompleted=1

BlockCompleted=0

BlockCompleted=1

ImageCompleted=1

BlockCompleted=1

ImageCompleted=1

ImageCompleted=1

ImageCompleted=0

ImageCompleted=0

BlockCompleted=0

Start=0

Select=1

Start=1
Start=1

Select=0

ImageCompleted=0

(b) Controller for the Merged Datapath

Fig. 5. Architecture for the Proposed Watermarking Processor
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The controller that drives the datapath is shown in Fig.
5(b). The controller has six states, such as Init, ReadBlock,
WriteBlock, ReadPixel, WritePixel, and DisplayImage. When
the Start signal is “1” the watermarking process is initiated.
Depending on the Select signal one of the watermarking
schemes is chosen and the corresponding datapath needs to be
driven to carry out the watermarking process. When Select is
“0”, first watermarking scheme is chosen. At the ReadPixel
state a pixel is read and the watermarked pixel is written
at the WritePixel state after watermarking is performed. The
process continues as long as ImageCompleted is “0” so that
watermarking can be performed over all the pixels of the
image.

The second algorithm is chosen when the Select is “1”. In
the ReadBlock state the pixel gray values are read for a block.
The watermarked image block is written in the WriteBlock
state once the watermarking is completed for the block. The
system loops between the two states as long as all the blocks of
the host image are not watermarked. Once, the watermarking
is performed over whole image, the ImageCompleted signal is
set to “1”; thus, completing the watermarking process. State
DisplayImage is the state at which the watermark image is
ready in the digital camera storage.

V. CHIP IMPLEMENTATION

The implementation of the watermarking datapath and
controller was carried out in the physical domain using the
Cadence Virtuoso layout tool using bottom-to-top hierarchical
design approach. The design involved the construction of
main units, such as the exponential unit, the edge detection
unit, the αk and βk calculation unit, register file, and the
accumulator. All of the above units have multipliers, adders,
adder/subtractor, divider, comparator, and so on. These small
functional units are laid out individually through modulariza-
tion and later interfaced with each other to get the above men-
tioned units. The datapath and the controller are constructed
using the main units and the functional units. The layouts of
the gates at the lowest level of hierarchy is drawn using the
CMOS standard cell design approach. We designed our own
standard cell library containing basic gates, such as AND, OR,
NOT.

The datapath construction involves the implementation of
the proposed architecture in the previous section. The fun-
damental functional units are 8-bit adders, 8-bit multipliers
and 8-bit adder/subtractor. Each adder is constructed using 1-
bit adders in a ripple-carry manner. The adder/subtractor unit
is obtained from the adder using XOR gates [16]. The carry
inputs to the adder/ subtractor and one of the inputs to the
XOR gate are set to high whenever the select signal for this
unit is “2” so that a subtraction is carried out. The output of
the adder-subtractor module gives the absolute value of the
difference of two numbers when the difference is positive.
When the difference is less than 0 (which is indicated by the
carry bit taking a value 0), the absolute value is obtained by
taking the 2’s complement of the output of the adder/subtractor
module.

An 8-bit parallel array multiplier is obtained from full-
adders and AND gates to implement multiplication operations

with reduced delay [17]. The divider is implemented using the
shift and subtract logic for the division [16]. The number to be
divided is initially stored in two registers, A and Q, and with
each subtraction, the values in A and Q are shifted left, with
the most-significant bit in Q replacing the least-significant bit
in A, and a 1 placed in the least-significant bit of Q. If the value
in A is less than that of the divisor, the same shift procedure
is repeated, except that a 0 is placed in the least-significant bit
of Q. Finally, the quotient is available in the register Q, and
the remainder in A.

The comparator was designed to compare the values of two
8-bit numbers for greater-than, equal to, or less-than relations.
First, a single-bit comparator was designed to compare the
values of two single-bit numbers, and later, instances of this
module were cascaded to compare two 8-bit numbers, starting
from the most-significant bit position and proceeding towards
the least-significant bit position.

The accumulator is implemented as a 14-bit register to
accommodate a maximum value of 64 × 256. The maximum
value occurs when each pixel in a 8 × 8 block assumes the
value of pure white pixel gray value. The register file is
an addressable array of 8-bit registers (words) [17]. Based
on the address specified and a Read/Write select line, at
any time, a value can be either written to or read from the
register file. Here, we used a 5-word register file to store the
five different constants, such as 1

903.3 , C1
6.0976 , C2

6.0976 , C3
6.0976 ,

and C4
6.0976 , in Eqn. 3. Multiplexors are used at appropriate

places in the design to select one of the incoming lines. Each
of such multiplexor is implemented using a combination of
transmission gates. Three asynchronously resettable registers
are designed to encode the five states of the controller depicted
in Fig. 5(b). The three registers could be reset by the user to
return the controller to its initial state at any time and from
there, the watermarking function could be started afresh.

Each of the above mentioned modules are implemented and
tested separately and then connected together to obtain the
final chip. The number of gates, power and areas of each
module is shown in Table III for operating voltage of 3.3V .
The statistics are obtained using HSPICE for 0.35µ MOSIS
SCN3M SCMOS technology. It is assumed that the proposed
chip is to be used as a module in any existing JPEG encoder
or a digital camera, and use their memory.

TABLE III
POWER AND AREA OF DIFFERENT UNITS

Modules Gate Power Delay
Count (mW ) (ns)

Exponential unit 2370 1.2314 0.8981
Edge detection unit 3599 1.4137 1.0967
αk and βk calculation unit 16279 3.444 2.0241
Controller 163 0.0034 0.3201

The complete layout of the watermarking chip is given in
Fig. 6(a) and the floor plan of the chip is provided in Fig.
6(b). The clock frequency is driven by the critical delay of
the watermarking module. Table IV shows the overall design
details of the chip and the corresponding pin diagram is shown
in Fig. 7.



8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. Y, MONTH 2005

(a) Chip Layout

α
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Other Components
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Fig. 6. Layout and Floor Plan of the Proposed Watermarking Chip

TABLE IV
OVERALL STATISTICS OF THE WATERMARKING CHIP

Area 3.34× 2.89mm2

Number of gates 28469
Clock frequency 292.27MHz
Number of I/O pins 72
Power 6.9286mW

VI. EXPERIMENTAL RESULTS

Each of the functional units is simulated individually before
being integrated together to develop the whole chip. The
functional verification of the whole chip is done by per-
forming watermarking on various test images. Fig. 8 shows
various test images and the watermark image used, which
are borrowed from [5], [18], [19], [2]. The test images as
well as the watermark images are of 256 × 256 dimension.
The watermarked images obtained using the first algorithm
is shown in Fig. 9. For this algorithm, the values of αmin,
αmax, βmin, and βmax are assumed as 0.95, 0.98, 0.02, and
0.07, respectively. Similarly, Fig. 10 shows the watermarked
images obtained using the second algorithm, assuming αI as
0.03. The regression co-efficients, such as C1, C2, C3, and
C4, are respectively found to be 0.339644, 0.21988, 0.185746,
and 0.172925 using simulations.

A visual inspection of the watermarked images shows that

Second / First

α min
α max
β min

β max
α

I

DataOut

Visible 

{ImageDataIn

WatermarkDataIn

Start

Reset

Clock

Spatial Domain

Watermarking

Chip

Busy

DataReady

Fig. 7. Pin diagram for the Proposed Watermarking Chip

the watermarking process is able to preserve the quality of the
image while explicitly proving the ownership. Of the various
quantitative measures available to quantify the quality of the
watermarked images, we used signal-to-noise ratio (SNR)
given in Eqn. 15 as suggested by [10], [5], [2].

SNR = 10 log
(

VarI

VarIE

)
(15)

The VarI is the variance of the original input image and the
VarIE

is the variance of the error image (difference between
original input image and watermarked image). We calculated
the SNR using the original and the watermarked image with
the help of a software simulator. Simulation results show that
the SNR for various watermarked images is in the range of
20dB to 25dB.

To verify whether the proposed chip produces results as
effective as the software implementations we have conducted
several tests. The algorithms we have chosen for our imple-
mentation are well accepted algorithms and are proven to be
satisfying the vis-a-vis goals of the watermarking scheme.
Thus, as long as the pixel values of a watermarked image
from the hardware implementation matches with the pixel
values of the same watermarked image obtained using software
implements, we prove that hardware implementation do match
with software implementations in satisfying the goals. First of
all, the visual inspection of the watermarked images shown
above match with that of the software schemes. We calculated
the signal-to-noise ratio (SNR) of the watermarked images
obtained using the proposed chip and also of the watermarked
images obtained using software schemes. The SNR in both
hardware and software schemes found to be approximately
same; thus, proving effectiveness of the proposed chip. Further,
we compared the values of the scaling factors and embedding
factors (αks and βks) for both hardware and software schemes
for the second algorithm. It is observed that values of the
scaling and embedding factors obtained from the chip and that
of the softwares are approximately the same.

VII. CONCLUSIONS

In this paper, we presented a watermarking chip that can be
integrated within a digital camera framework for watermarking
images. The watermarking chip can also be integrated in any
existing JPEG encoder. The chip has two different types of wa-
termarking capabilities, in spatial domain. To our knowledge,
this is the first watermarking chip having visible watermarking
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(a) Lena (b) Bird (c) Nuts and Bolts (d) Watermark

Fig. 8. Original Host Images (a, b, and c) and Watermark Image (d)

(a) Lena (b) Bird (c) Nuts and Bolts

Fig. 9. Watermarked Images for the First Algorithm

(a) Lena (b) Bird (c) Nuts and Bolts

Fig. 10. Watermarked Images for the Second Algorithm

functionalities. Out of the two watermarking schemes imple-
mented, the first one does pixel-by-pixel processing and the
second one is a block-by-block processing algorithm. Both
algorithms are comparable in terms of SNR values. The
design can be improved by a datapath organization in which
the blocks can be pipelined to get better throughput.
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