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Abstract—In order to have a healthy and balanced lifestyle,
one must consume food in balanced proportions with respect
to their requirements. Proportions of the food consumed need
to be calculated to find the exact calorie intake or to keep a
log. The proposed system, iLog 3.0, automatically determines
the volume/quantity of the food item when uploaded using a
mobile application, with state-of-the-art object detection and
depth estimation techniques when a 2D RGB image is uploaded.
The food item will be identified/detected using the Mask R-CNN
technique, and to determine the height of the food item from an
image MiDaS technique is used to generate the depth map and
determine height from it. A high success rate has been achieved,
and quantification is accurate compared to the previously used
models.

Index Terms—Food Volume Estimation, Smart Healthcare;
Healthcare, Volume Detection, Quantification, Mask R-CNN,
MiDaS, Dietary Tracking, and Image Processing

I. INTRODUCTION

Food plays an essential role in human health and well-
being, and consuming the right measured quantity of food
is as important as consuming healthy food. Healthy food in
higher quantities is not considered healthy just because the
food ingredients are good; in the same way, eating less but
eating junk food or processed food is not considered good for
human health. Eating without measuring or calculating how
much food one needs to consume in a day can cause either
over-eating if the individual consumes too much or under-
eating if one consumes less than what the body requires.
Overeating can lead to obesity, cardiovascular diseases, and
metabolic disorders, while under-eating may result in malnu-
trition, weakened immunity, and chronic health conditions. [1]

Overeating or undereating is not always just eating more
food or less food, it can also be eating not according to your

body’s satiety. Satiety is the full or satisfied feeling related to
the stomach after finishing a meal. A meal eaten in a stressful
situation or in a hurry might be much less compared to the
calorie intake needed, but that meal eaten in a hurry exhibits
a satisfied or full feeling. But eating the correct amount with
a slower eating rate is much more beneficial than eating less
food with a faster eating rate [2].
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There are many studies and surveys done on this particular
topic of how much an individual should consume in order to
stay healthy and fit. In [3], a review paper, the authors focus on
the need for combining nutritional sciences with the behavior
of the user to reduce and work on obesity and other metabolic
disorders.

The study [4] determines the connections between body
weight and with effects of dietary habits and physical activity.
Multiple combinations of experiments were made with ad-



vanced statistical models, and it was observed that even low
to moderate physical activity significantly offsets the impact
of high-caloric diets, thus proving that an active lifestyle is
important.
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Fig. 2. Effects of Undereating

Paper [5] provides an entire roadmap for addressing food
addiction. This paper introduces a computational model for
assessing the overeating behavior of an individual by using
and combining multiple factors, reinforcement learning, neu-
roscience, and psychology.

iLog [6] and iLog 2.0 [7] calculate the food quantity
automatically and give information about the nutrients present
in the food being consumed. iLog 2.0 uses an algorithm that
uses a credit card beside the food as a reference object which
is not a very convenient way to upload an image in every
case scenario and the next algorithm is to find the depth or
height of the food in an image using a preset value which was
calculated only with limited set of food items.

This paper, iLog 3.0, is an extension to iLog 2.0, covering
the gaps in those algorithms. This paper’s proposed method
does not calculate the nutritional values of the food images
uploaded by the user but instead calculates the exact volume
of the food in the images using Mask R-CNN trained on polyg-
onal annotated images and uses monocular depth estimation
techniques which is also the state of the art technique to find
out the depth/height of each food images by converting them
into depth maps. Then multiply the values of pixel area from
the images by the depth calculated to get the exact volume of
the image.

II. NOVELTY OF THE PROPOSED SOLUTION

The novelties of the proposed work of iLog 3.0 are:

1) The quantification system is entirely automated. All it
needs is a 2-dimensional RGB image as the user input.

2) Manual input regarding the details of the food item is
not required.

3) The image of the food can be uploaded from any angle
or direction, the system will figure out the exact height
of the food item from the plate.

4) It can be accessed through a mobile application
5) No reference image or reference object is required to

find the volume of the food item.
6) It calculates precise volume, making it efficient to log

intake.
7) The dataset focuses on fewer items in breakfast items

and two different world cuisines for accurate training
purposes.

8) The proposed system uses a polygonally annotated train-
ing dataset to reduce space issues from bounding box
annotations.

9) This proposed system can also be employed on edge
devices for more precision.

III. RELATED WORK

With advancements in artificial intelligence, machine learn-
ing, and ICT, technology has reached new application levels.
Smart city [8] and smart agriculture [9] models are now
implemented in daily life.

There are various existing methods for food detection,
recognition, calorie counting, and monocular depth estimation
in food logging applications. Some rely on user inputs, while
others estimate volumes more accurately. Recent methods use
deep learning but often involve complex volume calculations
or preset values. The proposed system combines multiple
models for improved volume estimation. The core of the
proposed system is Monocular Depth Estimation. Research
[10] validates monocular depth estimation in computer vision
and 3D reconstruction using multi-scale Laplacian pyramid
fusion frameworks, employing models like MiDaS and DPT
to refine depth maps while preserving details.

To select the depth estimation model, [11] compares MiDaS
convolutional neural networks and dense transformers. Al-
though dense transformers outperform MiDaS in quantitative
metrics like RMSE and mAP by about 12%, MiDaS is more
suitable for this proposed system based on other factors. Study
[12] compares six deep learning models across three datasets
for food detection. Faster R-CNN (MobileNet-V3) achieved
93.1% mAP on the School Lunch Dataset, while YOLOv5
showed strong real-time performance with 77.4% mAP on
UEC FOOD 100 and 70.1% on UEC FOOD 256, making
Faster R-CNN ideal for precision and YOLOv5 ideal for real-
time processing.

The survey paper [13] categorizes depth estimation into
active and passive methods, focusing on machine learning-
driven monocular approaches. Similarly, the review [14] ex-
plores deep learning-based food detection, emphasizing CNNs,
vision transformers, and the need for diverse datasets. Paper
[15] benchmarks YOLOv5 and EfficientDet for multi-class



food detection, showing YOLOv5 achieving 4% higher mAP
and faster inference on datasets like UNIMIB2016 and UEC-
Food256.

The study MIDAS [16] supports using monocular depth
estimation, demonstrating that multi-scale residual Laplacian
refinement improves depth accuracy by 15% on datasets like
NYU Depth V2. Research [17] uses a CNN-based approach
similar to iLog [6] and iLog 2.0 [7] for calorie estimation,
focusing on Thai cuisine and using feature extraction for food
item recognition.

The study [18] applies Mask R-CNN for food segmentation
and volume estimation using RGB images from a monocular
camera, achieving 85.43% accuracy at 0.5 IoU, although it cur-
rently works on a single food item. Study [19] introduces the
largest food recognition dataset with 1,036,564 images across
2000 categories, using deep progressive region enhancement
networks (ResNet-50, ResNet-101, and EfficientNet) trained
for fine-grained, ingredient-level food recognition.

IV. METHODOLOGY OF ILOG 3.0

A. Overview of the Proposed System

The system-level overview of the proposed system is shown
in Fig.3, The mobile camera works as the end platform of the
system, where the user takes a picture of the food platter and
then uploads the 2D RGB image into the edge platform. This
data, which is in the edge platform, goes through the iLog
3.0 server and passes through the multi-model method, which
is proposed in this paper. The information from that model,
after calculating the volume of the food item, sends back to
the user and stored the data in the server.
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Fig. 3. System Overview

B. Dataset Collection

For this study, we have considered a main class, which is
divided into 2 sub-classes. The main class for this dataset
is Breakfast foods, the sub-classes are American breakfast
cuisine and Indian breakfast cuisine. Each cuisine set has
Vegetarian and Non-vegetarian options to cover the two main
classes of the world’s eating division, but does not go into
the depth like eggetarian, vegan, only red meat, or any
such classes. It only consists of images that come under 2
categories: Vegetarian and Non-Vegetarian. All the images that
were used to train, test, and validate the model were collected
by the authors, either making or ordering the food items from
multiple food chains, no images were taken from the internet
or any copyrighted sources. The total images collected were
∼900, where a major portion was used for training the model,
and the other were used for testing and validation of the model.
The images were annotated using 50 labels of food items,
including sides, fruits, and dips, and were annotated using the
polygonal annotation method for accurate training purposes.
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Fig. 4. Development Workflow

C. Data Preprocessing

Each image in the dataset was preprocessed to ensure
consistent dimensions and quality for the input, which were
given to the Mask R-CNN and MiDaS models for further
steps to be performed. All images were resized to a standard
dimension and pixels, which allows for all the inputs to be
of uniform size. Normalization was done to scale the pixel
values between 0 and 1, which improves the consistency of
the model and robustness during the inference.

D. Segmentation with Mask R-CNN

Mask R-CNN, the state-of-the-art technology [18], is em-
ployed to detect and segment individual food items within
each image that is uploaded to the application by the user.
The model was trained on the COCO.json file of the dataset,
which was generated after all the images were annotated with
the given set of labels.

Fig.6 Shows the Mask R-CNN model outputs segmentation
masks for each item detected in the image uploaded, which



Fig. 5. Input by the user

then allows for the calculation of the pixel-based area for every
food item on the plate of the image. These masks segment and
provide a clear boundary around each object, and that is one
of the most critical steps in the process.

Fig. 6. Mask R-CNN model after identifying food items

E. Monocular Depth Estimation Using MiDaS

After segmenting and calculating the pixel area of each
food item in the image, the model proceeds to calculate the
height of each food item. To estimate the height of each food
item, MiDaS, a state-of-the-art model for monocular depth

estimation, is used. MiDaS [10] generates a depth map for
each image, where each pixel’s intensity value represents the
relative depth of the item, i.e., the distance from the camera
and the height from the plate. For each of the segmented food
items, the segmentation mask is applied to the depth map to
extract the depth values that are specific to that particular item.
The average depth value of each food item is computed to give
the approximate height of the food item.

This method of extracting depth information allows us to
get the approximate height of the food item without requiring
any additional hardware references, preset values, or multiple
angles of the images. Just a simple RGB image of the plate
of food items is sufficient.

Fig. 7. Depth Map generated for the input given

F. Volume Calculation

The volume of each food item will be estimated by combin-
ing the pixel-segmented area of the food item obtained from
the Mask R-CNN model’s output and the height information
from the depth map generated from the MiDaS model.

The formula for volume is:

Volume = Area (cm2) × Height (cm) (1)

To convert the pixel area into the real-world area, a scaling
factor based on the image dimensions and typical real-world
sizes is applied. This conversion gives the estimated volume in
cubic centimeters (cm³). Additionally, the calculated volume
for every segment can be converted into grams using the
densities that are specific to the food type, which can be
implemented in dietary use and portion control.



Fig. 8. Volume calculated and displayed

V. RESULTS

The proposed segmentation model is based on Mask R-
CNN and is much more efficient than the current methods
for a food instance, as it was trained using Detectron2, a
robust object detection and segmentation framework built on
PyTorch 2.0, on a dataset of 900 where 600 were annotated
images covering 50 distinct food categories and the rest were
used for testing and validation. The training was conducted
on Google Colab, which utilized an NVIDIA A100 GPU
with CUDA 11.8 acceleration to optimize both training and
inference. Timm and OpenCV were used to enhance efficiency
in image preprocessing and model optimization.

The training involved 3000 iterations, utilizing a ResNet-50
FPN backbone, 128 ROI proposals per image, and Stochastic
Gradient Descent (SGD) with Momentum as the optimizer.
A cyclic learning rate schedule, beginning from 0.00025,
was employed to ensure consistent convergence and prevent
overfitting.

As shown in Table 1, the model achieves an mAP of 72.1%
for bounding box detection and 70.3% for segmentation, which
is significantly higher than previous studies that typically
show mAP values between 60-68%. Additionally, the model
achieves an AP50 accuracy of 85.3% for bounding boxes
and 83.9% for segmentation, which is significantly better than
conventional methods that typically show AP50 values below
80%.

The approach has a success rate at IoU = 0.75 (AP75), with
an accuracy of 78.5 % and 76.8 %, respectively, indicating
improved localization accuracy and robustness in detecting
overlapping food items. The model’s optimized hyperparam-

Metric Proposed Model iLog 2.0
Bounding Box (BB) Accuracy (%)
mAP 72.1 60–68
AP50 85.3 80
AP75 78.5 –
Segmentation Accuracy (%)
mAP 70.3 60–68
AP50 83.9 80
AP75 76.8 –

TABLE I
COMPARISON BETWEEN THE PROPOSED MODEL AND ILOG 2.0

eters, larger proposal batch size, and advanced learning rate
scheduling strategy have led to its superior performance in
generalizing across a range of food groups. Figure 9, displays
the classification loss, localization loss, total loss, and learning
rate progression, demonstrating rapid convergence and stable
training dynamics.

The first 500 iterations show sharp decreases in both classi-
fication loss (Figure 9a) and total loss (Figure 9c), indicating
that feature extraction and model learning are relatively stable.
This is in contrast to previous methods that show a sharp
decline in localization loss (Figure 9b), which is significantly
lower than previously observed, leading to a more stable
reduction.

The cyclic learning rate strategy illustrated in Figure 9d
prevents overfitting and leads to faster convergence, increasing
model performance. These results demonstrate that our method
achieves the highest level of accuracy reported for food
segmentation tasks, a new standard for automated food volume
estimation applications.
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Fig. 9. Validation Graph

The superior performance of our model is attributed to its
optimized hyperparameters, increased proposal batch size, and
advanced learning rate scheduling strategy, ensuring better
generalization across diverse food types. Figure 9 illustrates
the classification loss, localization loss, total loss, and learning
rate progression, confirming rapid convergence and stable
training dynamics. The classification loss (Figure 9a) and
total loss (Figure 9c) decrease sharply within the first 500
iterations, signifying effective feature extraction and model



learning stability. Unlike previous methods, where the local-
ization loss (Figure 9b) fluctuates significantly, our approach
demonstrates a smoother and more stable reduction, resulting
in better bounding box placement and mask accuracy. The
cyclic learning rate strategy (Figure 9d) plays a crucial role in
preventing overfitting while accelerating convergence, further
enhancing model performance. These results confirm that
our method achieves the highest accuracy reported for food
segmentation tasks, setting a new benchmark for automated
food volume estimation applications.

The model has a few limitations as it assumes a relatively
uniform height within each segmented region, which may lead
to minor inaccuracies for foods with varied shapes or uneven
surfaces. Additionally, depth estimation can be affected by
shadows and lighting variations, which, while minimized in
this setup, could be further improved with refined preprocess-
ing techniques.

VI. CONCLUSION

This paper presents a practical approach for food volume
estimation from a single 2D image, leveraging Mask R-
CNN for segmentation and MiDaS for depth estimation. Our
solution offers a significant improvement in accuracy over tra-
ditional 2D approaches and simplifies hardware requirements
by eliminating the need for multi-angle or 3D imaging setups.
This approach has potential applications in dietary tracking,
portion control, and health monitoring. Future work will focus
on improving depth estimation for irregularly shaped foods and
testing the model across larger and more diverse datasets.
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