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Abstract—Plant diseases significantly impact crop yield,
which presents a serious challenge to food security. Despite
advances in Artificial Intelligence (AI) for improved disease
detection, real-world implementation remains limited due
to high computational demands. LiteViT bridges this gap
through a proposed Knowledge distillation framework that
transforms powerful but computationally heavy Vision
transformers (ViTs) into a field-ready tool by distilling
knowledge of a 300 million parameter ViT large teacher
into an lightweight MobileViT-XXS (extra-extra-small)
model of size 3.8 MB, achieving 99.3% accuracy, while
retaining nearly identical performance compared to the
teacher’s 99.7%. The framework integrates a multimodal
explainability framework that visually interprets model
predictions to enhance interpretability. This framework
demonstrates accurate and explainable plant disease de-
tection suitable for edge devices, bridging the gap between
laboratory and field-level deployment, thereby advancing
smart agriculture.

Index Terms—Smart Agriculture; Edge Computing; Vi-
sion Transformer; Model Explainability; Knowledge distil-
lation.

I. INTRODUCTION

Plant diseases cause 10%-16% annual crop yield
losses globally [1]. Addressing this requires automated,
accessible tools for early detection, crucial for min-
imizing crop losses and reducing excessive pesticide
usage [2]. Deep learning models offer high classification
accuracy [3], with Convolution Neural Networks (CNN)
based models like VGG and ResNet achieving over 95%
[4] accuracy in plant disease classification. ViTs now
outperform them via global self-attention [5], [6]. In
parallel, agriculture is shifting towards Smart farming,

powered by Internet of Agriculture Things (IoAT) [7],
using edge devices which are constrained by memory
and processing limits. Lightweight models (e.g, Effi-
cientNet and MobileNet) [8] reduce computation but lack
interpretability, hindering user trust.A compelling solu-
tion is offered by Knowledge distillation [9], allowing
compact student models to perform as well as a higher-
performing teacher model by using its softened teacher’s
output distribution to capture inter-class relationships
effectively. While effective in CNNs [10], Knowledge
distillation remains underutilized in transformer-based
systems, particularly in real-time drone assisted moni-
toring scenarios where precision and speed are critical
[11], [12].

To address this, a cross-architecture knowledge distil-
lation framework is introduced, which transfers disease
classification capabilities of a ViT large patch 32 teacher
model [13] to a compact, MobileViT-XXS (extra-extra-
small), the smallest variant of the MobileViT model
[14], designed for edge deployment. To further improve
interpretability, a multimodal explainability module is
integrated, which includes feature visualization, attention
tracking, and activation mapping, enhancing trust in
model predictions [15], [16].

The paper is structured as follows: Section II intro-
duces related research in plant disease detection. Section
III presents novel contributions of this research. Section
IV proposed the working of the model. Section V
gives experimental validation of the proposed solution,
and final Section VI provides a conclusion and future
research directions.



II. RELATED WORKS

Early breakthrough in plant disease detection lever-
aged CNN architectures with models like AlexNet,
GoogleNet, applied across multiple crops [17]. To im-
prove inference time and accuracy, transfer learning
techniques with deeper architectures such as VGG and
ResNet were introduced [3], [18]. However, their large
parameter size prompted the development of lightweight
CNNs like MobileNet and SqueezeNet for resource-
constrained environments [2], [8]. While CNN effec-
tively captures local image features, it struggles with
global context modeling. Vision Transformer (ViT),
driven by a self-attention mechanism, addresses this
limitation and has recently been adopted in edge-based
plant disease classification [6]. Hybrid CNN-ViT have
been introduced, combining local and global feature
extraction capability [19]. To further enhance edge ef-
ficiency, knowledge distillation has gained momentum.
It enables compact student models to inherit a larger
teacher model’s representational power while maintain-
ing accuracy, making them suited for edge devices [10],
[20].

With increasing model complexity, explainability is
now vital for trustworthy AI. Techniques such as Grad-
CAM and CBAM are employed to visualize model
attention, improving interpretability [6], [16]. Table I
presents a comprehensive overview of related works on
plant disease detection using deep learning methods.

TABLE I: Relevant Works On Crop Disease Detection

Research
Work

Model Observation

Mohanty et
al. [17]

CNN (AlexNet,
GoogLeNet)

High computational
model; not edge
optimized

Rahman et
al. [2]

2-Stage
Lightweight CNN

shallow model; limited
features

Wang et al.
[3]

VGG16 Too large (138M);not
suitable for edge

Huang et al.
[10]

Knowledge
Distillation using
YOLOR object
detection model

Multistage distillation
with accuracy drop in
student model

Khabarlak et
al. [21]

Feature KD using
EfficientNetV2
large and
MobileNetV3

Small gap of 1.34%
between models; extra
4.33M parameters

Parez et al.
[11]

GreenViT Compact model but
memory intensive

Mahmud et
al. [16]

Grad-CAM(4 mod-
els)

Lacks size-accuracy bal-
ance, clear interpretabil-
ity maps.

LiteViT
(Current
Work)

Distilled ViT large
+ MobileViT-XXS

Optimized for edge de-
ployment with clear at-
tention maps visualisa-
tions

III. NOVEL CONTRIBUTIONS

This section discusses the problem statement, novelty,
and significance of LiteViT in identifying plant diseases.

A. Problem Statement

Plant diseases threaten agricultural productivity, es-
pecially under dynamic environmental conditions. Al-
though transformer-based models capture complex pat-
terns well, their computational demands limit edge de-
ployment. This work presents a lightweight and inter-
pretable framework for real-time tomato leaf disease
detection. A ViT-Large model transfers semantic features
to a compact MobileViT-XXS via knowledge distillation.
Teacher and student models are trained on a tomato leaf
dataset [22] for efficient on-device agricultural inference.

B. Novelty and Significance of the Proposed Solution

The novel contributions of LiteViT are as follows:
1) A cross-architecture knowledge distillation frame-

work that distills global features from a ViT-Large
teacher to a MobileViT-XXS student using a dual-
loss objective.

2) A temperature-scaled distillation method that im-
proves the student model’s ability to separate vi-
sually similar disease classes.

3) Multimodal explainability through channel-wise
feature maps, attention rollout, and activation map-
ping, enabling interpretation of predictions.

4) Edge deployment readiness with compact size of
3.8MB achieved on model with 99.6% reduced
parameter count.

IV. PROPOSED FRAMEWORK

Accurate and early diagnosis of plant diseases is criti-
cal for precision agriculture. Although transformer-based
models achieve higher accuracy in image classification,
their deployment on the edge remains limited. To address
this, we propose a cross-architecture knowledge distil-
lation framework to operate under resource constraints
without compromising performance. The approach lever-
ages a high-capacity Vision Transformer (ViT large patch
32) as a teacher model and a lightweight MobileViT-
XXS as a student model. The pipeline is divided into
two stages: training and inference. Figure 1 illustrates the
LiteViT architecture. Figure 1(a) shows the distillation
process from teacher to student model. Figure 1(b) de-
picts the explainability module, highlighting key regions
using attention rollout and CAM activation maps.

A. Training Phase

All input tomato-leaf images are resized to 256 ×
256 pixels, normalized by dataset mean and standard
deviation, and augmented with random horizontal flips
to simulate real-world variability. The training phase
involves two stages: [1] the ViT-Large teacher (patch
size 32) is trained to convergence on the 80 % training
split using cross-entropy loss; [2] the MobileViT-XXS
student is distilled from the teacher by minimizing a
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Fig. 1: LiteViT Framework: Cross-Architecture Distillation and Explainability Pipeline for Plant Disease Detection

joint loss of cross-entropy on ground-truth labels and
Kullback–Leibler divergence to the teacher’s softened
outputs. The remaining 20% of the data is evenly split
for validation and testing. The teacher model ViT large
patch32 with 300 million parameters is fine-tuned on
the dataset. Each image is divided into non-overlapping
32×32 pixel patches, embedded into 1024-dimensional
tokens, and passed through 24 transformer blocks with
16 attention heads per block. The model optimization
uses a learning rate of 0.0001, cross-entropy loss, and
a batch size 32 for five epochs, with accuracy and loss
metrics tracked throughout.The teacher model reached
stable accuracy within five epochs.

Once the teacher converges, then the student model
gets trained. This compact model combines CNN lay-
ers for local feature extraction with transformer layers
for global context modeling using depthwise separable
convolutions and inverted bottleneck layers for computa-
tional efficiency. Training was performed in mini-batches
for both models during each iteration. The teacher out-
puts logits zt using its multi-head self-attention mech-
anism, while the student produces logits zs through its
compact architecture. The student model is optimized via
a dual loss strategy, where hard loss is performed with
cross-entropy loss with ground truth labels of disease,
and soft loss with KL (Kullback-Leibler) divergence
between softened teacher output and student output for
dual loss optimization. While the teacher remains in eval-
uation mode, the student model updates its parameters
through backpropagation with the Adam optimizer. The
total distillation loss is calculated as shown in equation
1.

Ldistill = α·LCE(y, zs)+(1−α)·τ2·KL
(
σ
(zs
τ

)
, σ

(zt
τ

))
(1)

Here, LCE is the cross-entropy loss computed be-
tween the student model’s output and the true labels.
In contrast, KL refers to the KL divergence between the
softened output distributions of the student and teacher
models. The softmax function σ is applied to the logits
zs student and zt teacher, with temperature parameter τ
used to soften these outputs, capturing subtle inter-class
relationships. The coefficient α balances the contribution
of soft and hard losses. The student model is also trained
for five epochs, during which it steadily converges to
optimal accuracy. The detailed step-by-step procedure of
the training process is outlined in Algorithm 1.

B. Inference Phase
The inference pipeline, as explained in Algorithm 2,

loads the teacher model and distilled student model,
preprocesses the input leaf image by resizing to 256×256
pixels and applying standard normalization, then per-
forms simultaneous forward passes in evaluation mode.
The output logits are converted to probabilities via soft-
max, and the top predicted class is identified. Predictions
are overlaid on the image and saved for visualization,
and the top-5 probabilities of classes are used to assess
confidence and compare student-teacher alignment. This
demonstrates that the compact student model maintains
comparable accuracy with the teacher model while en-
hancing inference speed and efficiency. Performance of
models is shown in Table II.
TABLE II: Training and Validation Accuracy of Teacher and Student
Models

Epoch Teacher
Train Acc

(%)

Teacher Val
Acc (%)

Student
Train Acc

(%)

Student Val
Acc (%)

1 95.72 99.07 78.09 93.32
2 99.02 99.02 94.57 97.98
3 98.90 98.80 96.91 98.64
4 99.53 98.91 97.89 99.02
5 99.18 99.73 98.26 99.32



Algorithm 1 Vision Transformer-based Knowledge Dis-
tillation

1: Input: Dataset D, temperature T , factor α
2: Output: Trained student model MS

3: Resize images to 256 × 256 pixels, split D into
Dtrain, Dval

4: Teacher Training Phase
5: Load pretrained ViT-Large as MT

6: for each epoch in ET do
7: for each batch (x, y) in Dtrain do
8: yT ←MT (x), L ← CE(yT , y)
9: Update weights of MT

10: end for
11: end for
12: Save MT

13: Student Training Phase with Distillation
14: Load pretrained MobileViT-XXS as MS

15: for each epoch in ES do
16: for each batch (x, y) in Dtrain do
17: yT ←MT (x), yS ←MS(x) // Get outputs
18: L ← α · CE(yS , y) + (1 − α) · T 2 ·

KL(σ(yT /T ), σ(yS/T ))
19: Update weights of MS

20: end for
21: end for
22: Save MS

Algorithm 2 Inference and Prediction Pipeline

1: Input: Models MT , MS , image x
2: Output: Predicted classes and top-K probabilities
3: x← preprocess(x) // Resize and normalize
4: yS ←MS(x), yT ←MT (x) // Run inference

using teacher and student models
5: pS ← σ(yS), pT ← σ(yT ) // Get probabilities
6: cS ← argmax(pS), cT ← argmax(pT ) //

Predicted Probabilities
7: Output: cS , cT , and top-K values from pS , pT

V. EXPERIMENTAL VALIDATION

To assess the effectiveness of the LiteViT framework,
we conducted comprehensive experiments to ensure ac-
curacy and interpretability. The proposed research was
implemented using PyTorch TIMM (pytorch Image mod-
els) with GPU acclerated training, evaluated on a tomato
leaf disease dataset containing 22,930 images across
10 classes (9 diseased, 1 healthy) which covers bacte-
rial spot, yellow curl, early blight, leaf mold, septoria
leafspot, target spot, late blight, mosaic virus, target spot,
healthy. Both models were trained for five epochs, with
the teacher achieving 99.73% and the student 99.32% ,
indicating successful knowledge transfer with minimal
performance loss. Confusion matrices for teacher and
student models revealed consistent per-class accuracy
across all disease categories. The student model achieved

an Area Under the Receiver Operating Characteristic
Curve (ROC-AUC) of 1.00, indicating near-perfect clas-
sification performance and demonstrating the model’s
effectiveness. The classification results are shown in
Figures 2 and 3 with over 95% correct predictions and
high class separation. Figure 4 shows that all disease
classes achieve AUCs above 0.96, demonstrating that
distilled MobileViT-XXS maintains high sensitivity and
specificity across thresholds. Overall, results with per-
formance comparison with other works are in Table III.

Fig. 2: Confusion Matrix of the Teacher Model on Validation Set

Fig. 3: Confusion Matrix of the Student Model on Validation Set

Pytorch Hooks were used to extract feature maps
and attention weights from the student model’s early
convolutional layers to improve interpretability. The ex-



plainability module integrates three key visualization
techniques:[1] Channel-wise feature maps from the stem
layer visualize 16 activation channels in a grid to high-
light low-level features. [2] Attention rollout aggregates
attention weights across layers by sequential matrix
multiplication, to trace hierarchical focus. [3] Class ac-
tivation maps (CAM) overlay heatmaps on input images
to highlight (e.g., leaf edges, spot textures) influencing
predictions. Figure 5 provides attention maps output
where the small yellow color dots show the affected
areas. With an inference time of 12.26 milliseconds (vs
25.07 milliseconds for teacher) achieved on model with
99.6% fewer parameters with the size of 3.8 MB (0.95M)
is highly efficient and suited for edge deployment on
devices like Raspberry pi, supporting real-time, inter-
pretable plant disease detection.
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Fig. 4: Multi Class ROC-AUC Scores for disease classification

VI. CONCLUSION

This research presents a lightweight and interpretable
framework for plant disease detection using a cross-
architecture knowledge distillation strategy. The sys-
tem achieves high accuracy by transferring diagnos-
tic intelligence from a large Vision Transformer to a
compact MobileViT-XXS model while supporting real-
time inference on resource-constrained edge devices.
The integration of adaptive learning with temperature-
scaled distillation and multimodal feature visualization

Fig. 5: Class Activation Maps Showing Disease-affected Leaf Regions

TABLE III: Comparison of Results with Current Research

Work Models Accuracy Para
meters(M-
millions)

Size

Mohanty
et
al.[17]

AlexNet,
GoogLeNet

99.35% 60M, 5M 240MB,
20MB

Wang
et al.[3]

VGG16,
shallow
CNN

90.4%,
79.3%

138M,
5M

552MB,
20MB

Rahman
et al.[2]

Lightweight
CNN

93.3% 0.8M 3.2MB

Huang
et
al.[10]

Knowledge
Distillation
YOLOR

60.3%,
60.4%,
54.2%
mAP@0.5

37M,
20.5M,
18.2M

141.6MB
78.4MB,
72.4MB

Li et
al.[6]

PMVT
(Lightweight
ViT)

93.6% 0.98M 3.9MB

Parez et
al.[11]

ViT
(GreenViT)

100% 21.65M 247MB

Mahmud
et
al.[16]

CNN
(Efficient-
NetB3)

99.3% 11.1M 44.38MB

LiteViT
(Cur-
rent
Work)

Knowledge
Distilled
ViT+
MobileViT

99.3% 0.95M 3.8MB

enhances interpretability by focusing on disease-relevant
features and suppressing noise. Despite strong results,
the limited environmental diversity in training data may
hinder generalization. Future work will include exploring
domain aware adaptation, segmentation-based localiza-
tion, and active learning pipelines to improve robustness,
adaptability and real-world performance.
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