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Abstract

With the rapid advance in Deep Neural Networks (DNNs), GPU’s
role as a hardware accelerator becomes increasingly important.
Due to the GPU’s significant power consumption, developing high-
performance and power-efficient GPU systems is a critical challenge.
DNN applications need to move a large amount of data between
memory and the processing cores which consumes a great amount
of power in the on-chip network. Prior data compression techniques
have been proposed for network-on-chips to reduce the size of data
being moved and can thus save power, but these techniques are
usually lossless because they target general-purpose applications
that are not resilient to errors. On the other hand, DNN applica-
tions are well known to be error-resistant, which makes them good
candidates for lossy compression.

In this work, we propose an NoC architecture that can reduce
power consumption without compromising performance and accu-
racy. Our technique takes advantage of the error resilience of DNNs
as well as the data locality in the exponent field of DNN’s floating-
point data. Each data packet is reorganized by grouping data with
similar exponents, and redundant exponents are sent only once.
We further compress the mantissa fields by appropriately selecting
"proxy" values for data sharing the same exponent. Our evaluation
results show that the proposed technique can effectively reduce
the data transmissions and lead to better performance and power
trade-offs without losing accuracy.
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1 Introduction

Originally developed for accelerating graphics processing, GPUs
have been widely used today for speeding up machine learning
applications such as deep neural networks. GPUs allow applica-
tions to run with extreme efficiency by executing thousands of
threads in parallel. New GPU architectures such as the NVIDIA
A100 Tensor Core GPU have been specifically developed to sup-
port deep learning, and several deep learning frameworks such as
PyTorch and TensorFlow have been developed to support GPU’s
programming model. These frameworks abstract CUDA’s program-
ming complexity and make GPU programming more accessible to
support deep learning applications. As a major accelerator, GPUs
have made great contributions to the rapid advances in emerging
technologies such as natural language processing, smart healthcare,
and autonomous driving.

As the neural network models improve in their capabilities, the
size of these models also grows exponentially. Some models had
their size grow by hundreds of times in the last few years. Although
the on-chip memory also grew larger and can accommodate more
data, the on-chip network bandwidth is becoming a critical perfor-
mance bottleneck [2, 5]. Unlike in many-core CPU systems that
leverage banked last-level caches to increase memory bandwidth,
all the processing cores in a GPU need to get their data from only a
few memory controllers. Inefficient data communication can greatly
degrade a GPU’s performance, making it impossible to reach its
peak computing power.

As a solution to the on-chip data communication challenge,
network-on-chips (NoC) have been extensively studied in CPU-
based many-core systems [10]. Prior work proposed designs for
router micro-architectures, routing algorithms, flow control, and
more. Several GPU NoC architectures have also been proposed
[2, 5,7, 8]; however, most of them target general-purpose comput-
ing rather than neural network models. There are several major
differences in the data communication between neural networks
and other general applications: first, data movement is significantly
larger in neural networks; second, neural networks compute using
floating-point data, while other GPU applications may run with
integer types. Third, neural networks are more error resilient. It
has been shown that neural networks can tolerate some errors and
losing some data can still result in good accuracy [11, 16, 18].

Data compression is an ideal technique that can take advantage
of the characteristics of neural networks [6, 14, 17, 18]. Compres-
sion can greatly reduce the data size and can thus improve the data
communication throughput. However, conventional compression
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Figure 1: 16-bit floating point data representation.
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Figure 2: Exponent distribution.

techniques are usually very complicated and are not feasible for
NoCs due to limited on-chip resources. Another design challenge
is the compression and decompression latency, which needs to be
small enough for the fast-running environment on-chip. Prior com-
pression architectures have been proposed for NoCs. For example, a
base-delta scheme was proposed to reduce packet sizes by sending
the difference between consecutive words[19]. However, such a
technique belongs to lossless compression and only works well
with integer-type applications where regular patterns between con-
secutive words can be found. By far, cost-effective data compression
targeting neural networks remains largely unexplored.

In this work, we propose to overcome the DNN communica-
tion bottleneck through a low-cost data compression scheme called
LiteNoC. Our technique is based on the following observations:
(1) floating-point data packets of neural networks exhibit different
locality in the exponent fields and mantissa fields, as exponents are
clustered around a small range of values while mantissas are ran-
domly distributed; and (2) data of different magnitude has varying
impact on the execution results, as data with larger magnitude is
more important to model accuracy.

We make the following contributions:

o We develop a lightweight but effective compression tech-
nique tailored for neural network models. We cluster data
words in each packet by their exponent values and remove
redundant transmission of the same exponents.

o After compressing the exponent fields, we further compress
the mantissa values through approximation. We select the
mantissas with larger magnitude in a stochastic way as a
proxy of a selected group.

o We performed a detailed evaluation of the proposed compres-
sion scheme using popular neural networks. Our evaluation
results show that the proposed compression schemes can
improve performance by a maximum of 61% and save energy
by a maximum of 32% while maintaining the same accuracy.

2 LiteNoC compression mechanism

2.1 Compressing Shared Exponents

Today’s DNN applications often use 16-bit (half-precision) floating-
point formats to represent their data. This choice is driven by the
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Figure 3: A packet demonstration with common exponents.

Figure 4: LiteNoC with different packet structure.

rapid growth in the size of DNN models, coupled with the critical
need to efficiently manage storage [14, 15, 17, 18]. By reducing the
data size, not only does the area overhead decrease, but there can
also be significant savings in energy.

As shown in Figure 1, the IEEE754-style 16-bit half-precision
floating-point format allocates 1 bit to the sign, 5 bits to the expo-
nent, and 10 bits to the mantissa. In Figure 2, we characterized the
complete range of exponents in three neural networks: Alexnet,
ResNet, and YOLO. Since the half-precision floating-point format
has an exponent field containing 5 bits, the exponent values range
from 0 to 31. From this figure, we can observe that there are two
regions that the exponent values cluster around. The red region
on the left represents exponent values equal to zero, and we can
see the three neural networks have 40%, 60% and 10% of exponent
values match this. The green region on the right contains a sig-
nificant portion of exponents that fall between 7 and 17. It is rare
to see exponent values that fall outside of these two regions. This
indicates that there is locality of the exponent values in packet data
and it’s highly likely the data in a given packet share some common
exponents.

To take advantage of this locality, we can group data words
inside a cache block if they share a common exponent. Rather
than transmitting multiple copies of the same exponents, only one
exponent needs to be sent. This motivated us to develop our first
compression technique to extract the common exponents.

Figure 3 illustrates how our exponent compression technique
works. The example packet contains sixteen 16-bit words. Among
them, 12 words share a common exponent e; as follows:

erand My, ejand My, ..., e and Mp2

12 redundant copies of e; in this packet are sent in every hop
to the destination. To exploit this redundancy, we can only send
one e; instead of twelve copies, saving more network bandwidth
by sending fewer bits. The total number of bits in this packet is
given by: 16 words X 16 bits = 256 bits. Using our technique, we
only transmit 5 bits for e; instead of the original 60 bits.
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Figure 5: Number of values in Packets with same Exp(Non
Zero).

During our compression, it is possible that the words in one
packet sharing the same exponent are not adjacent to each other.
In this case, we need to reorder the words to extract the common
exponent. We use a 2-bit mask to keep track of which shared ex-
ponent one specific word is grouped with. We allow a maximum
of 3 shared exponents to be extracted, with one bit used in the
mask to represent the unextracted situation. In this way, we do
not need to send redundant exponents, but only need to send this
bitmask after compression. During decompression, we can recover
which exponent a specific word will be associated with by using
the bitmask. The design detail is illustrated in Figure 7, and we will
discuss it in more detail in Section 3.

2.2 Compressing Mantissa through Stochastic
Approximation with a Proxy

To further compress packet data, we investigate the mantissa, which
it has heavy in the bits of FP16. In floating-point data, exponent
values determine the scale or magnitude of a number, and thus,
they are considered more critical to the accuracy. On the contrary,
mantissa values are less important to accuracy, making them a
candidate for truncating or rounding to save more bits. This char-
acteristic provides us an opportunity to further compress packet
data after we extract common exponents. Ideally, we want to send
the fewest number of mantissa bits as a “proxy" within a group of
words sharing one common exponent. It has been shown that data
values with larger magnitude are more important to preserve the
accuracy [11, 16]. If we can remove other mantissas and send only
the mantissa with the maximum absolute value, and approximate
other mantissas using this value, then we can further compress the
data transmitted. We tried to apply this technique to packets that
share one common exponent among 16 words, and we got 100 %
accuracy. However, based on our observations shown in Figure 2,
it is apparent that most of the packets with common exponents
predominantly contain zero values in the left red region. Therefore,
achieving perfect accuracy with a single-proxy mantissa is due to
the zero-packets.

Figure 5 shows that, for non-zero shared exponents, the majority
of packets have 4 to 10 words sharing an exponent. For instance, in
AlexNet, more than 22% of the packets contain at least one group
of 5 words sharing the same exponent. To effectively leverage our

Conference’17, July 2017, Washington, DC, USA

Figure 6: Threshold effect on accuracy.

method, we need to find a threshold to filter packets containing
enough words sharing one exponent. At the same time, we also
need to consider the overhead of added control bits during the
compression step.

As we modified the experiment to exclude packets with full ze-
roes or with a high number of zeroes, we also reduced the threshold
of the required count of exponent-sharing words to include more
compressible packets. That is because, with a smaller threshold,
there is a higher likelihood of discovering more common exponents
in packets, along with a higher number of non-zero values. However,
during that process, the accuracy started to drop considerably from
threshold=12, as depicted in Figure 6. And at that point, it still hasn’t
reached the point where the majority of packets can be compressed.
With further testing for thresholds as low as 5-exponent-sharing-
word, we can confirm that decreasing the threshold, while using a
single proxy mantissa, would lead to a non-marginal decrease in
accuracy. We investigated and deduced the reason for this loss of
accuracy is primarily due to the non-uniformity of mantissa values.
From our collected data and a bit-wise perspective, we observed
that while exponent values tend to be local, mantissa values are
more random. This variability in mantissa caused a high loss of
accuracy when using one maximum value to represent other values.

Therefore, to address the accuracy issue, we must devise a less
lossy method for compressing FP16 values. With that, we opted
for two mantissas per group of shared exponent, namely mantissa
with MSB=1 and MSB=0, instead of a single max mantissa. Simulta-
neously with this change, a smaller threshold would be required
to save redundant bits. Consequently, we chose 5 as our threshold,
after detailed calculation of bit-level cost and savings. A threshold
equal to 5 would limit the number of sharing groups to 3, allowing
for optimal use of the 2-bit mask for exponent. We have added a
1-bit mask for the mantissa since we use 2 mantissas per group now.
So the total fixed overhead cost is 48 bits (16x 3-bit). Each group of
5 will cost 25 bits for one E-M-M group while saving a minimum
of 75 bits. Therefore, with a threshold equal to 5, the compression
system can at least break-even in the worst case, where there is
only one group of 5 words sharing a common exponent and the
others all have uncommon exponents. Reducing the threshold to 4
would cause the system to lose more bits than it can save during
the worst-case scenario. Therefore, threshold=5 is the lower-bound
limit for this compression system to achieve any potential savings.

Then, to optimize the system further to avoid wasting bits for
group-place-holder and their bit-masks wherever there are fewer
than three groups of exp-sharing-words, we added 2 control bits in
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Figure 7: LiteNoC With Different Packet Structure.

each packet to specify what type of packet is this packet is, as shown
in Figure 4 beside other details on the structure of the compressed
packets.

In the compressed structure, we gathered all e;s inside a packet

that meets the sharing-word-count threshold and grouped them.

Within each group, we place the maximum mantissa larger than 512
(MSB=1) in M, and for the other max-mantissa slot, we select the
maximum mantissa among those with MSB=0. We use the M; and
M for ey for first group of common exponent. The same structure
applies to the other two groups.

In the previous approach, where we selected one max mantissa,
it is evident that more accuracy is lost. An example illustrating the
loss of accuracy with one max mantissa is a scenario where, in a
packet with 10 words sharing a common exponent, one mantissa is
larger than 512, and the other 9 mantissas are much smaller than
the maximum value. In this case, selecting the maximum mantissa
as a proxy to represent others would result in significant accuracy
loss due to the large difference between these values.

In our two maximum mantissa approach, we utilize a k-means
approach to cluster the mantissas. We then add the appropriate
control bits in the packet for each word to enable the selection of a
mantissa that is close to its original value as the proxy mantissa in
the compute node.

3 Architectural Support

3.1 Compression Module

As discussed previously, we first select a threshold as the minimum
size of each sharing-group in each packet. To preserve accuracy, we
employ 2 mantissas as deputies to represent other mantissa values

within a group. Figure 4 illustrates four packet structures, and we
use a 2-bit flag to represent the structure used by each packet.

The first packet structure is employed when there is only one
exponent sharing group containing data words equal to or greater
than the threshold. The best-case scenario is when we have 16
words sharing one exponent in one packet, and the worst case is
when we have only 5 words sharing one exponent. The second
structure is for the scenario with 2 exponent sharing groups, and
the third is for 3 exponent sharing groups.

For example, to compress a packet with three exponent sharing
groups equal to or exceeding the threshold, we utilize the third
packet structure. In this case, we take the shared exponent and
select two mantissas: the first one is the maximum mantissa among
all mantissas that have a ’1’ in their MSB. The second mantissa is
the maximum mantissa among all mantissas having a 0’ in their
MSB. The logic behind this operation is as follows: since magnitude
affects the accuracy, only approximating the single MSB bit can
cause more errors. Therefore, we split the words into two groups,
MSB with 1 and 0. Then inside each group, we select the proxy with
the largest magnitude, i.e., the maximum mantissa inside each group.
In this way, we can lower the error injected by always selecting
the maximum mantissa. We do the same for the other two groups
of common exponents as well. If there are non-compressed words,
they will be sent in their original form.

Our compressed packet contains the 2-bit control for packet-
structure, followed by eq, m1, and my in the compressed structure.
The sign bits remain in their relative positions for easy decoding
at the destination, and uncompressed words are placed in their
original ordering. In addition to this structure, we add 48 additional
bits to mask the words’ group to select the appropriate exponents
and mantissas at the destination.
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Figure 8: Total Packet Latency.

Figure 9: Total Flit.

For this compression, given the memory-intensive nature of
DNN data, we leverage the already congested queues at the ejection
port of all MCs to conceal the overhead of compression and com-
press the packets before entering the ejection buffer. In the next
subsection, we will describe the decompression module.

3.2 Decompression Module

As depicted in Figure 7, our approach aims to further capitalize
on the congested queues in Memory Controllers (MCs) and miti-
gate compression overhead. The compression hardware initiates by
selecting exponents within the packet and identifying equal ones.
Subsequently, mantissas with MSB equal to 0 and 1 are chosen to
construct the compressed packet separately. Once compressed, the
packets are transmitted to their respective destinations.

Upon reaching the destination, the compressed packet must
undergo decompression to revert to the original structure shown in
Figure 7. The decompressor relies on control bit-masks assigned to
each word’s position, which specify the exponents and mantissas
associated with each word. This utilization of bit-masks ensures an
effective and accurate decompression of the packet.

4 Experimental Evaluation

We use GPGPU-sim[3] as the simulator to evaluate LiteNoC. We
use three well-known DNN applications: AlexNet[9], ResNet[4],
and Yolov5l[13] as our benchmarks. Table 1 provides details of our
system configurations.

From Figure 9, we can observe a reduction in the flit count by
more than 30% in some cases. The flit compression ratio, as shown
in Figure 10, exceeds 1.4 in many instances. This decrease in flit
size results in reduced NoC traffic. Reducing data transmission not
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Figure 10: Flit Compression Ratio.

Table 1: System Configurations

Parameter Value
Core Count 48
Clock Frequency 1.2GHz
L1I& D Cache 256-way, 128KB
L2 Cache 32-way, 16 X 256KB,
# Memory Controllers 16
Network Topology 8 X 8 Mesh
Routing Dimension-Order XY
Buffer 4 VCs per port, 8-flit depth per VC
Packet Length 5 flits, each flit 8 bytes

Figure 11: Total Dynamic and Static Energy Consumption.

only alleviates congestion in the NoC but also contributes to lower
packet latency.

Sending fewer flits in the NoC results in less congested routers
and smaller queues in each router’s buffers. This reduction in con-
gestion means that flits can reach their destinations in less time. As
shown in Figure 8, packet latency in all our DNN applications has
decreased, especially with a reduction of more than 30% in AlexNet
and ResNet.

The NoC is a major consumer of energy in a GPU processor.
Therefore, reducing the activity in the NoC by sending fewer flits
will lead to increased energy savings. As shown in Figure 11, the
LiteNoC achieves a reduction of approximately 30% in energy com-
pared to the baseline in ResNet. Our technique can significantly
reduce both dynamic and static energy.

Figure 12 illustrates the IPC in each layer of our DNN applica-
tions. In particular, our proposed compression method achieves an
improvement in IPC across all layers. In certain ResNet layers, we
observe that the IPC improvements slightly exceed 60 % compared
to the baseline and BDIL.

As mentioned above, the locality of the data in DNN applica-
tions makes them ideal candidates for investigating comparison
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Figure 12: Normalized IPC Comparison between Baseline, BDI, and LiteNoC.

techniques. Additionally, their error-tolerant nature allows for a
deeper exploration of methods to compress this data. Our proposed
method leverages the data intensity in MCs’ queues to compress
local data words in packets, sending smaller flits in the NoC. This
approach mitigates congestion in the reply network, resulting in
improved overall performance. However, our compression is lossy,
and we need to evaluate the accuracy results as well. Due to the
extremely long execution time using the simulator, we were not
able to test a large number of input images of these neural networks.
We can only test 8 images to full completion, which can finish in
a reasonable time. Our results show that all of the images tested
were classified correctly. Therefore, within the practical scope of
testing, our compression scheme achieved 100% accuracy.

5 related work

BDl is a cache compression technique that exploits the low dynamic
range of cache data [12]. Cache lines are represented in the form of
two base values and an array of differences from the base values.
BDI can achieve low decompression latency while still achieving a
high compression ratio. Global BDI further extended BDI to com-
press caches with more complicated schemes, trying to increase
the compression ratio [1]. Zhan et. al. proposed a delta compres-
sion [19] for network-on-chips that conducts data encoding before
injection and decoding before network ejection. It is an extension
of the BDI compression to NoCs. However, these techniques rely
on specific patterns in the packet data to work. Other than the con-
ventional quantization and pruning techniques to compress neural
network models, techniques on data representation format have
been proposed [14, 17]. Even though our technique proposes to
compress the original floating point data, our technique can also
work with these data representations.
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